热休克蛋白70抑制剂PFT-μ对诱导型一氧化氮合成酶诱导表达及蛋白稳定性的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
背景:一氧化氮(Nitric oxide, NO)作为重要的信号分子和效应分子参与多种生理过程。机体通过一氧化氮合成酶(Nitric oxidesynthase, NOS)来合成NO,而诱导型NOS(inducible NOS, iNOS)因其具有的诱导表达及高效产生NO的特性使其成为机体免疫系统用来对抗入侵的微生物及清除自身肿瘤细胞的重要工具。热休克蛋白(Heatshock protein, HSP)是细胞内表达丰度最高的蛋白,在受到热休克等应激刺激时还会大量诱导表达。本课题组前期的研究证实HSP90对iNOS表达、活性及蛋白稳定性有重要影响,而作为与之紧密相关的HSP70是否有相似的作用目前尚不清楚。PFT-μ (Pifithrin-mu)是由George等于2009年首次在Mol Cell上报道的对HSP70具有高度选择性的一种小分子抑制剂,这为我们研究HSP70提供了一个有力的研究工具。到目前为止,利用PFT-μ治疗白血病等癌症方面的研究已有报道,但尚无在脓毒症等炎症方面的研究,另外也无HSP70与iNOS蛋白诱导及蛋白翻译后稳定性维持方面的报道。
     目的:拟探讨PFT-μ作为特异性热休克蛋白70抑制剂对IFN-γ诱导的小鼠RAW264.7巨噬细胞NO产生及iNOS表达的影响及分子调控机制;观察PFT-μ对脓毒症小鼠主要组织内iNOS表达的影响,观察PFT-μ是否参与iNOS蛋白翻译后的稳定性。
     方法:采用LPS/IFN-γ诱导RAW264.7巨噬细胞株构建炎症反应的细胞模型,Western-Blot检测iNOS等蛋白表达;定量聚合酶链反应(q-PCR)分析iNOS mRNA表达改变,Griess试剂测定培养基中NO的含量;HSP70siRNA转染RAW264.7巨噬细胞检测iNOS等蛋白表达;Western-Blot检测转录因子STAT1磷酸化水平及IRF-1诱导表达及胞核转移情况、染色质免疫共沉淀(Chromosome immunoprecipitate assay,ChIP)检测p-STAT1和IRF-1与iNOS基因启动子区的结合;Western-Blot检测胞浆可溶性及沉淀中iNOS蛋白;构建内毒素血症小鼠模型检测主要组织内iNOS表达水平的变化。
     结果:在IFN-γ诱导的RAW264.7小鼠巨噬细胞中,PFT-μ在8-12小时可抑制NO生成(P<0.05);PFT-μ在8-12小时可下调iNOS蛋白和mRNA表达(P<0.05);HSP70siRNA转染后可下调iNOS蛋白水平;PFT-μ不影响细胞内STAT1、磷酸化STAT1的水平,PFT-μ不影响IRF-1蛋白的表达及细胞内胞浆与胞核间转移;PFT-μ在2小时可降低p-STAT1和IRF-1对iNOS启动子区的结合(P<0.05);PFT-μ不影响iNOS mRNA的稳定性(P>0.05);PFT-μ不影响iNOS的蛋白稳定性;PFT-μ可抑制内毒素血症小鼠主要组织内iNOS的蛋白及mRNA的表达(P<0.05)。
     结论:PFT-μ可降低LPS/IFN-γ诱导的RAW264.7中NO的生成、iNOS蛋白和mRNA表达;PFT-μ通过抑制转录因子p-STAT1和IRF-1与iNOS基因启动子结合而减少iNOS生成;PFT-μ对iNOS mRNA及蛋白质稳定性无影响;PFT-μ可在小鼠体内抑制iNOS表达。
Backgroud: Nitric oxide (NO) is a fundamental signaling moleculeand effector involving in a variety of biological processes. In biologicalsystem, NO is produced by nitric oxide synthases (NOSs). Because of itsinducible expression and high-output features, iNOS is taken as aneffective tool to fight against microbe infection and eliminate tumor cells.Although many inflammatory factors can induce iNOS, the molecularmechanism is still largely unknown. Heat shock proteins (HSPs) are one ofthe most abundant protein families in the cytosolic, and they can be furtherinduced under heat shock stimuli. Our previous studies show that HSP90has great impact on iNOS induction, protein activity, and its stability. As arelevant protein, we evaluated whether HSP70has a similar effect on iNOS.George et al reported a small molecule, which strictly inhibits HSP70,called pifithrin-μ (PFT-μ), also called phenylacetylenylsulfonamide at thejournal Molecular Cell in2009. It gives us the possibility to study HSP70in vitro and in vivo. Up to now, many researchers have reported thisinhibitor can effectively at killing various types of tumor cells, but few reports are focused on inflammatory disorders or the role in iNOSinduction and protein quality control.
