桃蚜诱导的植物抗性对大气CO_2浓度升高的响应机制
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近年来全球大气二氧化碳(C02)浓度呈加速上升的趋势,由此造成的温室效应对人类、环境和生态系统的影响受到国际社会的重视和关注。本论文以模式植物拟南芥(Arabidopsis thaliana)和刺吸式口器昆虫桃蚜(Myzus persicae)为研究对象,以C02浓度升高为作用因子,利用多种拟南芥防御途径缺失的突变体为材料,研究了大气CO2浓度升高对植物诱导抗性以及桃蚜种群适合度的影响。研究表明:(1)大气C02浓度升高增加了野生型(Col-0)和水杨酸途径缺失型(nprl)拟南芥上的桃蚜种群数量,且仅增加了nprl上的桃蚜平均相对生长率;(2)正常C02浓度下,桃蚜为害降低了野生型(Col-0)拟南芥中茉莉酸和乙烯的含量,增加了水杨酸的含量;在桃蚜为害与不为害处理中,C02浓度升高均降低了野生型(Col-0)拟南芥的茉莉酸含量,增加水杨酸含量。(3)高通量转录组测序显示,CO2浓度升高、桃蚜为害及其交互作用均对拟南芥转录组产生影响,诱导大量差异基因的表达,涉及植物150余条代谢通路,根据差异基因的聚类分析,拟南芥转录组表达模式对桃蚜为害的响应变化较CO2因子更为一致。相比之下,CO2浓度升高对桃蚜转录组的影响较小,仅上调了Hspl4,过氧化物酶,细胞色素P450等209个相关基因的表达,下调Hsp60, Hsp70和丝氨酸蛋白酶抑制剂等86个基因的表达。(4)荧光定量PCR结果显示,野生型(Col-0)、茉莉酸途径缺失型(jarl)和乙烯途径缺失型(ein2-5)对桃蚜为害的响应模式较为一致,均在为害后6小时内即可激活以水杨酸(SA)信号途径为主的诱导防御反应,24小时诱导防御反应最为强烈,同时避免或未激活植物茉莉酸(JA)/乙烯(ET)途径相关基因的表达;桃蚜为害没有诱导水杨酸途径缺失型突变体nprl的SA信号途径的诱导防御反应,却上调了JA信号途径的系统防御反应;并且C02浓度升高会增加了三种防御途径缺失型突变体及野生型拟南芥SA防御途径基因的表达,降低JA/ET防御途径基因的表达。本研究清楚地表明:C02浓度升高增强了植物对蚜虫的无效抗性-水杨酸信号途径,削弱了植物对蚜虫的有效抗性-茉莉酸信号途径,从而增加了桃蚜在拟南芥上的种群数量。这是首次从植物诱导抗性角度揭示CO2浓度升高增加桃蚜种群适合度的分子机理,为明确植物-蚜虫对大气CO2浓度升高的响应和适应性机理提供重要的理论基础。
As the increases of the concentration of atmospheric carbon dioxide (CO2), the considerable effort has been made to investigate the impact of the greenhouse effects on human, environments and ecosystems around the world. The present study examined the interactions between peach aphid (Myzus persicae) and four Arabidopsis thaliana isogenic genotypes including wild type and three mutants when plants were grown under ambient (370 ppm) and elevated (750 ppm) CO2. We focused on the effect of elevated CO2 on plant induced resistance against aphids. Our data showed that:(1) elevated CO2 increased the population abundance of peach aphid when reared on wild-type (Col-0) and SA-deficient mutants (nprl), and only increased the mean rate growth rate of aphid reared on Col-0 plant. (2)Under ambient CO2, aphid infestation reduced the jasmonic acid and ethylene levels but increased the salicylic acid level in wild-type plant. Regardless of aphid infestation, elevated CO2 decreased the jasmonic acid but increased the salicylic acid level in wild-type plant. (3) By using high-throughput transcriptome sequencing, CO2 level, aphid infestation and their interactions altered the transcription profiles of many genes involved 150 metabolic pathways of plant. According to cluster analysis of differential genes, the consistency of plants transcriptomic expression patterns response to aphid infestation is much better than response to elevated CO2. By contrast, elevated CO2 caused some changes of transcriptome in aphids which up-regulated 209 genes including Hspl4, cytochrome P450 (CYP) and antioxidant enzymes and down-regulated 86 genes including Hsp60, Hsp70 serine proteinase inhibitor. (4) The results from real-time PCR suggested that wild-type, JA-deficient mutants (jarl) and ET-insensetive mutants (ein2-5) had similar response patterns to aphid infestation. Defense genes involved in the