水产动物肉质风味改良技术及相关候选基因研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
现代水产养殖业在片面追求高产量、高生长速度的同时,水产动物的肉质风味却在急剧下降,而且这一矛盾愈加尖锐。本研究针对这一现实问题,首先,采用营养学调控手段和高效添加剂使用策略来改善水产养殖鱼虾的品质,提高其肌肉出肉率和蛋白质含量,增加其呈味氨基酸含量;降低脂肪含量,改变脂肪酸组成和比例,提高不饱和脂肪酸,尤其是多不饱和脂肪酸的含量;提高肌肉主要鲜味物质IMP的含量;综合改善养殖水产品的色泽、口感和风味等,初步建立了水产动物肉质风味改良的技术方法和评价指标。其次,采用生化和分子生物学的方法,利用RT-PCR和RACE等技术,克隆与牙鲆肌肉IMP和IMF形成密切相关的AMPD1基因和LPL基因,对基因的结构和功能进行解析;采用Real Time PCR技术,从mRNA水平研究上述基因在牙鲆生长发育阶段的表达时向性,组织特异性,表达丰度等;以及结合HPLC法测定IMP含量,索式抽提法测定IMF含量和组织相关酶活;探索基因表达与酶活、风味物质含量之间的相关关系,从分子水平对IMP和IMF的形成和变化规律给予初步解释。主要结果如下:
     实验组罗非鱼的鱼片出肉率高于对照组2.65%;肌肉氨基酸总量、必需氨基酸含量以及呈味氨基酸含量也均高于对照组,呈味氨基酸含量提高1.41-1.7%;实验组罗非鱼肌肉多不饱和脂肪酸含量相比对照组提高明显,其中EPA+DHA含量显著提高,EPA含量提高2倍以上,∑n-3/∑n-6比例比对照组也有明显提高;而实验组罗非鱼肌肉主要鲜味物质IMP含量显著高于对照组,提高达5-10倍以上。实验组凡纳滨对虾肌肉中必需氨基酸总量相对于对照组提高不明显,而鲜味氨基酸总量提高明显,其中Asp,Glu和Gly显著提升;实验组凡纳滨对虾肌肉多不饱和脂肪酸总量相比对照组提高显著, EPA+DHA含量显著提高,∑n-3/∑n-6比例差异不明显;实验组凡纳滨对虾肌肉主要鲜味物质IMP含量比对照组提高3倍以上。通过感官评定,肉质风味改良组水产动物的体形、体表色泽、肌肉口感、致密度、鲜度和气味等指标相比对照组均有不同程度的改善。
     本研究首次克隆到与牙鲆IMP和IMF代谢相关的2个基因,从牙鲆肌肉中克隆得到AMPD1基因(Genebank登录号:JF323023.1),其cDNA全长2526bp,开放阅读框(ORF)长2211bp,编码736个氨基酸;从牙鲆肝脏中克隆得到LPL基因(Genebank登录号:HQ850701.1),其cDNA全长2003bp, ORF长1645bp,编码514个氨基酸。牙鲆9种组织的RT-PCR结果表明,AMPD1特异性高效在肌肉中表达,在其余组织中不表达,属于M型AMP脱氨酶;qRT-PCR分析表明LPL在牙鲆各组织中普遍表达,在腹腔肠系膜组织、肝脏和肾脏中表达丰度最高,在其余组织中表达较低。牙鲆成鱼(750±40g)肌肉AMPD1基因表达量明显高于幼鱼(7.5±2g)(p<0.05);成鱼肌肉IMP含量(3.35±0.21mg/g)也明显高于幼鱼(1.08±0.04mg/g)(p<0.05),肌肉AMPD1基因表达和IMP含量之间表现正相关,揭示AMPD1基因对IMP形成的重要调控作用。无论是牙鲆幼鱼还是成鱼,其肌肉LPL基因表达量、酶活力均明显低于肝脏LPL基因表达量、酶活力;幼鱼与成鱼肌肉LPL基因表达和IMF含量均未呈现明显差异;推测LPL基因可能不是鱼类IMF形成的唯一主效基因,可能更多的是参与调控鱼类肝脏中脂肪的蓄积和分配,而肝脏是鱼类最重要的贮脂性调节器官。
As the high-yield and high speed growth in aquaculture industry, the meat quality ofaquatic animals dramatically dropped down. To solve this contradiction,firstly, nutritionalregulation and feed additive formulation method were used to improve the meat quality ofaquatic animals, fish fillet ratio, protein content, and delicious amino acid content wereincreased; fat content, fatty acid composition and proportion were changed, especiallyPUFA content was increased; the main flavor substance IMP content was enhancedsignificantly; the color, taste, and flavor of aquatic animals were all improved in differentdegrees. Secondly, RT-PCR and RACE methods were used to clone the IMP and IMFmetabolism related AMPD1gene and LPL gene, genes structure and function werecharacterized; Real Time PCR method was used to study the mRNA expression indifferent tissues and developmental stages; combined with IMP content by HPLC, IMFcontent by Soxlet extraction, and enzyme activities; relationships among gene expression,enzyme activity, and flavor substances content were established; the metabolicmechanisms of IMP and IMF were explained primarily at molecular level. The mainresults are as follows:
     In tilapia, fish fillet ratio of experimental group was higher by2.65%than control;the amounts of muscle total amino acids, EAA, and flavor amino acids were all higherthan control, flavor amino acids content was increased by1.41-1.7%; PUFA content ofexperimental group was significantly higher than control, total EPA+DHA were increasedsignificantly, EPA content was increased2times,∑n-3/∑n-6was also higher than control;IMP content of experiment group was increased5-10times than control. In Litopenaeusvannamei, EAA content of experimental group was not improved significantly thancontrol, but flavor amino acids content, including Asp, Glu, and Gly, was increasedsignificantly; PUFA content of experimental group was significantly higher than control, total EPA+DHA were increased significantly,∑n-3/∑n-6was no obvious changes; IMPcontent of experiment group was increased3times than control. Sensory analysis showedthat the shape, color, muscle texture, density, fresh, and odor of experimental animals wereimproved in various degrees than control.
