根瘤菌共生信号在豆科植物百脉根中的传递及其作用机制的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
根瘤菌与豆科植物能形成一种特殊的共生体根瘤。根瘤菌与宿主植物共生体系的建立过程涉及到两者之间复杂的信号识别、基因表达调控、能量物质的交换等。根瘤菌与宿主植物之间的分子对话首先是在低氮或缺氮的环境下,宿主植物分泌一种类黄酮类化合物或相关化合物,该类物质能诱导根瘤菌一系列结瘤基因(nod)的表达并合成根瘤菌信号分子—结瘤因子(Nod factor)。结瘤因子反过来引起宿主植物根毛发生卷曲,侵入线的形成,开启与根瘤形成和发育相关基因的表达,直至根瘤成熟。然而,根瘤菌结瘤因子信号在宿主植物中的传递过程及其调控机制还不清楚,本文以模式豆科植物—百脉根(Lotus japonicus)共生固氮体系为材料,利用生物化学及分子生物学研究技术,开展了根瘤菌共生信号在宿主植物中传递途径和作用机制的研究。其主要研究结果如下:
     1.利用酵母双杂交技术鉴定了百脉根结瘤因子受体Li-NFR1、Lj-NFR5(NFR:Nodfactor receptor kinase)、共生受体激酶Lj-SymRK(SymRK:Symbiosis Receptor-likeKinase)、离子通道蛋白CASTOR等共生功能蛋白间的相互关系。结果表明,这几个蛋白质在酵母双杂交技术条件下并无相互作用。
     2.以接种百脉根根瘤菌2天、4天、6天、8天、12天的百脉根植株的根组织混合物为材料,抽提总RNA,利用RT-PCR合成cDNA,构建了百脉根AD-cDNA酵母双杂文库。其库容量达到2.5×10~6克隆/3μg DNA,其外源DNA片段大小为0.5-2.0 kb。
     3.SymRK基因编码一个类受体激酶蛋白。它由富含亮氨酸重复序列结构域(LRR,Leucine rich repeat),中间的跨膜结构域(Transmembrane),C-末端的蛋白激酶结构域(PK,Protein kinase)所组成。本研究分别以百脉根SymRK蛋白的LRR结构域和PK结构域为诱饵,筛选百脉根酵母双杂交AD-cDNA文库,得到了15种不同类型的与百脉根结瘤因子信号转导途径相关的基因。其中包括SIP1((?)ymRK-(?)nteracting(?)rotein)基因。根据Blast及生物信息学分析,SIP1蛋白质第126到第217氨基酸残基为ARID结构域,该结构域由8个α-螺旋和2个β-折叠组成。
     4.通过酵母双杂交以及免疫共沉淀等方法对SIP1蛋白与SymRK-PK蛋白相互作用的研究表明,SIP1与SymRK-PK蛋白相互作用的区域定位于SIP1蛋白C-末端,其蛋白N端和ARID结构域均不能与SymRK-PK相互作用。对SIP1蛋白自身相互作用的研究结果表明,SIP1蛋白能形成同源二聚体,而且,SIP1蛋白通过自身C-末端的184个氨基酸残基相互作用形成同源二聚体,其N-末端的223个氨基酸残基不参与对二聚体的形成。
     5.通过酵母单杂交以及凝胶阻滞的方法,我们证实SIP1蛋白具有结合DNA的能力,但是它没有转录激活的功能,由此确定SIP1蛋白为一个具有DNA结合功能的转录因子。SIP1蛋白能结合起始结瘤基因(NIN,nodule inception)基因的启动子序列,不能结合百脉根钙离子结合蛋白(CBP1,calcium-binding protein 1)基因的启动子序列,这一结果说明NIN蛋白是SIP1蛋白所调控的下游基因。我们截去NIN基因启动子的-59到-70区域的序列后,SIP1蛋白不能与NIN基因启动子剩余区域结合,这一结果表明NIN基因启动子-59到-70区域的序列是SIP1蛋白结合NIN基因启动子区域的关键序列。
     6.利用Real time RT-PCR检测了SIP1和NIN基因在百脉根中的表达,结果显示SIP1在百脉根不同组织(根、茎、叶)中均有表达,但是接种根瘤菌使其表达量显著增加。而NIN基因在百脉根中的表达则明显受到接种根瘤菌的影响,在接种根瘤菌5h后NIN基因的表达量就会倍增。
     7.利用基因枪轰击使SIP1-红色荧光(Ds-Red)融合蛋白导入洋葱表皮细胞,瞬间表达结果显示,SIP1蛋白的细胞中定位于细胞核。SymRK-PK和SIP1蛋白的相关激酶活性实验表明,SIP1蛋白并不是SymRK蛋白的磷酸化底物。
The rhizobia develop root nodules with legumes,the symbiotic relationship is specified. Establishing this symbiosis requires a response of molecular signals,gene expression and nutrient exchange between the plant and the bacteria.The first step in the molecular dialogue between the plant and the bacteria is the detection by rhizobia of FLAVANOIDS and related molecules that are secreted from the legume roots.Production of Nod factor molecule is activated by the release of plant predominantly flavonoids,into the rhizosphere,where they activate Nod factor production through induction of a set of nod genes in the appropriate rhizobial strain.Nod factors induce root hair deformation,formation of infection threads and expression of early nodulin genes(ENOD) till nodulation was formation.However,we did not clear the mechanism of the signal transduction pathway which activated by Nod Factor in host plant.To determine this mechanism of the signal transduction pathway and explore the unknown molecules in this cascade we study the model legume Lotus japonicus by method of biological chemistry and molecular biology.In current work,we have obtained these results as follows:
     1.The Nod factor receptor kinase 1(NFR1),Nod factor receptor kinase 5(NFR5), Symbiosis Receptor-like Kinase(SymRK) and CASTOR genes were identification from Lotus japonicus which were key factor in the Nod Factor signal transduction pathway.We check the interaction of LjNFR1,LjNFR5,LjSymRK and LjCASTOR proteins by yeast two hybrid systems.The result indicates that proteins could not interact with each other.