salicylic acid (SA) signaling pathways were triggered at 6h and reached maximum expression at 24h since aphid infestation. Meanwhile, the expression of those genes involved in jasmonic acid (JA) and ethylene (ET) signaling pathway were inhibited. However, aphid infestation up-regulated the genes involved in JA defense pathway instead of in SA defense pathway in nprl because of the mutation of SA singaling pathway. Furthermore, for all four genotypes of Arabidopsis, elevated CO2 up-regulated the expression of SA-dependent defense genes but down-regulated the expression of JA-dependent defense genes of plant when infested by aphids. The current study indicated that elevated CO2 tend to enhance the ineffective defense-SA signaling pathway and alleviate the effective defense-JA signaling pathway against aphid, and in turn increased the population abundance of aphids. Our study not only firstly clarified the molecular mechanisms in the increases of the population fitness of aphid response to elevated CO2, but provided the theoretical basis for understanding the adaptation of aphid and its host plant response to elevated CO2.
引文
[1]The Heads of State, Heads of Government, Ministers, and other heads of delegate-ionpresent at the United Nations Climate Change Conference 2009 in Copenhagen. 2009.
    [2]Intergovernmental Panel on Climate Change.2007. Climate Change 2007; the phys-ical science basis. Summary for policy makers. Report of Working Group I of the Intergovernmental Panel on Climate Change. http://www.ipcc.ch/pub/spm18-02.pdf.
    [3]戈峰,陈法军,吴刚,孙玉诚.2010.昆虫对大气CO2浓度升高的响应.科学出版社,第一版,pp:1-22.
    [4]Ainsworth EA, Rogers A, Vodkin LO, WalterA,Schurr U.2006. The effeets of elevat-ed CO2 concentration on soybean gene expression. An analysis of growing and mature leaves, plant physiology,142(1):135-147.
    [5]孟玲,李保平.2005.大气二氧化碳浓度升高对植物和昆虫相互关系的影响.生态学杂志,24(2):200-205.
    [6]Hughes L, Bazza FA.2001. Effects of elevated CO2 on five plant-aphid interactions. Entomologia Experimentalis et Applicata,99(1):87-96.
    [7]陈法军,吴刚,戈峰.2005.大气C02浓度升高对棉蚜生长发育和繁殖的影响极其作用方式.生态学报,25(10):2601—2607.
    [8]Karban R, Baldwin IT.1997. Induced responses to herbivory. University of Chicago Press, Chicago, IL, USA.
    [9]Schoonhoven LM, Van Loon JJA, Dicke M.2005. Insect plant biology. Oxford University Press, Oxford.
    [10]Schittko U, Hermsmeier D, Baldwin IT.2001. Molecular interactions between the specialist herbivore Manduca sexta (Lepidoptera, Sphingidae) and its natural host Nicotiana attenuate Ⅱ. Accumulation of plant mRNAs inresponse to insect-derived cues. Plant Physiology,125:701-710.
    [11]娄永根,程家安.植物的诱导抗虫性.昆虫学报,1997,40(3):320-331.
    [12]Winz RA, Baldwin IT.2001. Molecular Interactions between the Specialist Herbivore Manduca sexta (Lepidoptera, Sphingidae) and Its Natural Host Nicotiana attenuata. Ⅳ. Insect-induced ethlne reduces jasmonate-induced nicotine accumulation by reg-ulating putrescine N-methyltranserase transcripts. Plant Physiology,125:2189-2202.