     Two IMP and IMF metabolism related genes were cloned from Japanese flounder.AMPD1gene was cloned from muscle of flounder (Genebank accession number:JF323023), the full-length cDNA was of2526bp, open reading frame (ORF) was2211bpin length, encoding736AA; LPL gene was cloned from liver of flounder (Genebankaccession number: HQ850701), the full-length cDNA was of2003bp, ORF was1645bp inlength, encoding514AA. Nine tissues were separated from flounder, RT-PCR showed thatthe AMPD1gene was specifically expressed in muscle, whereas not detected in resttissues; LPL gene was ubiquitously expressed in various tissues, highest expressed in theabdominal mesentery tissue, liver, and kidney, and lower in other tissues. AMPD1geneexpression level in muscle of adult fish (750±40g) was significantly higher than juvenile’s(7.5±2g)(p<0.05); IMP content in muscle of adult fish (3.35±0.21mg/g) was also higherthan juvenile’s(1.08±0.04mg/g)(p<0.05), revealing the important regulatory role ofAMPD1gene in the formation of IMP metabolism. LPL gene expression level and enzymeactivities of both adult and juvenile flounder were lower in muscle than that in liver; LPLgene expression level and IMF content in muscle of juvenile and adult fish showed nosignificant difference; revealing LPL might not be the only major gene for IMFmetabolism in fish muscle, implicating the more function of LPL for participating theregulation of lipids metabolism in fish liver.
引文
1.中国渔业统计年鉴.第一版.北京:中国农业出版社,2011,23-55.
    2.麦康森.中国水产养殖与水产饲料工业的成就与展望.科学养鱼.2010,11:1-2.
    3.刘兴旺.水产动物营养与饲料学研究热点与趋势.齐鲁渔业.2009,26(4):48-50.
    4. Hofmann. What is quality? Definitions, measurement and evaluation of meat quality.Meat Focus International.1994,3:73-82.
    5. Becker T. Consumer perception of fresh meat quality:A framework for analysis.British Food Journal.2000,102:158-176.
    6. Glitsch K. Consumer perceptions of fresh meat quality: Cross-national comparison.British Food Journal.2000,102:177-194.
    7. Spanier A M, Miller J A. Roles of proteins and peptides in meat flavor. IN: Spanier AM, Tamura M. Food flavor and safety, molecular analysis and design. AmericanChemical Society. Washington DC, US,1993,78-97.
    8. Minor L J, Pearson A M, Dawson L et al. Separation and identification of carbonyland sulfur compounds in the volatile fraction of cooking chicken. J Agric Food Chem,1965a,13(4):298-230.
    9. Minor L J. Chicken flavor: the identification of some chemical components and theimportance of sulfur compounds in the cooked volatiles fraction. J Food Sci.1965b,30(4):686~696.
    10. Cross C K, Ziegler P A. Comparison of the volatile fractions from cured and uncuredmeats. J Food Sci.1965,30(4):610~614.
    11.郑文华,许旭.美拉德反应的研究进展.化学进展.2005,17(1):122-129.
    12. Shibamoto T. Volatile flavor chemicals formed by Maillard reaction. Parliament T H,Mcgorrin R J, Ho C T. Thermal generation of aromas. ACS Symposium Series409.American Chemical Society. Washington DC,US,1989,134-142.
    13. Buttery R G,Haddon W F,Seifert R M et al. Thiamin odor and bis(2-methyl-3-furyl)disulfide. J Agric Food Chem.1984,32(3):674-676.
    14. Elmore J S,Mottram D S,Enser M et al. Effects of the polyunsaturated fatty acidcomposition of beef muscle on the profile of aroma volatiles. J Agric Food Chem.1999,47(4):1619-1625.
    15. Mottram D S,Salter L J. Flavour formation in meat related Maillard systemscontaining phospholipids, IN: Thermal generation of aromas. American ChemicalSociety,Washington,DC,1989,3-145.
    16. Katz M A,Dugan L R,Dawson L E. Fatty acids in neutral lipids and phospholipidsfrom chicken tissues. J Food Sci.1966,31(6):717-720.
    17. Mottram D S,Edward R A. The role of triglycerides and phospholipids in the aroma ofcooked beef. J Sci Food Agric.1983,34:517-522.