     2.Cultivate Lotus japonicus for the plant tissue;harvest the root of Lotus japonicus after inoculation by 2d,4d,6d,8d and 12d.Combine all the tissues and extract the total RNA Synthesize the ds cDNA by RT-PCR.We constructed a yeast two hybrid(Y2H) AD-cDNA library with root tissue of Lotus japonicus.The library capacity is 2.5×10~6 transformants/3 ug DNA.The PCR result of random chosen library colonies shows that the average length of cDNA inserts is 0.5 kb to 2.0kb.
     3.Lotus SymRK gene comprises the classical hallmarks of an RLK;a signal peptide, three leucine-rich repeats(LRRs) of the extracellular type are found in the predicted extracellular domain,a transmembrane domain(TM) and an intracellular protein kinase domain(PK).We screened the library using SymRK extracellular domain(LRR) and protein kinase domain(PK) as the bait proteins.The result indicates that 15 types of genes were characterization.We describe here a novel DNA-binding protein from Lotus japonicus, referred to as SIP1,because it was identified as a SymRK-interacting protein 1.BLAST analysis of SIP1 protein contained conserved AT Rich Interaction Domain(ARID)(residues 126-217).The predicted 3-D model of the ARID domain of SIP1 consists of 8α-helices,twoβ-strands,and four structure-undefined loops.
     4.The N-terminal half of SIP1(SIP1N) containing the N-terminus and the ARID domain was not found to interact with SymRK-PK.The C-terminus of SIP1(SIP1C) was found to be responsible for its interaction with the kinase domain of SymRK。The interactions were also detected when the C-terminus of SIP1 was used SIP1C with SIP1;SIP1C with SIP1C,suggesting that the C-terminal 184 residues are responsible for SIP1 dimerization in the absence was not required for SIP1 dimerization.In contrast,the N-terminus(223 residues) of SIP1,which contains the ARID domain,was not required for SIP1 dimerization.
     5.SIP1 specifically binds to the promoter of LjNIN,but not to that of LjCBP1(a calcium-binding protein gene),both of which are known to be inducible by Nod factors.SIP 1 recognizes two of the three AT-rich domains present in the NIN gene promoter.Deletion of one of the AT-rich domain at the NIN promoter diminishes the binding of SIP1 to the NIN promoter.The sequence -59 to -70 is the most important site for SIP1 Bingding with NIN promoter.
     6.Using quantitative PCR,we examined the SIP1 and NIN mRNA levels in different tissues of L.japonicus.The SIP1 gene is expressed constitutively in leaves and the uninfected roots,and its expression levels are elevated after infection by Mesorhizobium loti.This expression pattern was distinct from that of NIN,which exhibited significant induction 5 h after rhizobial inoculation and maintained a high expression level in inoculated roots.It is proposed that SIP1 may be required for the expression of NIN and involved in the initial communications between the rhizobia and the host root cells.The protein is localized to the nucler when expressed as a red fluorescence fusion protein in the onion epidermal cells. Using the kinase assay,we confirmed that SIP1 protein was not the phosphorylation substrate of SymRK protein.
引文
1. Amor B B, Shaw S L, Oldroyd G E, Maillet F, Penmetsa R V, Cook D, Long S R, Denarie J and Gough C. The NFP locus of Medicago tnmcatula controls an early step of Nod factor signal transduction upstream of a rapid calcium flux and root hair deformation. Plant J, 2003,34(4): 495-506.
    2. Anderson C M, Wagner T A, Perret M, He Z H, He D and Kohorn B D. WAKs: cell wall-associated kinases linking the cytoplasm to the extracellular matrix. Plant Mol Biol, 2001,47(1-2): 197-206.
    3. Baba Y, Matsushita M, Matsuda Y, Inazawa J, Yamadori T, Hashimoto S, Kishimoto T and Tsukada S. Assignment of SH3BP5/Sh3bp5 encoding sab, an SH3 domain-binding protein which preferentially associates with Bruton's tyrosine kinase, to human chromosome 1q43 and mouse chromosome 14B by in situ hybridization. Cytogenet Cell Genet, 1999, 87(3-4): 221-222.
    4. Becraft P W, Stinard P S and McCarty D R. CRINKLY4: A TNFR-like receptor kinase involved in maize epidermal differentiation. Science, 1996,273(5280): 1406-1409.
    5. Boisson-Dernier A, Chabaud M, Garcia F, Becard G, Rosenberg C and Barker D G. Agrobacterium rhizogenes-transformed roots of Medicago truncatula for the study of nitrogen-fixing and endomycorrhizal symbiotic associations. Mol Plant Microbe Interact, 2001,14(6): 695-700.
    6. Borisov A Y, Madsen L H, Tsyganov V E, Umehara Y, Vbroshilova V A, Batagov A O, Sandal N, Mortensen A, Schauser L, Ellis N, Tikhonovich I A and Stougaard J. The Sym35 gene required for root nodule development in pea is an ortholog ofNin from Lotus japonicus. Plant Physiol, 2003,131(3): 1009-1017.
    7. Buratowski S, Hahn S, Guarente L and Sharp P A. Five intermediate complexes in transcription initiation by RNA polymerase II. Cell, 1989, 56(4): 549-561.
    8. Cabantous S, Terwilliger T C and Waldo G S. Protein tagging and detection with engineered self-assembling fragments of green fluorescent protein. Nat Biotechnol, 2005,23(1): 102-107.
    9. Canales C, Bhatt A M, Scott R and Dickinson H. EXS, a putative LRR receptor kinase, regulates male germline cell number and tapetal identity and promotes seed development in Arabidopsis. Curr Biol, 2002, 12(20): 1718-1727.
    10. Cao J, Gao T, Stanbridge E J and Irie R. RBP1L1, a retinoblastoma-binding protein-related gene encoding an antigenic epitope abundantly expressed in human carcinomas and normal testis. J Natl Cancer Inst, 2001, 93(15): 1159-1165.