    [13]McConn MA, Dong XH, Endara ME, Davis KR, Ausubel FM, Peterman TK.1993. An Arabidopsis thaliana lipoxygenase gene can be induced by pathogens, Abscisic acid, and methyl jasmonate. Plant Physiol,102:441-450.
    [14]Bell E, Creelman RA, Mullet JE.1995. A chloroplast lipoxygenase is required for wound-induced jasmonic acid accumulation in Arabidopsis. Proc Natl Acad Sci USA, 92:8675-8679.
    [15]Lambers H, Stulen I.1996. Carbon use in root respiration as affected by elevated atmospheric CO2.Plant and Soil,187:251-263.
    [16]Thaler JS.1999. Jasmonate-inducible plant defenses cause increased parasitism of herbivores. Nature,399:686-688.
    [17]Farmer EE, Ryan CA.1992. Octadecanoid Precursors of Jasmonic Acid Activate the Synthesis of Wound-Inducible Proteinase Inhibitors. The Plant Cell,4(2):129-134.
    [18]Cohen Y, Gisi U, Niderman T.1993. Local and systemic protection against Phytop-hthora infestans induced in potato and tomato plants by jasmonic acid and jasmonic methylester. Phytopanthology,83:1054-1062.
    [19]Bruce TJ,Martin JL, Picket JA, Pye BJ, Smart LE,Wadhams LJ.2003. Cis-Jasmone treatment induces resistance in wheat plants against the grain aphid, Sitobion avenae (Fabricius) (Homoptera: Aphididae). Pest Management Science,59:1031-1036.
    [20]李德红,潘瑞炽.1995.水杨酸在植物体内的作用.植物生理学通讯,31(2):144-149.
    [21]De Boer JG, Dicke M.2004. The Role of Methyl Salicylate in Prey Searching Behav-ior of the Predatory Mite Phytoseiulus persimilis. Journal of Chemical Ecology,30(2): 255-271.
    [22]Reymond P, Weber H, Damond M, Farmer EE.2000. Differential gene expression in response to mechanical wounding and insect feeding in Arabidopsis. The Plant Cell, 12:707-719.
    [23]De Vos M, Van Oosten VR, Van Poecke RMP.2005. Signal signature and transcript- ome changes of Arabidopsis during pathogen and insect attack. Molecular Plant-Microbe Interactions,18,923-927.
    [24]Park SJ, Huang Y, Ayoubi P.2005. Identification of expression profiles of sorghum genes in response to greenbug phloem-feeding using cDNA subtraction and micr-oarray analysis. Planta,223:932-947.
    [25]Kempema LA, Cui XP, Holzer FM, Walling LL.2007. Arabidopsis Transcriptome Changes in Response to Phloem-Feeding Silverleaf Whitefly Nymphs. Similarities and Distinctions in Responses to Aphids. Plant Physiology,143:849-865.
    [26]Zhu-Salzman K, Salzman RA, Ann JE, Koiwa H.2004. Transcriptional regulation of sorghum defence determinants against a phloem-feeding aphid. Plant Physiology, 134:420-431.
    [27]Walling LL.2000. The myriad plant responses to herbivores. J. Plant Growth Regul., 19:195-216.
    [28]Glinwood RT, Pettersson J.2000. Change in response of Rhopalosiphum padi spring migrants to the repellent winter host component methyl salicylate. Entomologia Experimentalis et Applicata,94(3):325-330.
    [29]Aihmura GI, Kost C, Boland W.2005. Herbivore-induced, indirect plant defences. Molecular and Cell Biology of Lipids,1734(2):91-111.
    [30]Glinwood RT, Pettersson J.2000. Change in response of Rhopalosiphum padi spring migrants to the repellent winter host component methyl salicylate. Entomologia Experimentalis et Applicata,94(3):325-330.