    18. Spanier A M,Edwards J V,Dupuy H P. The W.O.F. Process in beef: A study of meatproteins and polypetides. Food Technol.1988,42(6):110-115.
    19. Imafidon G L,Spanier A M. Untraveling the secret of meat flavor. Trends in Food Sci.1994,5:315-321.
    20. Macy R L,Naumann H D,Bailey M E. Water-soluble flavor and odor precursors ofmeat, Changes in nucleotides,total nucleotides and bases of beef,pork and lambduring heating.1970, J Food Sci.35(l):78-80.
    21. Mega J A. Umami flavor in meat. Sahidi F. Flavor of meat and meat products.Chapman&Hall: Glasgow, UK,1994,98-115.
    22. Fuijmura S. Identification of taste-active component components in the meat of theJapanese native chicken, hinaidori and broilers and the effect of feeding treatments ontaste-active components. J Animal food science.1998,50(2):99-158.
    23. Lawrie R A. Meat science,5th Edition, Pergamon press, Offord, UK,1991.
    24. Heath H B, Reineccius. Flavor chemistry and techmology. AVI publishing company,INC,1986.
    25. Forrest J C. Principle of meat science. W H Rreeman and company, USA,1978.
    26.刘慧.野猪AMPD1基因的克隆、表达和遗传变异的研究.硕士学位论文,东北农业大学,2008,2-3.
    27. Fuke S S, Konosu. Taste active components in some food. A review of Japaneseresearch physiol behav.1991,40(5):863-868.
    28.徐善金,虞德兵,杜文兴.肌苷酸及其相关酶的研究进展.生物技术通报.2011,3:44-53.
    29.包阿东,刘长青,刘帅.鸡肉风味候选基因AMPD1、ADSL、ATIC的分析.中国畜牧兽医.2008,35(2):32-34.
    30.刘琛.鸡肉肌内脂肪和肌苷酸含量组织差异的生化和分子机理初步研究.硕士学位论文,中国农业大学,2009.
    31.张学余,黄兆明,苏一军,等.丝羽乌骨鸡腺苷单磷酸脱氨酶1基因多态性及其与肌苷酸含量相关研究.畜牧兽医学报.2004,35(6):605~607.
    32.陈继兰.肌肉肌苷酸和肌内脂肪含量遗传规律及相关候选基因的研究.博士学位论文,中国农业大学,2004.
    33.柴丽娟.鸡AMID1基因多态性及其与肌苷酸含量关系的研究.硕士学位论文.山西农业大学,2003.
    34. Tabucchi A, Carlucci F, Rosi F et al. Determination, activity and biological role ofadenylosuccinate lyase in blood cells. Biomed Pharmacother.2001,55:277-283.
    35. Lowenstein J M. The purine nucleotide cycle revised. Int J Sports Med.1990,11:37-46.
    36. Wong L J, O’Brien W E. Characterization of the cDNA and the gene encoding murineadenylosuccinate lyase. Genomics.1995,28(2):341-343.
    37. Van K M L, Hart I M, Kao F T et al. A somatic cell hybrid with a single humanchromosome22corrects the defect in the CHO mutant (Ade-I) lackingadenylosuccinase activity Cytogenet. Cell Genet.1987,44:142-147.
    38. Stone R L, Zalkin H, Dixon J E. Expression, purification and kinetic characterizationof recombinant human adenylosuccinate lyase. J Biol Chem.1993,268:19710-19716.
    39. Aimi J, Badylak J, Willams J. Cloning of a cDNA encoding adenylosuccinate lyase byfunctional complementation in E. coli. J Biol Chem.1990,265(16):9011-9014.
    40.季从亮,张学余,陈国宏,等.鸡腺苷琥珀酸裂解酶基因cDNA克隆及序列分析.第九次全国畜禽遗传标记研讨会论文集.2004,57-60.
    41. Greasley S E, Horton P A, Ramcharan J et al. Crystal structure of a bifunctionaltransformylase and cyclohydrolase enzyme in purine biosynthesis. Nature StructuralBiology.2001,8(5):402-406.
    42. Broad T E, Lewis P E, Burkin D J et al. Thirteen loci physically assigned to sheepchromosome2by cell hybrid analysis and in situ hybridization. Mammalian Genome.1995,6(12):862-866.
    43. Elizabeth A, Rayl Barbara A. The human purH gene product,5-aminoimidazole-4-carboxamide ribonucleotide formyl transferase/IMPcyclohydrolase. Cloning, sequencing, expression, purification, kinetic analysis, anddomain mapping. J Biol Chem.1996,271(4):2225-2233.
    44. Ni L, Guan K, Zalkin H et al. De novo purine nucleotide biosynthesis: cloning,sequencing and expression of a chicken PurH cDNA encoding5-aminoimidazole-4-carboxamide-ribonucleotide transformylase/IMP cyclohydrolase.Gene.1991,106(2):197-205.
    45.束婧婷.鸡肌苷酸候选基因遗传效应及表达规律研究.博士学位论文,扬州大学,2008,78-79.
    46.李金玲,李海涛,高丽峰,等.猪ATIC基因SNPs位点分析和表达规律的研究.东北农业大学学报.2011,42(9):22-25.