     Objective:To investigate the effects and mechanisms of the specificHSP70inhibtor, PFT-μ on LPS/IFN-γ-induced iNOS induction and nitricoxide production in murine RAW264.7cells; to study the effects of PFT-μon iNOS induction in endotoxemic mice model; to evaluate the effects ofPFT-μ on iNOS protein stability.
     Methods: To establish inflammatory cell line model by usingLPS/IFN-γ-stimulating murine RAW264.7cells. The level of iNOS proteinwas determined by Western-Blot, iNOS mRNA level was evaluated by realtime PCR, and nitric oxide production in media was determined by Griessreaction. HSP70siRNA was transfected to evulate the specific inhibition ofPFT-μ on RAW264.7cells. Western-Blot was used to determine thephosphoralation of STAT1, the induction and nuclear translocation of IRF-1.Chromation immunoprecipitaiton assay was used to evaluate the bindingefficiency of p-STAT1and IRF-1to its DNA elements. Western-Blot wasused to evaluate the soluable and insoluable iNOS after PFT-μ pretreatment.The endotoxemic mice model was conducted to evaluate the HSP70inhibition on iNOS induction in vivo.
     Results: Nitric oxide production, iNOS mRNA, and protein levelswere blunt after8hours in IFN-γ-stimulating RAW264.7cells bypretreatment with PFT-μ (P<0.05).Transfection with HSP70siRNA could inhibit iNOS protein expression. PFT-μ did not disturb thephosphoralation of STAT1, the induction and nuclear translocation ofIRF-1. In the presence of PFT-μ, IFN-γ-elicited STAT1and IRF-1bingdings to iNOS promoter were largerly abrogated (P<0.05). PFT-μ didnot change the stability of iNOS mRNA nor iNOS protein. HSP70function is essential for iNOS induction in endotoxemic mice model(P<0.05).
     Conclusion: PFT-μ prevents iNOS gene transcription, and proteinexpression, and nitric oxide production in LPS/IFN-γ-stimulating murineRAW264.7cell line. PFT-μ could inhibit STAT1and IRF-1bindings toiNOS promoter, and abrogate iNOS gene transcription. PFT-μ did notshorten the half-life of iNOS mRNA. PFT-μ pretreatment did not enhancethe insoluable portion of iNOS protein.
引文
[1] Pluta RM. New regulatory, signaling pathways, and sources of nitric oxide [J]. ActaNeurochir Suppl.2011;110(Pt1):7-12.
    [2] Martinez-Ruiz, A. Cadenas, S.Lamas, S. Nitric oxide signaling: classical, lessclassical, and nonclassical mechanisms [J]. Free Radic Biol Med.2011,51(1):17-29.
    [3] Clancy RM, Amin AR, Abramson SB. The role of nitric oxide in inflammation andimmunity [J]. Arthritis Rheum.1998,41(7):1141-51.
    [4] Hickok JR, Thomas DD. Nitric oxide and cancer therapy: the emperor has NOclothes [J]. Curr Pharm Des.2010,16(4):381-91.
    [5] Marletta MA. Nitric oxide synthase: aspects concerning structure and catalysis [J].Cell.1994,78(6):927-30.
    [6] Yoshida M, Xia Y. Heat shock protein90as an endogenous protein enhancer ofinducible nitric-oxide synthase [J]. J Biol Chem.2003,278(38):36953-8.