    [31]Chang C, Kwok SF, Bleecker AB, Meyerowitz EM.1993. Arabidopsis ethylene-response gene ETR1:similarity of product to two-component regulators. Science,262: 539-544.
    [32]Rieske LK, Raffa KF.1995. Ethylene emission by a deciduous tree,Tilia americana, in response to feeding by introduced basswood thrips,Thrips calcaratus. Journal of Chemical Ecology,21(2):187-197.
    [33]McGurl B, Orozco-Cardenas M, Pearce G, Ryan CA.1994. Over expression of the prosystemin gene in transgenic tomato plants generates a systemic signal that constitutively induces proteinase inhibitor synthesis. PNAS,91(21):9799-9802.
    [34]Ryan CA, Moura DS.2001. Wound-inducible proteinase inhibitors in Pepper, differential regulation upon wounding, systemin and methyl jasmonate. Plant Physiol, 126:289-298.
    [35]Wasternacka C, Stenzela I, Hauseb B, Hausec Gerd, Kuttera C, Mauchera H, Neume-rkela J.2006. The wound response in tomato-Role of jasmonic acid. Journal of Plant Physiology,163(3):297-306.
    [36]Schenk PM, Kazan K, Wilson I, Anderson JP, Richmond T, Somerville SC, Manners JM.2000. Coordinated plant defense responses in Arabidopsis revealed by microarray analysis. PNAS,97(21):11655-11660.
    [37]Stotz HU, Pittendrigh BR, Kroymann J, Weniger K, Fritsche J, Bauke A, Mitchell-Olds T.2000. Induced Plant Defense Responses against Chewing Insects. Ethylene Signaling Reduces Resistance of Arabidopsis against Egyptian Cotton Worm But Not Diamondback Mothl. American Society of Plant Physiologists,124(3):1007-1018.
    [38]Spoel SH, Koomneef A, Calessens SMC.2003. NPR1 modulate-scross-talk between salicyalte-and jasmonate dependent defensepath-ways though a novel function in the cytosol. Plant Cell,15:760-770.
    [39]Reymond P, Farmer EE.1998. Jasmonate and salicylate global signals for defense gene expression. Curr. Opin. Plant Biol,1:404-411.
    [40]Halitschke R, Schittko U, Pohnert G, Boland W, Baldwin IT.2001. Molecular Interactions between the Specialist HerbivoreManduca sexta(Lepidoptera, Sphingi-dae) and Its Natural Host Nicotiana attenuata. III. Fatty Acid-Amino Acid Conjugates in Herbivore Oral Secretions Are Necessary and Sufficient for Herbivore-Specific Plant Responses. American Society of Plant Physiologists,125(2):711-717.
    [41]Carroll MJ, Schmelz EA, Meagher RL, Teal PEA.2006. Attraction of Spodoptera frugiperda Larvae to Volatiles from Herbivore-Damaged Maize Seedlings. Journal of Chemical Ecology,32(9):1911-1924.
    [42]Carroll MJ, Schmelz EA, Teal PEA.2007. The Attraction of Spodoptera frugiperda Neonates to Cowpea Seedlings is Mediated by Volatiles Induced by Conspecific Herbivory and the Elicitor Inceptin. Journal of Chemical Ecology,34(3):291-300.
    [43]Turlings TCJ, Alborn HT, Loughrin JH, Tumlinson JH.2000. Volicitin, An Elicitor of Maize Volatiles in Oral Secretion of Spodoptera Exigua: Isolation and Bioactivity. Journal of Chemical Ecology,26(1):189-202.
    [44]Truitt CL, Wei HX, Parel PW.2004. A Plasma Membrane Protein from Zea mays Binds with the Herbivore Elicitor Volicitin. American Society of Plant Biologists, 16(2):523-532.
    [45]Green TR, Ryan CA.1972. Wound inducible proteinase inhibitors in plant leaves:a possible defense mechanism against insects. Science,175:776-779.