    47. Mottram D S, Edward RA, Macfic H J H. A comparison of the flavour volatile fromcooks beef and pork meat systems. Sci Food Agric.1982,33:934.
    48. Hovenier R, Kanis E, Van Asseldonk T H et al.Breeding for pig meat quality inhalothane negative populations are view. Pig News and Inform.1993,14:17-25.
    49. Hodgson R R, Davis G W, Smith G C et al. Relationships between pork loinpalatability traits and physical characteristics of cooked chops. Journal of AnimalScience.1991,69:4858-4865.
    50. Wang Y H, Byrne K A, Reverter A et al. Transcriptional profiling of skeletal muscletissue from two breeds of cattle. Mammalian Genome.2005,16:201-210.
    51. Patrici A. Eating quality of pork in Denmark. Pig Farming(supplement).1985,10:56-57.
    52. Bejerholm C, Barton-Grade P A. Effect of intramuscular fat level on eating quality ofpig meat. Belgium: Ghent,1986,389~391.
    53. Ellis M. The effects of genetics and nutritional factors on pork quality. Asian-Aus JAnim Sci.1999,12:261-270.
    54. Van Laack R L, Stevens S G, Stalder K J. The influence of ultimate pH andintramuscular fat content on pork tenderness and tenderization. J Anim Sci.2001,79(2):392~397.
    55. Michael Gleeson. Basic metabolism I: fat. BASIC SCIENCE.2005,23(3):83-88.
    56. Maughan R J, Gleeson M. The biochemical basis of sports performance. Oxford:Oxford University Press,2004,125-32.
    57. Simith S, Wikowski A, Joshi A K. Structural and functional organization of the animalfatty acid synthase. Prog Lipid Res.2003,40:289-317.
    58. Munoz G, Ovilo C, Noguera J L et al. Assignment of the fatty acid synthase (FASN)gene to pig chromosome12by physical and linkage mapping. Animal Genetics.2003,34:234~-235.
    59. Roy G M, Hayes H, Laurent P et al. Assignment of the fatty acids synthase(FASN)gene to bovine chromosome19(19q22) by in situ hybridization and confirmation bysomatic cell hybrid mapping. Cytogen et Cell Gen et.2001,93(1-2):141-142.
    60. Roncari D A K. Abnormalities of adipose cells in massive obesity. Int J Obes,1990,14(S3),187-192.
    61. Semenknvich C F. Regulation of fatty acid synthase(FAS). Progress in LipidResearch.1997,36:43-63.
    62. Veerkamp J H,Maatman R Q. Cytoplasmic fatty acid binding proteins: their structureand genes. Prog Lipid Res.1995,34(l):17-52.
    63. Veerkamp J H, Moerkerk H T. Fatty acid binding protein and its relation to fatty acidoxidation. Mol Cell Biochem. l993,123:101-106.
    64. Gerbens F, De Koning D J, Harders F L et al. The effect of adipocyte and heart fattyacid-binding protein genes on intramuscular fat and back fat content in meishancrossbred pigs. Journal of Animal Science.2000,78(3):552-559.
    65. Gerbens F, Verburg F J, Van Moerkerk H T B et al. Associations of heart andadipocyte fatty acid-binding protein gene expression with intramuscular fat content inpigs. Anim Sci.2001,79:347-354.
    66. Sparkes R S, Zollman S, Klisak I et al. Human genes involved in lipolysis of plasmalipoproteins: Mapping of loci for lipoprotein lipase to8p22and hepatic lipase to15q21.Genomics.1987,1(2):138-144.
    67. Faulconnier Y et al. British Journal of Nutrition,2001,85:299-306.
    68. Bergo M et al. American Journal of Physiology,1996,271(6):1092-1097.
    69. Takahashi Y et al. Annals of Nutrition and Metabolism,1999,43(2):86-97.
    70.陈文,陈代文,黄艳群.脂蛋白脂酶(LPL)生理功能及特异表达.中国畜牧兽医.2004,31(4):29-30.
    71. Begrer J,Steinbegr E,Panlliter R D. Dramatic growth of mice that develop from eggsmicroinjected with metallothionein growth hormone fusion genes. Nature.1964,30(3):611-615.
    72. Schrooten C,Bovenhuis H,Coppieters W et al. Whole genome scaning to detectquantitative trait loci of for conformation and functional traits in dairy cattle. J DairySci.2000,83(4):795-806.
    73. Choudhgy E,Warden C H,Davis R C et al. Chromosomal localization of lipolyticenzyme in the mouse: pancreatic lipase, colipse, and hormone sensitive lipase,hepaticlipase, and carboxyl ester lipase. J Lipid Research.1992,34(3):1451-1454.
    74. Holm C,Kirchgessner T G, venson K L. Hormone sensitive lipase: sequence,expression, and chromosomal localization to19cent-q13.3. Science.88,1(3):503-506.
    75.李志琼,宗君,林君.饲料营养对水产品肉质风味的影响.水产科学.2002,(2):38-41.
    76.王士稳,梁盟青,林洪.海水和淡水养殖凡纳滨对虾呈味物质的比较分析.海洋水产研究.2006,27(5):79-84.
    77.蔺玉华,耿龙武,吴文化.咸海卡拉白鱼的含肉率及肌肉营养成分.大连水产学院学报.2005,20(4):345-348.