    [7] Luo S, Wang T, Qin H, et al. Obligatory role of heat shock protein90in iNOSinduction [J]. Am J Physiol Cell Physiol.2011,301(1):C227-33.
    [8] Basu S, Binder RJ, Suto R, et al. Necrotic but not apoptotic cell death releases heatshock proteins, which deliver a partial maturation signal to dendritic cells andactivate the NF-kappa B pathway [J]. Int Immunol.2000,12(11):1539-46.
    [9] Leu JI, Pimkina J, Frank A, et al. A small molecule inhibitor of inducible heat shockprotein70[J]. Mol Cell.2009,36(1):15-27.
    [10] Amaravadi RK, Lippincott-Schwartz J, Yin XM,et al. Principles and currentstrategies for targeting autophagy for cancer treatment [J]. Clin Cancer Res.2011,17(4):654-66.
    [11] De Stefano D, Maiuri MC, Iovine B,et al. The role of NF-kappaB, IRF-1, andSTAT-1alpha transcription factors in the iNOS gene induction by gliadin andIFN-gamma in RAW264.7macrophages [J]. J Mol Med (Berl).2006,84(1):65-74.
    [12] Martin E, Nathan C, Xie QW. Role of interferon regulatory factor1in induction ofnitric oxide synthase [J]. J Exp Med.1994,180(3):977-84.
    [13] Stempelj M, Kedinger M, Augenlicht L,et al. Essential role of the JAK/STAT1signaling pathway in the expression of inducible nitric-oxide synthase in intestinalepithelial cells and its regulation by butyrate [J]. J Biol Chem.2007,282(13):9797-804.
    [14] Su F, Huang H, Akieda K,et al. Effects of a selective iNOS inhibitor versusnorepinephrine in the treatment of septic shock [J]. Shock.2010,34(3):243-9.
    [1] Naseem KM, Roberts W. Nitric oxide at a glance [J]. Platelets.2011;22(2):148-52.
    [2] Rosselli M, Keller PJ, Dubey RK. Role of nitric oxide in the biology, physiologyand pathophysiology of reproduction [J]. Hum Reprod Update.1998,4(1):3-24.
    [3] Pellegrino D, Parisella ML. Nitrite as a physiological source of nitric oxide and asignalling molecule in the regulation of the cardiovascular system in bothmammalian and non-mammalian vertebrates [J]. Recent Pat Cardiovasc DrugDiscov.2010,5(2):91-6.
    [4] Naseem KM. The role of nitric oxide in cardiovascular diseases [J]. Mol AspectsMed.2005,26(1-2):33-65.
    [5] Vincent SR. Nitric oxide neurons and neurotransmission [J]. Prog Neurobiol.2010,9;90(2):246-55
    [6] Knott AB, Bossy-Wetzel E. Nitric oxide in health and disease of the nervous system[J]. Antioxid Redox Signal.2009.11(3):541-54.
    [7] Lowenstein CJ, Snyder SH. Nitric oxide, a novel biologic messenger [J]. Cell.1992,4;70(5):705-7.
    [8] MacMicking J, Xie QW, Nathan C. Nitric oxide and macrophage function [J]. AnnuRev Immunol.1997;15:323-50.
    [9] Laskin JD, Heck DE, Laskin DL. Multifunctional role of nitric oxide ininflammation [J]. Trends Endocrinol Metab.1994,5(9):377-82.
    [10] Kirkeb en KA, Strand OA. The role of nitric oxide in sepsis--an overview [J]. ActaAnaesthesiol Scand.1999,43(3):275-88.
    [11] Szabó C. Role of nitric oxide in endotoxic shock. An overview of recent advances[J]. Ann N Y Acad Sci.1998,30;851:422-5.
    [12] Champion HC, Skaf MW, Hare JM. Role of nitric oxide in the pathophysiology ofheart failure [J]. Heart Fail Rev.2003,8(1):35-46.
    [13] Kojda G, Kottenberg K. Regulation of basal myocardial function by NO [J].Cardiovasc Res.1999,41(3):514-23.
    [14] Luo S, Wang T, Qin H, et al. Obligatory role of heat shock protein90in iNOSinduction [J]. Am J Physiol Cell Physiol.2011,301(1):C227-33.