    [46]Tjallingii WF, Hogen Esch TH.1993. Fine structure of aphid stylet routes in plant tissues in correlation with EPG signals. Physiological Entomology,18:317-328.
    [47]Martin B, Collar JL, Tjallingii WF, Fereres A.1997. Intracellular ingestion and salivation by aphids may cause acquisition and inoculation of non-persistently transmitted plant viruses. Journal of General Virology,78:2701-2705.
    [48]Tjallingii WF,1995. Electrical signal from the depth of the plant tissue:The electrical penetration graph (EPG). In: Niemeyer HM, ed. Techniques in plant-insect interactions and biopesticides.Proceedings. IFS Workshop, Santiago, Chile:49-58.
    [49]Will T, Tjallingii WF, Thonnessen A, van Bel AJE.2007. Molecular sabotage of plant defense by aphid saliva. Proceedings of the National Academy of Sciences of the United States of America,104(25):10536-10541.
    [50]Cohen AC.1998. Solid to liquid feeding: the insect(s) story on extra oral digestion in predaceous Arthropoda. American Entomologist, (Summer):103-116.
    [51]Miles PW.1999. Aphid saliva. Biological Reviews,74:41-85.
    [52]Harmel N, Letocart E, Cherqui A, Giordanengo P, Mazzucchelli G, Guillonneau F, De Pauw E, Haubruge E, Francis F.2008. Identification of aphid salivary proteins:a proteomic investigation of Myzus persicae. Insect Molecular Biology,17(2):165-174.
    [53]Carolan JC, Fitzroy CJ, Ashton PD, Douglas AE, Wilkinson TL.2009. The secreted salivary proteome of the pea aphid Acyrthosiphon pisum characterised by mass spectrometry. Protemics,9:2457-2467.
    [54]郭光喜,刘勇,杨景娟,马向真.2009.麦长管蚜唾液中几种酶的鉴定、活力测定与功能分析.昆虫学报,49(5):768-774.
    [55]Cox-Foster DL, Stehr JE.1994. Induction and localization of FAD-glucose dehy-drogenase (GLD) during encapsulation of abiotic implants in Manduca sexta larvae. Journal of Insect Physioloy,40:235-249.
    [56]Ohashi K, Natori S, Kubo T.1999. Expression of amylase and glucose oxidase in the hypopharyngeal gland with an age-dependent role change of the worker honeybee (Apis mellifera L.). Eur. J. Biochem.,265:127-133.
    [57]Sporn PH, Peters-Golden MJ.1998. Hydrogen peroxide inhibits alveolar macrophage 5-lipoxygenase metabolism in association with depletion of ATP. Biol. Chem,263: 14776-14783.
    [58]Zhu-Salzman K, Bi JL, Liu TX.2005. Molecular strategies of plant defense and insect counter-defense. Insect Science,12:3-15.
    [59]Kazzazi M, Bandani AR, Hosseinkhani S.2005. Biochemical characterization of amylase of the Sunn pest Eurygaster integriceps. Entomological Science,8:371-377.
    [60]Dreyer DL, Campbell BC.1987. Chemical basis of host-plant resistance to aphids. Plant, Cell and Environment,10:353-361.
    [61]Merijn RK, Kai A, Maurice WS.2004. Differential timing of spider mite-induced direct and indirect defenses in tomato plants. Plant Physiology and Biochemistry,135: 483-49.
    [62]Miles PW, Oertli JJ.1993. The significance of antioxidants in the aphid-plant inter-action:the redox hypothesis. Entomologia Experimentalis et Applicata,67:285-273.
    [63]Funk CJ.2001. Alkaline phosphatase activity in whitefly salivary glands and saliva. Archives of Insect Biochemistry and Physiology,46:165-174.
    [64]Veteli TO, Kuokkanen K, Julkunen-Tiitto R.2002. Effect of elevated CO2 and temprerature on plant growth and herbivore defensive chemistry. Global Change Biology,8:163-170.