    78.莫意平,娄永江,薛长湖.水产品风味研究综述.水利渔业.2005,25(1):82-84.
    79.惠心怡,王锡昌,陶宁萍.构成白鲢鱼肉土腥味的水溶性风味成分分析.中国食品学报.2006,6(1):189-195.
    80.王烈华.改善鱼肉品质有方法.渔业致富指南.2005,23:29.
    81.陈舜胜,陈椒,俞鲁礼,等.几种淡水商品鱼背、腹肉一般成分的季节变化.上海水产大学学报.1995,4(2):101-104.
    82. Johnston I A, Alderson D, Sandeham C et al. Patterns of muscle growth in early andlate maturing populations of Atlantic salmon(Salmo salar L.). Aquaculture.2000,189:307-333.
    83. Johnston I A, Alderson R, Sandham C et al. Muscle fiber density in relation to thecolor and texture of smoked Atlantic salmon(Salmo salar L.). Aquaculture.2000(189):335-349.
    84. Takeshi N,Yoko A,Nobutaka S. Collagen of the skin of ocellate puffer fish(Takifugu rubripes). Food Chem.2002,78(12):173-177.
    85.刘邦辉,王广军,郁二蒙,等.投喂蚕豆和普通配合饲料草鱼肌肉营养成分比较分析及营养评价.南方水产科学.2011,7(6):58-65.
    86. Nyoman I, Giri A. Effects of dietary pyridoxine and protein levels on growth, vitaminB6content, and free amino acid profile of juvenile Penaeus japonicus. Aquac.1997,157(3/4):263-275.
    87. Gopal C, Rangaswamy C R, Swamy D N. Effect of varying levels of dietary proteinon the growth and body composition of the grey mellet Liza macrolepis fingerlings.Fish Tech.1999,36(1):52-55.
    88. Aksnes A, Hjertnes T. Effect of dietary protein level on growth and carcasscomposition in Atlantic halibut(Hippoglossus hippoglos-susl). Aquac.1996,145(1/4):225-233.
    89.罗莉,梁金权,陈小川,等.氨基酸微量元素螯合物对异育银鲫生长及其品质的影响.饲料工业.2006,27(10):29-32.
    90. Grisdale-Helland B, Helland S J. Replacement of protein by fat and carbohydrate indiets for Atlantic Salmon(Salmon salar) at the end of the fresh water stage. Aquac.1997,152(1/4):167-180.
    91. Vandermeer M B, Zamoro J E, Verdegem M C J. effect of dietary lipid level onprotein utilization and the size and proximate composition of body compartments ofcollossoma macropomum(Cuvier). Aquac Res.1997,28(6):405-417.
    92. Helland S J, Grisdale-Helland B. Growth, feed utilization and body composition ofjuvenile Atlantic halibut (Hippoglos sus huppoglossus) fed diets differing in the ratiobetween the macronutrients. Aquac.1998,166(1/2):49-56.
    93. Erfanullah A, Jafri K. Growth, feed conversion and body composition of Catla catle,Labeo rohita and Cirrhinus mrigala fry fed diets of various carbohydrate to lipid ratios.J World Aquac Soc.1998,29(1):84-91.
    94. Erfanull A H, Jafai A K. Effect of dietary carbohydrate-to-lipid ratio on growth andbody composition of walking catfish(Clarias batrachus) Aquac.1998,161(1/4):159-168.
    95.谭肖英,刘永坚,田丽霞,等.饲料中碳水化合物水平对大口黑鲈Micropterussalmoides生长、鱼体营养成分组成的影响.中山大学学报.2005,44(增刊):258-263.
    96. Gess H. Effect of dietary vitamine E supplementation in trout on lipid peroxidation infillets during frozen storage. FSTA.1997,29(1):66.
    97.钱国英,朱秋华.肉碱对幼鳖生长和胴体组成的影响.饲料研究.2000,1:7-10.
    98.曹俊明,林鼎,薛华,等.四种抗脂肪肝物质降低草鱼肝胰脏脂质积累的替代关系.水生生物学报.1999,23(2):102-111.
    99.陆清儿,李忠全,李行先.盐酸甜菜碱对短盖巨脂鲤脂肪代谢的影响.海洋与湖沼.2003,34(3):306-312.
    100.艾春香.水产动物分子营养学研究进展.福建农业学报.2005,20(增刊):46-50.
    101. Lied E, Vonder Decken A. Purification of fish muscle myosin heavy chain andquantification of the specific polyribosome-bound polypeptide. Biochemical Journal.1985,232:467-470.
    102. Overturf K E, Bullock D G, Casten M et al. Real Time PCR for analysis of fishgrowth and health in animals reared on alternative feeds and genetically selected forgrowth on alternative feeds. Aquaculture.2004,1:215-218.
    103.林亚秋,李瑞文,郑玉才,等.齐口裂腹鱼和鲤鱼H-FABP基因的克隆及其表达谱.中国生物化学与分子生物学报.2011,27(6):554-560.
    104.马旭.鳜鱼和鲢鱼解偶联蛋白2(UCP-2)基因克隆与组织表达.硕士学位论文,暨南大学,2006.