    [15] Leu JI, Pimkina J, Frank A, et al. A small molecule inhibitor of inducible heatshock protein70[J]. Mol Cell.2009,36(1):15-27.
    [16] Leu JI, Pimkina J, Pandey P,et al. HSP70inhibition by the small-molecule2-phenylethynesulfonamide impairs protein clearance pathways in tumor cells[J].Mol Cancer Res.2011,9(7):936-47.
    [17] Gaudio E, Paduano F, Ngankeu A,et al. Heat shock protein70regulates Tcl1expression in leukemia and lymphomas[J]. Blood.2013,121(2):351-9.
    [1] Marletta MA. Nitric oxide synthase: aspects concerning structure and catalysis [J].Cell.1994,78(6):927-30.
    [2] Aquila S, Weng ZY, Zeng YQ,et al. Inhibition of NF-kappaB activation and iNOSinduction by ent-kaurane diterpenoids in LPS-stimulated RAW264.7murinemacrophages [J]. J Nat Prod.2009,72(7):1269-72.
    [3] Teng X, Zhang H, Snead C,et al. Molecular mechanisms of iNOS induction by IL-1beta and IFN-gamma in rat aortic smooth muscle cells [J]. Am J Physiol CellPhysiol.2002,282(1):C144-52.
    [4] Kamijo R, Harada H, Matsuyama T,et al. Requirement for transcription factor IRF-1in NO synthase induction in macrophages [J]. Science.1994,263(5153):1612-5.
    [5] Ajuebor MN, Virág L, Flower RJ,et al. Role of inducible nitric oxide synthase in theregulation of neutrophil migration in zymosan-induced inflammation [J].Immunology.1998,95(4):625-30.
    [6] Coleman JW. Nitric oxide in immunity and inflammation [J]. Int Immunopharmacol.2001,1(8):1397-406.
    [7] Levy DE, Darnell JE Jr. Stats: transcriptional control and biological impact [J]. NatRev Mol Cell Biol.2002,3(9):651-62.
    [8] Shao L, Guo Z, Geller DA. Transcriptional suppression of cytokine-induced iNOSgene expression by IL-13through IRF-1/ISRE signaling [J]. Biochem Biophys ResCommun.2007,362(3):582-6.
    [9] Morano KA. New tricks for an old dog: the evolving world of Hsp70[J]. Ann N YAcad Sci.2007,1113:1-14.
    [10] Narayan V, Eckert M, Zylicz A,et al. Cooperative regulation of the interferonregμlatory factor-1tumor suppressor protein by core components of the molecularchaperone machinery [J]. J Biol Chem.2009,284(38):25889-99.
    [11] Leu JI, Pimkina J, Frank A, et al. A small molecule inhibitor of inducible heatshock protein70[J]. Mol Cell.2009,36(1):15-27.
    [1] Kolodziejska KE, Burns AR, Moore RH,et al. Regulation of inducible nitric oxidesynthase by aggresome formation [J]. Proc Natl Acad Sci U S A.2005,102(13):4854-9.
    [2] Pandit L, Kolodziejska KE, Zeng S,et al. The physiologic aggresome mediatescellular inactivation of iNOS [J]. Proc Natl Acad Sci U S A.2009,106(4):1211-5.
    [3] Wang T, Xia Y. Inducible nitric oxide synthase aggresome formation is mediated bynitric oxide [J]. Biochem Biophys Res Commun.2012,426(3):386-9.
    [4] Cho HJ, Xie QW, Calaycay J,et al. Calmodulin is a subunit of nitric oxide synthasefrom macrophages [J]. J Exp Med.1992,176(2):599-604.
    [5] Marletta MA. Nitric oxide synthase: aspects concerning structure and catalysis [J].Cell.1994,78(6):927-30.
    [1] Anfinsen CB. Principles that govern the folding of protein chains [J]. Science,1973,181(4096):223-30.
    [2] Dobson CM. Protein folding and misfolding [J]. Nature,2003,426(6968):884-90.
    [3] Bukau B, Weissman J, Horwich A. Molecular chaperones and protein qualitycontrol [J]. Cell,2006,125(3):443-51.