    [65]吴坤君.1993.大气中CO2含量增加对植物—昆虫关系的影响.应用生态学报,4(2):198-202.
    [66]Pregitzer K S, Zak D R, Curtis P S.1995. Atmospheric CO2, soil nitrogen and turnover of fine roots. New Phytol,129:579-585.
    [67]Jablonski LM, Wang X, Curtis PS.2002. Plant reproduction under elevated CO2 conditions:a meta-analysis of reports on 79 crop and wild species. New phytologist, 156:9-26.
    [68]王春乙,郭建平,崔读昌.2000.CO2浓度增加对小麦和玉米品质影响的实验研究.作物学报,26(6):931-936.
    [69]Mott KA.1990. Sensing of atmospheric CO2 by Plants. Plant, Cell and Environment, 13(7):731-737.
    [70]Bezemer TM, Jones TH.1998. Plant insect herbivore interactions in elevated atom-spheric CO2 quantitative analyses and guild effects. OIKOS,82:212-222.
    [71]Cotrufo ME, Ineson P, Scott A.1998. Elevated CO2 reduces the nitrogen concentr-ation of plant tissues. Global Change Biology,4(1):43-54.
    [72]陈法军,吴刚,戈峰.2006.春小麦对大气CO2浓度升高的响应及其对麦长管蚜生长发育和繁殖的影响.2006,17(1):91-96.
    [73]Conroy JP, Seneweera S, Basra AS.1994. Influence of rising atmospheric CO2 concentrations and tempe rature on growth yields and grain quality of cereal crops. Australian Journal of Plant Physiology,21:741-758.
    [74]Koeh KE, Jones PH, Avigne WT, Allen Jr LH.2006. Growth, dry matter partitioning, and diurnal aetivities of RuBP carboxylase in citrus seedlings maintained at two levels of CO2. Physiologia Plantarum,67(3):477-484.
    [75]Li CR, Liang YH, Hew CS.2002. Responses of Rubisco and sucrose-metabolizing enzymes to different CO2 in a C3 tropical epiphytic orchid Oncidium Goldiana. Plant Science,163:313-320.
    [76]Paul MJ, Foyer CH.2001. Sink regulation of photosynthesis. J. Exp.52:1383-1400.
    [77]Lin JS, Wang GX.2002. Double CO2 could improve the drought tolerance better in sensitive cultivars than in tolerant cultivars in spring wheat. Plant Science,163:627-637.
    [78]陈雄,任红旭.2000.CO2浓度升高对干旱胁迫下小麦光合作用和抗氧化酶活性的影响.应用生态学报,11(6):881-884.
    [79]Miyazaki S, Fredricksen M, Hollis KC, Poroyko V, Shepley D, Galbraith DW, Long SP, Bohnert HJ.2004. Transcript expression profiles of Arabidopsis thaliana grown under controlled conditions and open-air elevated concentrations of CO2 and of 03. Field Crops Research,90:47-59.
    [80]Bae H, Sicher R.2004. Changes of soluble protein expression and leaf metabolite levels in Arabidopsis thaliana grown in elevated atmospheric carbon dioxide. Field Crops Research,90:61-73.
    [81]Lambers H, Stulen 1.1996. Carbon use in root respiration as affected by elevated atmospheric CO2. Plant and Soil,187:251-263.
    [82]Bryant JP, Chapin FS, Klein DR.1983. Carbon nutrient balance of boreal plants in relation to vertebrate herbivory. Oikos,40:357-368.
    [83]Pennings SC, Nadeaau MT, Paul VJ.1993. Selectivity and growth of the generalist herbivore Dolabella auricularia feeding upon complementary resources. Ecology,74: 879-890.
    [84]Bernays EA, Bright KL, Gonzales N, Angel J.1994. Dietary mixing in a generalist herbivore:tests of two hypotheses. Ecology,75:1997-2006.
    [85]吴刚,陈法军,戈峰.2006.CO2浓度升高对棉铃虫生长发育和繁殖的直接影响.生态学报.25(6):1732-1738.