    11. Capoen W, Goormachtig S, De Rycke R, Schroeyers K and Holsters M. SrSymRK, a plant receptor essential for symbiosome formation. Proc Natl Acad Sci U S A, 2005, 102(29): 10369-10374.
    12. Carroll B J, McNeil D L and Gresshoff P M. Isolation and properties of soybean [Glycine max (L.) Merr.] mutants that nodulate in the presence of high nitrate concentrations. Proc Natl Acad Sci U S A, 1985,82(12): 4162-4166.
    13. Catoira R, Galera C, de Billy F, Penmetsa R V, Journet E P, Maillet F, Rosenberg C, Cook D, Gough C and Denarie J. Four genes of Medicago truncatula controlling components of a nod factor transduction pathway. Plant Cell, 2000, 12(9): 1647-1666.
    14. Chan S W and Hong W. Retinoblastoma-binding protein 2 (Rbp2) potentiates nuclear hormone receptor-mediated transcription. J Biol Chem, 2001, 276(30): 28402-28412.
    15. Chang C, Schaller G E, Patterson S E, Kwok S F, Meyerowitz E M and Bleecker A B. The TMK1 gene from Arabidopsis codes for a protein with structural and biochemical characteristics of a receptor protein kinase. Plant Cell, 1992,4(10): 1263-1271.
    16. Chen R E and Thorner J. Function and regulation in MAPK signaling pathways: lessons learned from the yeast Saccharomyces cerevisiae. Biochim Biophys Acta, 2007,1773(8): 1311-1340.
    17. Ciechanover A. The ubiquitin-proteasome pathway: on protein death and cell life. EMBO J, 1998,17(24): 7151-7160.
    18. Clark S E, Running M P and Meyerowitz E M. CLAVATA1, a regulator of meristem and flower development in Arabidopsis. Development, 1993, 119(2): 397-418.
    19. Clark S E, Williams R W and Meyerowitz E M. The CLAVATA1 gene encodes a putative receptor kinase that controls shoot and floral meristem size in Arabidopsis. Cell, 1997, 89(4): 575-585.
    20. Clay N K and Nelson T. VH1, a provascular cell-specific receptor kinase that influences leaf cell patterns in Arabidopsis. Plant Cell, 2002, 14(11): 2707-2722.
    21. Collins R T, Furukawa T, Tanese N and Treisman J E. Osa associates with the Brahma chromatin remodeling complex and promotes the activation of some target genes. EMBO J, 1999,18(24): 7029-7040.
    22. Crdenas L, Vidali L, Domnguez J, Prez H, Snchez F, Hepler P K and Quinto C. Rearrangement of actin microfilaments in plant root hairs responding to rhizobium etli nodulation signals. Plant Physiol, 1998, 116(3): 871-877.
    23. D'Elia A V, Tell G, Paron I, Pellizzari L, Lonigro R and Damante G. Missense mutations of human homeoboxes: A review. Hum Mutat, 2001, 18(5): 361-374.
    24. D'Haeze W and Holsters M. Nod factor structures, responses, and perception during initiation of nodule development. Glycobiology, 2002, 12(6): 79R-105R.
    25. Dallas P B, Cheney I W, Liao D W, Bowrin V, Byam W, Pacchione S, Kobayashi R, Yaciuk P and Moran E. p300/CREB binding protein-related protein p270 is a component of mammalian SWI/SNF complexes. Mol Cell Biol, 1998, 18(6): 3596-3603.
    26. Dam T K and Brewer C F. Multivalent protein-carbohydrate interactions: isothermal titration microcalorimetry studies. Methods Enzymol, 2004, 379:107-128.
    27. Decristofaro M F, Betz B L, Rorie C J, Reisman D N, Wang W and Weissman B E. Characterization of SWI/SNF protein expression in human breast cancer cell lines and other malignancies. J Cell Physiol, 2001, 186(1): 136-145.
    28. Denarie J and Cullimore J. Lipo-oligosaccharide nodulation factors: a minireview new class of signaling molecules mediating recognition and morphogenesis. Cell, 1993,74(6): 951-954.
    29. Deng W and Roberts S G. TFIIB and the regulation of transcription by RNA polymerase II. Chromosoma, 2007,116(5): 417-429.
    30. Dey D, Bochkariov D E, Jokhadze G G and Traut R R. Cross-linking of selected residues in the N- and C-terminal domains of Escherichia coli protein L7/L12 to other ribosomal proteins and the effect of elongation factor Tu. J Biol Chem, 1998,273(3): 1670-1676.
    31. Dunne A and O'Neill L A. The interleukin-1 receptor/Toll-like receptor superfamily: signal transduction during inflammation and host defense. Sci STKE, 2003,171: re3.
    32. Ehrhardt D W, Atkinson E M and Long S R. Depolarization of alfalfa root hair membrane potential by Rhizobium meliloti Nod factors. Science, 1992,256(5059): 998-1000.
    33. Ehrhardt D W, Wais R and Long S R. Calcium spiking in plant root hairs responding to Rhizobium nodulation signals. Cell, 1996, 85(5): 673-681.
    34. Endre G, Kereszt A, Kevei Z, Mihacea S, Kalo P and Kiss G B. A receptor kinase gene regulating symbiotic nodule development. Nature, 2002, 417(6892): 962-966.
    35. Fagerstam L G, Frostell-Karlsson A, Karlsson R, Persson B and Ronnberg I. Biospecific interaction analysis using surface plasmon resonance detection applied to kinetic, binding site and concentration analysis. J Chromatogr, 1992, 597(1-2): 397-410.
    36. Feuillet C, Schachermayr G and Keller B. Molecular cloning of a new receptor-like kinase gene encoded at the Lr10 disease resistance locus of wheat. Plant J, 1997,11(1): 45-52.
    37. Fields S and Song O. A novel genetic system to detect protein-protein interactions. Nature, 1989, 340(6230): 245-246.