    [4] Glickman MH, Ciechanover A. The ubiquitin-proteasome proteolytic pathway:destruction for the sake of construction [J]. Physiol Rev,2002,82(2):373-428.
    [5] Lee DH, Sherman MY, Goldberg AL. Involvement of the molecular chaperone Ydj1in the ubiquitin-dependent degradation of short-lived and abnormal proteins inSaccharomyces cerevisiae [J]. Mol Cell Biol,1996,16(9):4773-81.
    [6] Bercovich B, Stancovski I, Mayer A, et al. Ubiquitin-dependent degradation ofcertain protein substrates in vitro requires the molecular chaperone Hsc70[J]. JBiol Chem,1997,272(14):9002-10.
    [7] Cyr DM, H hfeld J, Patterson C. Protein quality control: U-box-containing E3ubiquitin ligases join the fold [J]. Trends Biochem Sci,2002,27(7):368-75.
    [8] Lüders J, Demand J, H hfeld J. The ubiquitin-related BAG-1provides a linkbetween the molecular chaperones Hsc70/Hsp70and the proteasome [J]. J BiolChem,2000,275(7):4613-7.
    [9] Petrucelli L, Dickson D, Kehoe K, et al. CHIP and Hsp70regulate tau ubiquitination,degradation and aggregation [J]. Hum Mol Genet,2004,13(7):703-14.
    [10] Ballinger CA, Connell P, Wu Y, et al. Identification of CHIP, a noveltetratricopeptide repeat-containing protein that interacts with heat shock proteinsand negatively regulates chaperone functions [J]. Mol Cell Biol,1999,19(6):4535-45.
    [11] Connell P, Ballinger CA, Jiang J, et al. The co-chaperone CHIP regulates proteintriage decisions mediated by heat-shock proteins [J]. Nat Cell Biol,2001,3(1):93-6.
    [12] Jiang J, Ballinger CA, Wu Y, et al. CHIP is a U-box-dependent E3ubiquitin ligase:identification of Hsc70as a target for ubiquitylation [J]. J Biol Chem,2001,276(46):42938-44.
    [13] Glover JR, Lindquist S. Hsp104, Hsp70, and Hsp40: a novel chaperone system thatrescues previously aggregated proteins [J]. Cell,1998,94(1):73-82.
    [14] Meacham GC, Patterson C, Zhang W, et al. The Hsc70co-chaperone CHIP targetsimmature CFTR for proteasomal degradation [J]. Nat Cell Biol,2001,3(1):100-5.
    [15] Elliott E, Tsvetkov P, Ginzburg I. BAG-1associates with Hsc70.Tau complex andregulates the proteasomal degradation of Tau protein [J]. J Biol Chem,2007,282(51):37276-84.
    [16] Alberti S, Esser C, H hfeld J. BAG-1--a nucleotide exchange factor of Hsc70withmultiple cellular functions [J]. Cell Stress Chaperones,2003,8(3):225-31.
    [17] Demand J, Alberti S, Patterson C, et al. Cooperation of a ubiquitin domain proteinand an E3ubiquitin ligase during chaperone/proteasome coupling [J]. Curr Biol,2001,11(20):1569-77.
    [18] Westhoff B, Chapple JP, van der Spuy J, et al. HSJ1is a neuronal shuttling factorfor the sorting of chaperone clients to the proteasome [J]. Curr Biol,2005,15(11):1058-64.
    [19] Molinari M, Galli C, Piccaluga V, et al. Sequential assistance of molecularchaperones and transient formation of covalent complexes during proteindegradation from the ER [J]. J Cell Biol,2002,158(2):247-57.
    [20] Nishikawa S, Brodsky JL, Nakatsukasa K. Roles of molecular chaperones inendoplasmic reticulum (ER) quality control and ER-associated degradation (ERAD)[J]. J Biochem,2005,137(5):551-5.
    [21] Zhang Y, Nijbroek G, Sullivan ML, et al. Hsp70molecular chaperone facilitatesendoplasmic reticulum-associated protein degradation of cystic fibrosistransmembrane conductance regulator in yeast [J]. Mol Biol Cell,2001,12(5):1303-14.