    105.陈建明,叶金云,沈斌乾,等.野生和池塘养殖花鱼骨肌肉营养组成的比较分析.上海水产大学学报.2007,16(1):87-91.
    106.段青源,钟惠英,斯烈钢,等.网箱养殖大黄鱼与天然大黄鱼营养成分的比较分析.浙江海洋学院学报.2000,9(2):125-128.
    107. GB/T5009.124-2003,食品中氨基酸的测定.
    108. GB/T9695.2-2008,肉与肉制品脂肪酸测定.
    109.李家胜,陈利民.高效液相色谱法测定畜禽肌肉中的肌苷酸含量.浙江农业大学学报.1998,24(3):295-296.
    110. GB12310-12316-90,感官分析方法总论.
    111.胡先勤,侯永清.中草药提取物对鲫鱼生长及体成分的影响.粮食与饲料工业,2005,5:40-41.
    112.任洁,韩育章,管敏.3种鲫鱼营养成分分析与评价.水利渔业.2008,28(1):35-37.
    113.缪伏荣,刘景,王淡华,等.不同养殖模式大黄鱼肉质性状的分析研究.福建农业学报.2007,22(4):372-377.
    114.刘旭,王军,张纹,等.6种鱼类肌肉组织肌苷酸的检测分析.海洋科学.2008,32(2):22-24.
    115.方燕,过世东.棚养和塘养甲鱼肌肉中呈味核苷酸的含量变化及比较.食品研究与开发.2006,27(8):17-22.
    116.梁萌青,于宏,常青,等.不同诱食剂对3种鱼类诱食活性的研究.中国水产科学.2000,7(1):60-63.
    117.陆清尔李忠全.盐酸甜菜碱对淡水白鲳生长性能、鱼体解剖特性和肉质的影响.浙江海洋学院学报.2001,20(9),130-136.
    118.周萌,曹俊明,马利,等.饲料中添加磷脂油、胆碱、L-肉碱对军曹鱼生长及组织脂肪含量的影响.饲料工业.2007,28(10):23-25.
    119.赵占宇.共轭亚油酸(CLA)对大黄鱼脂肪代谢、免疫、肉品质及PPAR基因表达的影响.博士学位论文,浙江大学,2008.
    120.潘英,王如才,罗永巨,等.海水和淡养南美白对虾肌肉营养成分的分析比较.青岛海洋大学学报.2001,3(6):828-834.
    121. Montano M, Navarro J C. Fatty acids of wild and cultured penaeusvannamei larvae from Ecuador. Aquaculture.1996,142:259-268.
    122.金征宇,过世东,吕玉华.饲料中添加富含虾青素的法夫酵母对罗氏沼虾的体色及生长状况的影响.饲料工业.1999,20(10):29-31.
    123.孟晓林.杜仲对草鱼生长、肉质和免疫功能的影响.硕士学位论文,上海水产大学,2006.
    124. Jana S N, Garg S K, Patra B C. Effect of inland water salinity on growthperformance and nutritional physiology in growing milkfish. J Appl Ichthyol.2006,22:25-34.
    125. Panikkar N K. Osmotic behavior of shrimps and prawns in relation to theirbiology and culture. FAO Fish Rep.1968,57:527-538.
    126. Zaugg W S, Roley D D, Prentice E F et al. Increased seawater survival andcontribution to the fishery of chinook salmon by supplemented dietary salt.Aquaculture.1983,32:183-188.
    127. Gatlin D M, MacKenzie D S, CRAIG S R et al. Effect of dietary sodium chlorideon red juveniles in waters of various salinities. Pro Fish Cult.1992,54:220-227.
    128.薛长湖.养殖对虾和天然对虾的风味比较.博士学位论文,青岛海洋大学,
    1995.
    129. McCoid V, Miget R. Effect of environmental salinity on the free amino acidcomposition and concentration in penaeus shrimp. J Food Sci.1984,49:327-330.
    130. Dalla Via G J. Salinity response of the juvenile shrimp penaeus japonicus I.Oxygen consumption and estimations of productivity. Aquaculture.1986,55:297-306.
    131. Morisaki T, Gross M, Morisaki H et al. Molecular basis of AMP deaminasedeficiency in skeletal muscle. PNAS.1992,89:6457-6461.
    132. Morisaki T, Sabina R L, Holmes E W. Adenylate deaminase. A multi gene familyin humans and rats. J. Biol. Chem.1990,265:11482–11486.
    133. Ogasawara N, Goto H, Yamada Y et al. AMP deaminase isozymes in humantissues. Biochim. Biophys. Acta.1982,714:298-306.
    134. Ogasawara N, Goto H, Yamada Y et al. Distribution of AMP deaminaseisozymes in rat tissues. Eur. J. Biochem.1978,87:297–304.
    135. Sabina R L, Ogasawara N, Holmes E W. Expression of three stage-specifictranscripts of AMP deaminase during myogenesis. Mol. Cell. Biol.1989,9:2244-2246.
    136. Sabina R L, Mahnke-Zizelman D K. Towards an understanding of the functionalsignificance of N-terminal domain divergence in human AMP deaminase isoforms.Pharm. Ther.2000,87:279-283.