    38. Fisher R F and Long S R. Rhizobium-plant signal exchange. Nature, 1992, 357(6380): 655-660.
    39. Fruman D A, Satterthwaite A B and Witte O N. Xid-like phenotypes: a B cell signalosome takes shape. Immunity, 2000,13(1): 1-3.
    40. Gage D J. Infection and Invasion of Roots by Symbiotic, Nitrogen-Fixing Rhizobia during Nodulation of Temperate Legumes. Microbiology and Molecular Biology Reviews, 2004, 68(2): 280-300.
    41. Galloway J N, Dentener F J, Capone D G and Boyer E W. Nitrogen cycles:past,present,and future. Biogeochemistry, 2004, 70: 153-226.
    42. Geurts R and Bisseling T. Rhizobium nod factor perception and signalling. Plant Cell, 2002, 14 Suppl: S239-249.
    43. Geurts R, Fedorova E and Bisseling T. Nod factor signaling genes and their function in the early stages of Rhizobium infection. Curr Opin Plant Biol, 2005, 8(4): 346-352.
    44. Gherbi H, Markmann K, Svistoonoff S, Estevan J, Autran D, Giczey G, Auguy F, Peret B, Laplaze L, Franche C, Parniske M and Bogusz D. SymRK defines a common genetic basis for plant root endosymbioses with arbuscular mycorrhiza fungi, rhizobia, and Frankiabacteria. Proc Natl Acad Sci U S A, 2008, 105(12): 4928-4932.
    45. Gomez-Gomez and Boiler. FLS2: an leucine-rich repeat receptor-like kinase in volved in the perception of bacterial ellicitor flagellin in Arabidopsis. Mol. Cells, 2000, 5:1003-1011.
    46. Gonzalez-Rizzo S, Crespi M and Frugier F. The Medicago truncatula CRE1 cytokinin receptor regulates lateral root development and early symbiotic interaction with Sinorhizobium meliloti. Plant Cell, 2006, 18(10): 2680-2693.
    47. Goring D R and Rothstein S J. The S-locus receptor kinase gene in a self-incompatible Brassica napus line encodes a functional serine/threonine kinase. Plant Cell, 1992,4(10): 1273-1281.
    48. Gregory S L, Kortschak R D, Kalionis B and Saint R. Characterization of the dead ringer gene identifies a novel, highly conserved family of sequence-specific DNA-binding proteins. Mol Cell Biol, 1996, 16(3): 792-799.
    49. Gressent F, Drouillard S, Mantegazza N, Samain E, Geremia R A, Canut H, Niebel A, Driguez H, Ranjeva R, Cullimore J and Bono J J. Ligand specificity of a high-affinity binding site for lipo-chitooligosaccharidic Nod factors in Medicago cell suspension cultures. Proc Natl Acad Sci U S A, 1999, 96(8): 4704-4709.
    50. Gronlund M, Roussis A, Flemetakis E, Quaedvlieg N E, Schlaman H R, Umehara Y, Katinakis P, Stougaard J and Spaink H P. Analysis of promoter activity of the early nodulin Enod40 in Lotus japonicus. Mol Plant Microbe Interact, 2005, 18(5): 414-427.
    51. Haffani Y Z, Silva N F and Goring D R. Receptor kinase signalling in plants. Canadian Journal of Botany 2004, 82: 1-15.
    52. Hansma P K, Elings V B, Marti O and Bracker C E. Scanning tunneling microscopy and atomic force microscopy: application to biology and technology. Science, 1988, 242(4876): 209-216.
    53. Harper J F and Harmon A. Plants, symbiosis and parasites: a calcium signalling connection. Nat Rev Mol Cell Biol, 2005, 6(7): 555-566.
    54. Heckmann A B, Lombardo F, Miwa H, Perry J A, Bunnewell S, Parniske M, Wang T L and Downie J A. Lotus japonicus nodulation requires two GRAS domain regulators, one of which is functionally conserved in a non-legume. Plant Physiol, 2006, 142(4): 1739-1750.
    55. Heidstra R and Bisseling T. Nod Factor-Induced Host Responses and Mechanisms of Nod Factor Perception New Phytol., 1996, 133(1): 25-43.
    56.Heidstra R,Geurts R,Franssen H,Spaink H P,Van Kammen A and Bisseling T.Root Hair Deformation Activity of Nodulation Factors and Their Fate on Vicia sativa.Plant Physiol,1994,105(3):787-797.
    57.Herder G D,Keyser A D,Rycke R D,Rombauts S,Velde W V d,Clemente M R,Verplancke C,Mergaert P,Kondorosi E,Holsters M and Goormachtig S.Seven in absentia(SINA) proteins affect plant growth and nodulation in Medicago truncatula.Plant Physiol.,2008,Preview.Publishedon July 3,2008,as DOI:10.1104/pp.108.119453.
    58.Herrscher R F,Kaplan M H,Lelsz D L,Das C,Scheuermann R and Tucker P W.The immunoglobulin heavy-chain matrix-associating regions are bound by Bright:a B cell-specific trans-activator that describes a new DNA-binding protein family.Genes Dev,1995,9(24):3067-3082.
    59.Hoess R H.Bacteriophage lambda as a vehicle for peptide and protein display.Curt Pharm Biotechnol,2002,3(1):23-28.
    60.Huang M,Jiang H,Qu X,Xu Z,Wang Y and Dong S.Small molecules as cross-linkers:fabrication of carbon nanotubes/thionine self-assembled multilayers on amino functionalized surfaces.Chem commun,2005,44:5560-5562.
    61.Huang T H,Oka T,Asai T,Okada T,Merrills B W,Gertson P N,Whitson R H and Itakura K.Repression by a differentiation-specific factor of the human cytomegalovirus enhancer.Nucleic Acids Res,1996,24(9):1695-1701.