    [22] Chiang HL, Terlecky SR, Plant CP, et al. A role for a70-kilodalton heat shockprotein in lysosomal degradation of intracellular proteins [J]. Science,1989,246(4928):382-5.
    [23] Majeski AE, Dice JF. Mechanisms of chaperone-mediated autophagy [J]. Int JBiochem Cell Biol,2004,36(12):2435-44.
    [24] Salvador N, Aguado C, Horst M, et al. Import of a cytosolic protein into lysosomesby chaperone-mediated autophagy depends on its folding state [J]. J Biol Chem,2000,275(35):27447-56.
    [25] Demand J, Lüders J, H hfeld J. The carboxy-terminal domain of Hsc70providesbinding sites for a distinct set of chaperone cofactors [J]. Mol Cell Biol,1998,18(4):2023-8.
    [26] H hfeld J, Jentsch S. GrpE-like regulation of the hsc70chaperone by theanti-apoptotic protein BAG-1[J]. EMBO J,1997,16(20):6209-16.
    [27] Esser C, Alberti S, H hfeld J. Cooperation of molecular chaperones with theubiquitin/proteasome system [J]. Biochim Biophys Acta,2004,1695(1-3):171-88.
    [28] Alberti S, B hse K, Arndt V, et al. The cochaperone HspBP1inhibits the CHIPubiquitin ligase and stimulates the maturation of the cystic fibrosis transmembraneconductance regulator [J]. Mol Biol Cell,2004,15(9):4003-10.
    [29] Arndt V, Daniel C, Nastainczyk W,et al. BAG-2acts as an inhibitor of thechaperone-associated ubiquitin ligase CHIP [J]. Mol Biol Cell,2005,16(12):5891-900.
    [30] Whitesell L, Mimnaugh EG, De Costa B,et al. Inhibition of heat shock proteinHSP90-pp60v-src heteroprotein complex formation by benzoquinone ansamycins:essential role for stress proteins in oncogenic transformation [J]. Proc Natl AcadSci U S A,1994,91(18):8324-8.
    [31] Sepp-Lorenzino L, Ma Z, Lebwohl DE,et al. Herbimycin A induces the20Sproteasome-and ubiquitin-dependent degradation of receptor tyrosine kinases [J]. JBiol Chem,1995,270(28):16580-7.
    [32] J ttel M. Escaping cell death: survival proteins in cancer [J]. Exp Cell Res,1999,248(1):30-43.
    [33] Kregel KC. Heat shock proteins: modifying factors in physiological stressresponses and acquired thermotolerance [J]. J Appl Physiol,2002,92(5):2177-86.
    [34] Luo W, Zhong J, Chang R,et al. Hsp70and CHIP selectively mediateubiquitination and degradation of hypoxia-inducible factor (HIF)-1alpha but NotHIF-2alpha [J]. J Biol Chem,2010,285(6):3651-63.
    [35] Ancevska-Taneva N, Onoprishvili I, Andria ML,et al. A member of the heat shockprotein40family, hlj1, binds to the carboxyl tail of the human mu opioid receptor[J]. Brain Res,2006,1081(1):28-33.
    [36] Chapple JP, Cheetham ME. The chaperone environment at the cytoplasmic face ofthe endoplasmic reticulum can modulate rhodopsin processing and inclusionformation [J]. J Biol Chem,2003,278(21):19087-94.
    [37] Lanct t PM, Leclerc PC, Escher E,et al. Role of N-glycan-dependent qualitycontrol in the cell-surface expression of the AT1receptor [J]. Biochem BiophysRes Commun,2006,340(2):395-402.
    [38] Neuhaus EM, Mashukova A, Zhang W,et al. A specific heat shock proteinenhances the expression of mammalian olfactory receptor proteins [J]. ChemSenses,2006,31(5):445-52.
    [39] Conn PM, Μlloa-Aguirre A, Ito J,et al. G protein-coupled receptor trafficking inhealth and disease: lessons learned to prepare for therapeutic mutant rescue in vivo[J]. Pharmacol Rev,2007,59(3):225-50.
    [40] Anelli T, Sitia R. Protein quality control in the early secretory pathway [J]. EMBOJ,2008,27(2):315-27.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700