    137. Purzycka J. AMP and adenosine aminohydrolases in rat tissues. Acta Biochim.Pol.1962,9:83-93.
    138. Kaletha K, Thebault M T, Raffin J P. Comparative studies on heart and skeletalmuscle AMP-deaminase from rainbow trout (Salmo gairdneri). Comp. Biochem.Physiol.1991,99B:751-754.
    139. Rubio J C, Martin M A, Del-Hoyo P et al. Molecular analysis of Spanish patientswith AMP deaminase deficiency. Muscle&Nerve.2000,23:1175-1178.
    140. Loh E, Rebbeck T R, Mahoney P D. Common variant in AMPD1gene predictsimproved clinical outcome in patients with heart failure. Circulation.1999,11:1422-1425.
    141. Rico-Sanz J, Rankinen T, Joanisse D R. Associations between cardiorespiratoryresponses to exercise and the C34T AMPD1gene polymorphism in the HERITAGEfamily study. Physiol. Genomics.2003,14:161-166.
    142. Wessels J A, Kooloos W M, DeJonge R. Relationship between genetic variants inthe adenosine pathway and outcome of methotrexate treatment in patients withrecent-onset rheumatoid arthritis. Arthritis Rheum.2006,54:2830-2839.
    143. Kuninaka A. Studies on taste of ribonucleic acid derivatives. Agric. Chem. Soc.Jpn.1960,34:487-492.
    144. Yamaguchi S. The synergistic taste effect of monosodium glutamate anddisodium5'-inosinate. Food Sci.1967,32:473-478.
    145. Manoba T, Hasegawa K. Sensory changes in umami taste of inosine5'-monophosphate solution after heating. Journal of Food Science.1991,56:1429-1432.
    146. Seiko M, Minoru S, Yoshihiro S et al. Molecular characterization of adenosine5'-monophosphate deaminase-the key enzyme responsible for the umani taste of Nori(Porphyra yezoensisi Ueda, Rhodophyta). Mar. Biotechnol.2011,13:1140-1147.
    147. Lahbib-Mansais Y, Mellink C, Yerle M et al. A new marker (NGFB) on pigchromosome4, isolated by using a consensus sequence conserved among species.Cytogenet Cell Genet.1994,67:120125.
    148. Strail A, Knoll A, Moser G et al. The porcine adenosine monophosphatedeaminase1(AMPD1) gene maps to chromosome4. Anim Genet.2000,31:147148.
    149. Chai L J, Chu M X, Wen J et al. Study on Polymorphism of AMPD1Gene andIts Association with Inosine Monophosphate Content in Beijing Fatty Chickens. ActaVeterinaria et Zootechnica Sinica.2005,36:1117-1120.
    150. Saitou N, Nei M. The neighbor-joining method: a new method for reconstructingphylogenic trees. Mol. Bio. Evol.1987,4:406-425.
    151. Tamura K, Dudley J, Nei M et al. MEGA4: molecular evolutionary geneticsanalysis (MEGA) software version4.0. Mol. Bio. Evol.2007,24:1596-1599.
    152. Mardanyan S, Sharoyan S, Antonyan A et al. Tryptophan environment inadenosine deaminase: I. Enzyme modification with N-bromosuccinimide in thepresence of adenosine and EHNA analogues. Biochimica et Biophysica Acta.2001,1546:185-195.
    153. Stankiewicz A, Spychala J, Makarewicz W. Comparative studies on muscle AMPdeaminase-III. Substrate specificity of the enzyme from man, rabbit, rat, hen, frog andpikeperch. Comp. Biochem. Physiol.1980,66B:529-533.
    154. Thebault M T, Tanguy A, Meistertzheim A L et al. Partial characterization of thegene encoding myoadenylate deaminase from the teleost fish Platichthys flesus. FishPhysiol. Biochem.2010,36:819-825.
    155. Mahnke-Zizelman D K, Sabina R L. Cloning of human AMP deaminase isoformE cDNAs. evidence for a third AMPD gene exhibiting alternatively spliced50-exons.J. Biol. Chem.1992,267:20866-20877.
    156. Gross M, Morisaki H, Morisaki T et al. Identification of functional domains inAMPD1by mutational analysis. Biochem. Biophys. Res. Commun.1994,205:1010-1017.
    157. Wang L J, Mo X Y, Xu Y J et al. Molecular characterization and expressionpatterns of AMP deaminase1(AMPD1) in porcine skeletal muscle. Comp. Biochem.Physiol.2008,151B:159-166.
    158. Sabina R L, Morisaki T, Clarke P et al. Characterization of the human andratmyoadenylate deaminase genes. J. Biol. Chem.1990,265:9423-9433.
    159. Wong H, Schotz M C. The lipase gene family. J Lipid Res.2002,43:993-999.
    160. Mukherjee M. Human digestive and metabolic lipases–a brief review. J MolCatal.2003,22B:369-376.
    161. Mead J R, Ramji, D P. The pivotal role of lipoprotein lipase in atherosclerosis.Cardiovasc Res.2002,55:261-269.
    162. Mead J R, Irvine S A, Ramji D P. Lipoprotein lipase: structure, function,regulation, and role in disease. J Mol Med.2002,80:753-769.
    163. Auwerx J, Leroy P, Schoonjans K. Lipoprotein lipase: recent contributions frommolecular biology. Crit Rev Clin Lab Sci.1992,29:243-268.