    62.Humphries L A,Dangelmaier C,Sommer K,Kipp K,Kato R M,Griffith N,Bakman I,Turk C W,Daniel J L and Rawlings D J.Tee kinases mediate sustained calcium influx via site-specific tyrosine phosphorylation of the phospholipase Cgamma Src homology 2-Src homology 3 linker.J Biol Chem,2004,279(36):37651-37661.
    63.Ideker T,Thorsson V,Ranish J A,Christmas R,Bnhler J,Eng J K,Bumgarner R,Goodlett D R,Aebersold R and Hood L.Integrated genomic and proteomic analyses of a systematically perturbed metabolic network.Science,2001,292(5518):929-934.
    64.Imaizumi-Anraku H,Takeda N,Charpentier M,Perry J,Miwa H,Umehara Y,Kouchi H,Murakami Y,Mulder L,Vickers K,Pike J,Downie J A,Wang T,Sato S,Asamizu E,Tabata S,Yoshikawa M,Murooka Y,Wu G J,Kawaguchi M,et al.Plastid proteins crucial for symbiotic fungal and bacterial entry into plant roots.Nature,2005,433(7025):527-531.
    65.Iwahara J and Clubb R T.Solution structure of the DNA binding domain from Dead finger,a sequence-specific AT-rich interaction domain(ARID).EMBO J,1999,18(21):6084-6094.
    66.Jespers L,Schon O,Famm K and Winter G.Aggregation-resistant domain antibodies selected on phage by heat denaturation.Nat Biotechnol,2004,22(9):1161-1165.
    67.Jin P,Guo T and Becraft P W.The maize CR4 receptor-like kinase mediates a growth factor-like differentiation response.Genesis,2000,27(3):104-116.
    68.Jonak C,Okresz L,Bogre L and Hirt H.Complexity,cross talk and integration of plant MAP kinase signalling.Curt Opin Plant Biol,2002,5(5):415-424.
    69.Jones K M,Kobayashi H,Davies B W,Taga M E and Walker G C.How rhizobial symbionts invade plants:the Sinorhizobium-Medicago model.Nat Rev Microbiol,2007,5(8):619-633.
    70.Kalo P,Gleason C,Edwards A,Marsh J,Mitra R M,Hirsch S,Jakab J,Sims S,Long S R,Rogers J,Kiss G B,Downie J A and Oldroyd G E.Nodulation signaling in legumes requires NSP2,a member of the GRAS family of transcriptional regulators.Science,2005,308(5729):1786-1789.
    71.Kanamori N,Madsen L H,Radutoiu S,Frantescu M,Quistgaard E M,Miwa H,Downie J A,James E K,Felle H H,Haaning L L,Jensen T H,Sato S,Nakamura Y,Tabata S,Sandal N and Stougaard J.A nucleoporin is required for induction of Ca2+ spiking in legume nodule development and essential for rhizobial and fungal symbiosis.Proc Natl Acad Sci U S A,2006,103(2):359-364.
    72. Kaplan M H, Zong R T, Herrscher R F, Scheuermann R H and Tucker P W. Transcriptional activation by a matrix associating region-binding protein. contextual requirements for the function of bright. J Biol Chem, 2001, 276(24): 21325-21330.
    73. Kevei Z, Lougnon G, Mergaert P, Horvath G V, Kereszt A, Jayaraman D, Zaman N, Marcel F, Regulski K, Kiss G B, Kondorosi A, Endre G, Kondorosi E and Ane J M. 3-hydroxy-3-methylglutaryl coenzyme a reductase 1 interacts with NORK and is crucial for nodulation in Medicago truncatula. Plant Cell, 2007, 19(12): 3974-3989.
    74. Kikuchi Y, Hirano M, Seto M and Takatsu K. Identification and characterization of a molecule, BAM11, that associates with the pleckstrin homology domain of mouse Btk. Int Immunol, 2000,12(10): 1397-1408.
    75. Kim J H, Hahm B, Kim Y K, Choi M and Jang S K. Protein-protein interaction among hnRNPs shuttling between nucleus and cytoplasm. J Mol Biol, 2000, 298(3): 395-405.
    76. Kim S, Zhang Z, Upchurch S, Isern N and Chen Y. Structure and DNA-binding sites of the SWI1 AT-rich interaction domain (ARID) suggest determinants for sequence-specific DNA recognition. J Biol Chem, 2004,279(16): 16670-16676.
    77. Kishimoto A, Ogura T and Esumi H. A pull-down assay for 5' AMP-activated protein kinase activity using the GST-fused protein. Mol Biotechnol, 2006,32(1): 17-21.
    78. Kortschak R D, Tucker P W and Saint R. ARE) proteins come in from the desert. Trends Biochem Sci, 2000, 25(6): 294-299.
    79. Lahoud M H, Ristevski S, Venter D J, Jermiin L S, Bertoncello I, Zavarsek S, Hasthorpe S, Drago J, de Kretser D, Hertzog P J and Kola I. Gene targeting of Desrt, a novel ARID class DNA-binding protein, causes growth retardation and abnormal development of reproductive organs. Genome Res, 2001, 11(8): 1327-1334.
    80. Lally D, Ingmire P, Tong H Y and He Z H. Antisense expression of a cell wall-associated protein kinase, WAK4, inhibits cell elongation and alters morphology. Plant Cell, 2001,13(6): 1317-1331.
    81. Lerouge P, Roche P, Faucher C, Maillet F, Truchet G, Prome J C and Denarie J. Symbiotic host-specificity of Rhizobium meliloti is determined by a sulphated and acylated glucosamine oligosaccharide signal. Nature, 1990, 344(6268): 781-784.
    82. Li J and Chory J. A putative leucine-rich repeat receptor kinase involved in brassinosteroid signal transduction. Cell, 1997, 90(5): 929-938.
    83. Li J, Lease K A, Tax F E and Walker J C. BRS1, a serine carboxypeptidase, regulates BRI1 signaling in Arabidopsis thaliana. Proc Natl Acad Sci U S A, 2001, 98(10): 5916-5921.