    [86]Coviella CE, Trumble JT.1999. Effects of elevated atmospheric carbon dioxide on insect-plant interactions. Conservation Biology,13:700-712.
    [87]Whittaker, JB.1999. Impacts and responses at population level of herbivorous insects to elevated CO2. European Journal of Entomology,96:149-156.
    [88]Scriber, JM.1982. The behavior and nutritional Physiology of southern armyworm larvae as a function of plant species consumed in earlier instars. IBID,31:359-369.
    [89]Holopainen JK.2002. Aphid response to elevated ozone and CO2. Entomologia Experimentalis et Applicata,104:137-142.
    [90]Whittaker, JB.1999. Impacts and responses at population level of herbivorous insects to elevated CO2. European Journal of Entomology,96:149-156.
    [91]Whittaker JB.2001. Insects and plant in a changing atmosphere. Journal of Ecology, 9:507-518.
    [92]Bezemer TM, Knight KJ, Newington JG, Jones TH.1999. How general are aphid responses to elevated atmospheric CO2. Annals of the Entomological Society of America,92 (5):724-730.
    [93]Sun YC, Chen FJ, Ge F.2009. Elevated CO2 changes interspecific competition among three species of wheat aphids:sitobion avenae, rhopalosiphum padi, and schizaphis graminum. Environmental Entomology,38:26-34.
    [94]Liu TX, Yue B.2001. Comparison of some life history parameters between alate and apterous forms of turnip aphid (Homoptera: Aphididae) on cabbage under constant temperatures. Florida Entomologist,84 (2):239-242.
    [95]Powell G, Hardie J.2002. Xylem ingestion by winged aphids. Entomologia Experi-mentalis et Applicata,104 (1):103-108.
    [96]Chen FJ, Wu G, Ge F.2004. Impacts of elevated CO2 on the population abundance and reproductive activity of aphid Sitobion avenae Fabricius feeding on spring wheat. Journal of Applied Entomology,128:723-730.
    [97]Tjallingii WF.2006. Salivary secretions by aphids interacting with proteins of phloem wound responses. Journal of Experiment Botany,57:739-745.
    [98]张广珠,胡春祥,苏建伟,戈峰.2009.麦长管蚜在高CO2浓度下生长的抗性与感性小麦品种上的取食行为.生态学报,29(9):4745-4752.
    [99]Li P, Ainsworth, EA, Leakey ADB. Ulanov A, Lozovaya V. Ort DR, Bohnert HJ. 2008. Arabidopsis transcript and metabolite profiles:ecotype-specific responses to open-air elevated CO2. Plant Cell Environ.31,1673-1687.
    [100]Stiling P, Cornelissen T.2007. How does elevated carbon dioxide (CO2) affect plant-herbivore interactions? A field experiment and meta-analysis of CO2-mediated changes on plant chemistry and herbivore performance. Global Change Biol.13, 1823-1842.
    [101]Zavala, JA, Casteel CL, Nabity PD, Berenbaum, MR, DeLucia EH.2009. Role of cysteine proteinase inhibitors in preference of Japanese beetles (Popillia Japonica) for soybean (Glycine max) leaves of different ages and grown under elevated CO2. Oecologia 161,35-41.
    [102]Newman JA.2003. Climate change and cereal aphids:the relative effects of increasing CO2 and temperature on aphid population dynamics. Global Change Biology,10:5-15.
    [103]Docherty M, Wade FA, Hurst DK, Whittaker JB, Lea PJ.1997. Responses of tree sap-feeding herbivores to elevated CO2. Global Change Biology,3:51-59.
    [104]Awmack CS, Harrington R, Leather SR.1997. Host plant effects on the performance of the aphid Aulacorthum solani (Kalt) (Homoptera: Aphiididae) at ambient and elevated CO2. Global Change Biology,3:545-549.