    164. Sorisky A. From preadipocyte to adipocyte: differentiation-directed signals ofinsulin from the cell surface to nucleus. Crit Rev Clin Lab Sci.1999,36:1-34.
    165. Boone C, Mourot J, Gregoire F et al. The adipose conversion process: regulationby extracellular and intracellular factors. Reprod Nutr Dev.2000,40:325-358.
    166. Faulconnier Y, Boone M, Bocquier F et al. Effects of photoperiod and feedinglevel on adipose tissue and muscle lipoprotein lipase activity and mRNA level in drynon-pregnant sheep. Br J Nutr.2001,85:299-306.
    167. Wang C S, Hartsuck J, Mcconathy W J. Structure and function properties oflipoprotein lipase. Biochimica et Biophysica Acta.1992,1123:1-17.
    168. Hamosh M, Clary T R, Chernick S S et al. Lipoprotein lipase activity of adiposeand mammary tissue and plasma triglyceride in pregnant and lactating rats. BiochimBiophys Acta.1970,210:473-482.
    169. Barber M C, Clegg R A, Travers M T et al. Lipid metabolism in the lactatingmammary gland. Biochim Biophys Acta.1997,1374:101-126.
    170. Semenkovich C F, Chen S H, Wims M et al. Lipoprotein lipase and hepatic lipasemRNA tissue specific expression, developmental regulation, and evolution. J LipidRes.1998,30:423-431.
    171. Staels B, Auwerx J. Perturbation or developmental gene expression in rat-liver byfibric acid-derivates-lopoprotein-lipase and alpha-fetoprotein as models. Develpoment.1992,115:1035-1043.
    172. Doolittle M H, Benzeev O, Elovson J et al. The response of lipoprotein lipase tofeeding and fasting-evidence for posttranslational regulation. J Biol Chem.1990,265:4570-4577.
    173. Braun J E A, Severson D L. Regulation of the synthesis, processing andtranslocation of lipoprotein lipase. Biochem Physiol.1992,88B:261-267.
    174. Arnault F, Etienne J, Noe L et al. Human lipoprotein lipase last exon is nottranslated, in contrast to lower vertebrates. J Mol Evol.1996,43:109-115.
    175. Kwon J Y, Prat F, Randall C et al. Molecular characterization of putative yolkprocessing enzymes and their expression during oogenesis and embryogenesis inrainbow trout(Oncorhynchus mykiss). Biol Reprod.2001,65:1701-1709.
    176. Saera-Vila A, Calduch-Giner JA, Gomez-Requeni P et al. Molecularcharacterization of gilthead sea bream (Sparus aurata) lipoprotein lipase.Transcriptional regulation by season andnutritional condition in skeletal muscle and fatstorage tissues.Comp Biochem Physiol B Biochem Mol Biol.2005,142:224-232.
    177. Oku H, Ogata H Y, Liang X F. Organization of the lipoprotein lipase gene of redsea bream Pagrus major. Comp Biochem Physiol B Biochem Mol Biol.2002,131:775-785.
    178. Oku H, Koizumi N, Okumura T et al. Molecular characterization of lipoproteinlipase, hepatic lipase and pancreaticlipase genes: effects of fasting and refeeding ontheir gene expression in red sea bream Pagrus major. Comp Biochem Physiol BBiochem Mol Biol.2006,145:168-178.
    179. Jose Ibanez A, Peinado-Onsurbe J, Sanchez E et al. Lipoprotein lipase (LPL) ishighly expressed and active in the ovary of European sea bass (Dicentrarchus labraxL.), during gonadal development. Comp Biochem Physiol A Mol Integr Physiol.2008,150:347-354.
    180. Liang X F, Ogata H Y, Oku H. Effect of dietary fatty acids on lipoprotein lipasegene expression in the liver and visceral adipose tissue of fed and starved red seabream Pagrus major. Comp Biochem Physiol A Mol Integr Physiol.2002,132:913-919.
    181.,Liang X F, Bai J J, Lao H H et al. Nutritional regulation of lipoprotein lipasegene expression and visceral fat deposition in red sea bream (Pagrus major).Oceanologia et limnologia Sinica.2003,34:625-633.
    182. Liang X F, Li Y Q, Li G S et al. Cis-acting element and in vivo regulation oflipoprotein lipase gene of red sea bream Pagrus major. Journal of tropicaloceanography.2004,23:49-55.
    183. Lindberg A, Olivecrona G. Lipoprotein lipase from rainbow trout differs inseveral respects from the enzyme in mammals. Gene.2002,292:213-223.
    184. Raisonnier A, Etienne J, Arnault F et al. Comparison of the cDNA and amino acidsequences of lipoprotein lipase in8species. Com Biochem Physiol.1995,111B:385-398.
    185. Santamarina-Fojo S, Brewer J H B. Lipoprotein lipase: structure, function, andmechanism of action. Int J Clin Lab Res.1994,24:143-147.
    186. Cheng H L, Sun S P, Peng Y X et al. cDNA sequence and tissues expressionanalysis of lipoprotein lipase from common carp(Cyprinus carpio Var. Jian). Mol BiolRep.2010,37:2665-2673.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700