    84. Limpens E and Bisseling T. Signaling in symbiosis. Curr Opin Plant Biol, 2003, 6(4): 343-350.
    85. Liou G G, Jane W N, Cohen S N, Lin N S and Lin-Chao S. RNA degradosomes exist in vivo in Escherichia coli as multicomponent complexes associated with the cytoplasmic membrane via the N-terminal region of ribonuclease E. Proc Natl Acad Sci U S A, 2001, 98(1): 63-68.
    86. Lohar D P, Schaff J E, Laskey J G, Kieber J J, Bilyeu K D and Bird D M. Cytokinins play opposite roles in lateral root formation, and nematode and Rhizobial symbioses. Plant J, 2004,38(2): 203-214.
    87. Lohar D P, Sharopova N, Endre G, Penuela S, Samac D, Town C, Silverstein K A and VandenBosch K A. Transcript analysis of early nodulation events in Medicago truncatula. Plant Physiol, 2006, 140(1): 221-234.
    88. Lorteau M A, Ferguson B J and Guinel F C. Effects of cytokinin on ethylene production and nodulation in pea (Pisum sativum) cv. Sparkle. Physiol Plant, 2001, 112(3): 421-428.
    89. Lu P J, Sundquist K, Baeckstrom D, Poulsom R, Hanby A, Meier-Ewert S, Jones T, Mitchell M, Pitha-Rowe P, Freemont P and Taylor-Papadimitriou J. A novel gene (PLU-1) containing highly conserved putative DNA/chromatin binding motifs is specifically up-regulated in breast cancer. J Biol Chem, 1999, 274(22): 15633-15645.
    90. Luscombe N M, Austin S E, Berman H M and Thornton J M. An overview of the structures of protein-DNA complexes. Genome Biol, 2000,1(1): REVIEWS001.
    91. Madsen E B, Madsen L H, Radutoiu S, Olbryt M, Rakwalska M, Szczyglowski K, Sato S, Kaneko T, Tabata S, Sandal N and Stougaard J. A receptor kinase gene of the LysM type is involved in legume perception of rhizobial signals. Nature, 2003, 425(6958): 637-640.
    92. Mahajan S, Vassilev A, Sun N, Ozer Z, Mao C and Uckun F M. Transcription factor STAT5A is a substrate of Bruton's tyrosine kinase in B cells. J Biol Chem, 2001, 276(33): 31216-31228.
    93. Manning G, Whyte D B, Martinez R, Hunter T and Sudarsanam S. The protein kinase complement of the human genome. Science, 2002, 298(5600): 1912-1934.
    94. Markmann K, Giczey G and Parniske M. Functional adaptation of a plant receptor-kinase paved the way for the evolution of intracellular root symbioses with bacteria. PLoS Biol, 2008, 6(3): e68.
    95. Marsh J F, Rakocevic A, Mitra R M, Brocard L, Sun J, Eschstruth A, Long S R, Schultze M, Ratet P and Oldroyd G E. Medicago truncatula NIN is essential for rhizobial-independent nodule organogenesis induced by autoactive calcium/calmodulin-dependent protein kinase. Plant Physiol, 2007,144(1): 324-335.
    96. Mathesius U, Charon C, Rolfe B G, Kondorosi A and Crespi M. Temporal and spatial order of events during the induction of cortical cell divisions in white clover by Rhizobium leguminosarum bv. trifolii inoculation or localized cytokinin addition. Mol Plant Microbe Interact, 2000, 13(6): 617-628.
    97. Mathesius U, Schlaman H R, Spaink H P, Of Sautter C, Rolfe B G and Djordjevic M A. Auxin transport inhibition precedes root nodule formation in white clover roots and is regulated by flavonoids and derivatives of chitin oligosaccharides. Plant J, 1998,14(1): 23-34.
    98. Matsubayashi Y, Ogawa M, Morita A and Sakagami Y. An LRR receptor kinase involved in perception of a peptide plant hormone, phytosulfokine. Science, 2002, 296(5572): 1470-1472.
    99. McMahon S B, Van Buskirk H A, Dugan K A, Copeland T D and Cole M D. The novel ATM-related protein TRRAP is an essential cofactor for the c-Myc and E2F oncoproteins. Cell, 1998, 94(3): 363-374.
    100. Mehlhorn K and NSher S. LEDA: a platform for combinatorial and geometric computing. Commun ACM, 1995,38(1): 96-102.
    101. Mishra N S, Tuteja R and Tuteja N. Signaling through MAP kinase networks in plants. Arch Biochem Biophys, 2006, 452(1): 55-68.
    102. Miwa H, Sun J, Oldroyd G E and Downie J A. Analysis of Nod-factor-induced calcium signaling in root hairs of symbiotically defective mutants of Lotus japonicus. Mol Plant Microbe Interact, 2006, 19(8): 914-923.
    103. Miyawaki K, Matsumoto-Kitano M and Kakimoto T. Expression of cytokinin biosynthetic isopentenyltransferase genes in Arabidopsis: tissue specificity and regulation by auxin, cytokinin, and nitrate. Plant J, 2004, 37(1): 128-138.
    104. Monge R A, Roman E, Nombela C and Pla J. The MAP kinase signal transduction network in Candida albicans. Microbiology, 2006,152(Pt 4): 905-912.
    105. Mu J H, Lee H S and Kao T H. Characterization of a pollen-expressed receptor-like kinase gene of Petunia inflata and the activity of its encoded kinase. Plant Cell, 1994, 6(5): 709-721.
    106. Murakami Y, Miwa H, Imaizumi-Anraku H, Kouchi H, Downie J A, Kawaguchi M and Kawasaki S. Positional cloning identifies Lotus japonicus NSP2, a putative transcription factor of the GRAS family, required for NIN and ENOD40 gene expression in nodule initiation. DNA Res, 2006,13(6): 255-265.
    107. Murphy L O and Blenis J. MAPK signal specificity: the right place at the right time. Trends Biochem Sci, 2006, 31(5): 268-275.