    [105]Van Emden H F., Eastop VF, Hughes RS, Way MJ.1969. The ecology of Myzus persicae. Ann. Rev. Entomol,14:197-270.
    [106]Awmack CS, Harrington R, Leather SR, Lawton JH.1996. The impacts of elevated CO2 on aphid-plant interactions. Aspects Applied Biology,45:317-322.
    [107]Thompson GA, Goggin FL.2006. Transcriptomics and functional genomics of plant defence induction by phloem-feeding insects. Journal of Experimental Botany,57(4): 755-766.
    [108]Pritchard J, Griffith SB, Hunt EJ.2007. Can the plant-mediated impacts on aphids of elevated CO2 and drought be predicted? Global Change Biology,13:1616-1629.
    [109]Ellis C, Karafyllldis Ⅰ, Turner JG 2002. Constitutive activation of jasmonate signaling in an Arabidopsis mutant correlates with enhanced resistance to Erysiphe cichoracearum, Pseudomonas syringae, and Myzus persicae. Molecular Plant-Microbe Interactions,15(10),1025-1030.
    [110]Winz RA, Baldwin IT.2001. Molecular interactions between the specialist herbivore Manduca sexta (Lepidoptera, Sphigidae) and its natural host Nicotiana attenuate. Ⅳ. Insect-induced ethylene reduces jasmonate-induced nicotine accumulation by regulating putrescine N-methyltransferase transcripts. Plant physiology,125:2189-2202.
    [111]Koornneef A, Pieterse CMJ.2008. Cross Talk in Defense Signaling. Plant Physio-logy,146:839-844.
    [112]Fidantsef AL, Stout MJ, Thaler JS, Duffey SS, Bostock RM.1999. Signal interact-ions in pathogen and insect attack, expression of lipoxygenase, proteinase inhibitor Ⅱ, and pathogenesis-related protein P4 in the tomato, Lycopersicon esculentum. Physio-logical and Molecular Plant Pathology,54:97-114.
    [113]Moran PJ, Thompson GA.2001. Molecular Responses to Aphid Feeding in Arabidopsis in Relation to Plant Defense Pathways. Plant Physiology,125:1074- 1085.
    [114]Thompson GA, Goggin FL.2006. Transcriptomics and functional genomics of plant defence induction by phloem-feeding insects. Journal of Experimental Botany,57(4): 755-766.
    [115]Kanehisa M, Araki M, Goto S, Hattori M, Hirakawa Mika, Itoh M, Katayama T, Kawashima S, Okuda S, Tokimatsu T, Yamanishi Y.2008. KEGG for linking genomes to life and the environment. Nucleic acids reseach,36(1):480-484.
    [116]韦朝领,高香凤,江昌俊,叶爱华.2006.基因表达谱差异显示技术及其在植物对害虫取食诱导反应研究中的应用(综述).安徽农业大学学报,33(1):94-99.
    [117]Voelckel C, Weisser WW, Baldwin IT,2004. An analysis of plant-aphid interactions by different microarray hybridization strategies. Molecular Ecology 13:3187-3195.
    [118]Boyko EV, Smith CM, Thara VK,2006. The molecular basis of plant gene expression during aphid invasion: wheat Pto and Pti like sequences are involved in interactions between wheat and Russian wheat aphid(Homoptera:Aphididae). Journal of Economic Entomology,99:1430-1445.
    [119]Kaloshian I.2004. Gene-for-gene disease resistance:bridging insect pest and pathogen defence. Journal of Chemical Ecology,30:2419-2438.
    [120]Forslund K, Pettersson J, Bryngelsson T, Jonsson L.2000. Aphid infestation induces PR proteins differentially in barley susceptible or resistant to the birdcherry-oat aphid (Rhopalosiphum padi). Physiologia Plantarum,110:496-502.
    [121]赵丽艳,陈巨莲,孙京瑞.2006.麦长管蚜取食诱导小麦防御反应的生化及分子机制成卓敏.科技创新与绿色植保.北京:中国农业科学技术出版社.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700