    108. Murray J D, Karas B J, Sato S, Tabata S, Amyot L and Szczyglowski K. A cytokinin perception mutant colonized by Rhizobium in the absence of nodule organogenesis. Science, 2007,315(5808): 101-104.
    109. Mylona P, Pawlowski K and Bisseling T. Symbiotic Nitrogen Fixation. Plant Cell, 1995,7(7): 869-885.
    110. Nam K H and Li J. BRI1/BAK1, a receptor kinase pair mediating brassinosteroid signaling. Cell, 2002, 110(2): 203-212.
    111. Nie Z, Xue Y, Yang D, Zhou S, Deroo B J, Archer T K and Wang W. A specificity and targeting subunit of a human SWI/SNF family-related chromatin-remodeling complex. Mol Cell Biol, 2000,20(23): 8879-8888.
    112. Norbert C A, Ruijter d, Bisseling T and Emons A M C. Rhizobium Nod Factors Induce an Increase in Sub-apical Fine Bundles of Actin Filaments in Vicia sativa Root Hairs within Minutes. Mol Plant-Microbe Interact, 1999,12(9): 829-832.
    113. Numata S, Claudio P P, Dean C, Giordano A and Croce C M. Bdp, a new member of a family of DNA-binding proteins, associates with the retinoblastoma gene product. Cancer Res, 1999, 59(15): 3741-3747.
    114. Oldroyd G E. Plant science. Nodules and hormones. Science, 2007, 315(5808): 52-53.
    115. Oldroyd G E and Downie J A. Calcium, kinases and nodulation signalling in legumes. Nat Rev Mol Cell Biol, 2004, 5(7): 566-576.
    116. Oldroyd G E and Downie J A. Nuclear calcium changes at the core of symbiosis signalling. Curr Opin Plant Biol, 2006, 9(4): 351-357.
    117. Oldroyd G E, Harrison M J and Udvardi M. Peace talks and trade deals. Keys to long-term harmony in legume-microbe symbioses. Plant Physiol, 2005,137(4): 1205-1210.
    118. Pacios-Bras C, Schlaman H R, Boot K, Admiraal P, Langerak J M, Stougaard J and Spaink H P. Auxin distribution in Lotus japonicus during root nodule development. Plant Mol Biol, 2003, 52(6): 1169-1180.
    119. Parniske M and Downie J A. Plant biology: locks, keys and symbioses. Nature, 2003,425(6958): 569-570.
    120. Pawlowski K and Bisseling T. Rhizobial and Actinorhizal Symbioses: What Are the Shared Features? Plant Cell, 1996, 8(10): 1899-1913.
    121. Peeper D S, Shvarts A, Brummelkamp T, Douma S, Koh E Y, Daley G Q and Bernards R. A functional screen identifies hDRIL1 as an oncogene that rescues RAS-induced senescence. Nat Cell Biol, 2002, 4(2): 148-153.
    122. Perinchery G, Sasaki M, Angan A, Kumar V, Carroll P and Dahiya R. Deletion of Y-chromosome specific genes in human prostate cancer. J Urol, 2000,163(4): 1339-1342.
    123. Perret X, Staehelin C and Broughton W J. Molecular basis of symbiotic promiscuity. Microbiol Mol Biol Rev, 2000, 64(1): 180-201.
    124. Pickart C M. Back to the future with ubiquitin. Cell, 2004, 116(2): 181-190.
    125. Prasher D C, Eckenrode V K, Ward W W, Prendergast F G and Cormier M J. Primary structure of the Aequorea victoria green-fluorescent protein. Gem, 1992,111(2): 229-233.
    126. Pueppke S G. The genetic and biochemical basis for nodulation of legumes by rhizobia. Crit Rev Biotechnol, 1996,16(1): 1-51.
    127. Puig O, Caspary F, Rigaut G, Rutz B, Bouveret E, Bragado-Nilsson E, Wilm M and Seraphin B. The tandem affinity purification (TAP) method: a general procedure of protein complex purification. Methods, 2001,24(3): 218-229.
    128. Pysh L D, Wysocka-Diller J W, Camilleri C, Bouchez D and Benfey P N. The GRAS gene family in Arabidopsis: sequence characterization and basic expression analysis of the SCARECROW-LIKE genes. Plant J, 1999,18(1): 111-119.
    129. Radutoiu S, Madsen L H, Madsen E B, Felle H H, Umehara Y, Gronlund M, Sato S, Nakamura Y, Tabata S, Sandal N and Stougaard J. Plant recognition of symbiotic bacteria requires two LysM receptor-like kinases. Nature, 2003,425(6958): 585-592.
    130.Rajaiya J,Hatfield M,Nixon J C,Rawlings D J and Webb C F.Bruton's tyrosine kinase regulates immtmoglobulin promoter activation in association with the transcription factor Bright.Mol Cell Biol,2005,25(6):2073-2084.
    131.Rajaiya J,Nixon J C,Ayers N,Desgranges Z P,Roy A L and Webb C E Induction of immunoglobulin heavy-chain transcription through the transcription factor Bright requires TFⅡ-Ⅰ.Mol Cell Biol,2006,26(12):4758-4768.
    132.Reinberg D and Roeder R G.Factors involved in specific transcription by mammalian RNA polymerase Ⅱ.Purification and functional analysis of initiation factors ⅡB and ⅡE.J Biol Chem,1987,262(7):3310-3321.
    133.Ridge R W.A model of legume root hair growth and Rhizobium infection.Symbiosis,1993,14:359-373.
    134.RIELY B K,MUN J-H and ANE J-M.Unravelling the molecular basis for symbiotic signal transduction in legumes.Mol.Plant Pathol.,2006,7(3):197-207.
    135.Rigaut G,Shevchenko A,Rutz B,Wilm M,Mann M and Seraphin B.A generic protein purification method for protein complex characterization and proteome exploration.Nat Biotechnol,1999,17(10):1030-1032.
    136.Roche P,Lerouge P,Ponthus C and Prome J C.Structural determination of bacterial nodulation factors involved in the Rhizobium meliloti-alfalfa symbiosis.J Biol Chem,1991,266(17):10933-10940.
    137.Roy A L,Du H,Gregor P D,Novina C D,Martinez E and Roeder R G.Cloning of an inr-and E-box-binding protein,TFⅡ-Ⅰ,that interacts physically and functionally with USF1.EMBO J,1997,16(23):7091-7104.
    138.Roy A L,Meisterernst M,Pognonec P and Roeder R G.Cooperative interaction of an initiator-binding transcription initiation factor and the helix-loop-helix activator USE Nature,1991,354(6350):245-248.
    139.Ruijter N C A d,Rook M B,Bisseling T and Emons A M C.Lipochito-oligosaccharides re-initiate root hair tip growth in Vicia sativa with high calcium and spectrin-like antigen at the tip.Plant J.,1998,13(3):341-350.
    140.Saito K,Yoshikawa M,Yano K,Miwa H,Uchida H,Asamizu E,Sato S,Tabata S,Imaizumi-Anraku H,Umehara Y,Kouchi H,Murooka Y,Szczyglowski K,Downie J A,Parniske M,Hayashi M and Kawaguchi M.NUCLEOPORIN85 is required for calcium spiking,ftmgal and bacterial symbioses,and seed production in Lotus japonicus.Plant Cell,2007,19(2):610-624.
    141.Savoure A,Magyar Z,Pierre M,Brown S,Schultze M,Dudits D,Kondorosi A and Kondorosi E.Activation of the cell cycle machinery and the isoflavonoid biosynthesis pathway by active Rhizobium meliloti Nod signal molecules in Medicago microcallus suspensions.EMBO J,1994,13(5):1093-1102.
    142.Sawadogo M and Roeder R G.Interaction of a gene-specific transcription factor with the adenovirus major late promoter upstream of the TATA box region.Cell,1985,43(1):165-175.
    143.Schauser L,Roussis A,Stiller J and Stougaard J.A plant regulator controlling development of symbiotic root nodules.Nature,1999,402(6758):191-195.
    144.Schneider A,Walker S A,Poyser S,Sagan M,Ellis T H and Downie J A.Genetic mapping and functional analysis of a nodulation-defeetive mutant(sym19) of pea(Pisum sativum L.).Mol Gen Genet,1999,262(1):1-11.
    145.Schwikowski B,Uetz P and Fields S.A network of protein-protein interactions in yeast.Nat Biotechnol,2000,18(12):1257-1261.
    146.Scott J K and Smith G P.Searching for peptide ligands with an epitope library.Science,1990,249(4967):386-390.
    147.Searle I R,Men A E,Laniya T S,Buzas D M,Iturbe-Ormaetxe I,Carroll B J and Gresshoff P M.Long-distance signaling in nodulation directed by a CLAVATAI-like receptor kinase.Science,2003,299(5603):109-112.
    148.SenGupta D J,Zhang B,Kraemer B,Pochart P,Fields S and Wickens M.A three-hybrid system to detect RNA-protein interactions in vivo. ProcNatl Acad Sci U S A, 1996, 93(16): 8496-8501.
    149. Shandala T, Kortschak R D, Gregory S and Saint R. The Drosophila dead ringer gene is required for early embryonic patterning through regulation of argos and buttonhead expression. Development, 1999, 126(19): 4341-4349.
    150. Shao Z, Yang J and Somlyo A P. Biological atomic force microscopy: from microns to nanometers and beyond. Annu Rev Cell Dev Biol, 1995, 11: 241 -265.
    151. Shih H M, Goldman P S, DeMaggio A J, Hollenberg S M, Goodman R H and Hoekstra M F. A positive genetic selection for disrupting protein-protein interactions: identification of CREB mutations that prevent association with the coactivator CBP. Proc Natl Acad Sci USA, 1996, 93(24): 13896-13901.
    152. Shimomura K, Nomura M, Tajima S and Kouchi H. LjnsRING, a novel RING finger protein, is required for symbiotic interactions between Mesorhizobium loti and Lotus japonicus. Plant Cell Physiol, 2006, 47(11): 1572-1581.
    153. Shirsat N V, Bittenbender S, Kreider B L and Rovera G. Structure of the murine lactotransferrin gene is similar to the structure of other transferrin-encoding genes and shares a putative regulatory region with the murine myeloperoxidase gene. Gene, 1992,110(2): 229-233.
    154. Shiu S H and Bleecker A B. Plant receptor-like kinase gene family: diversity, function, and signaling. Sci STKE, 2001a, 2001(113): RE22.
    155. Shiu S H and Bleecker A B. Receptor-like kinases from Arabidopsis form a monophyletic gene family related to animal receptor kinases. Proc Natl Acad Sci U S A, 2001b, 98(19): 10763-10768.
    156. Shiu S H and Bleecker A B. Expansion of the receptor-like kinase/Pelle gene family and receptor-like proteins in Arabidopsis. Plant Physiol, 2003,132(2): 530-543.
    157. Silva N F, Stone S L, Christie L N, Sulaman W, Nazarian K A, Burnett L A, Arnoldo M A, Rothstein S J and Goring D R. Expression of the S receptor kinase in self-compatible Brassica napus cv. Westar leads to the allele-specific rejection of self-incompatible Brassica napus pollen. Mol Genet Genomics, 2001, 265(3): 552-559.
    158. Smit G, Kijne J W and Lugtenberg B J. Involvement of both cellulose fibrils and a Ca2+-dependent adhesin in the attachment of Rhizobium leguminosarum to pea root hair tips. J Bacteriol, 1987,169(9): 4294-4301.
    159. Smit G, Kijne J W and Lugtenberg B J. Roles of flagella, lipopolysaccharide, and a Ca2+-dependent cell surface protein in attachment of Rhizobium leguminosarum biovar viciae to pea root hair tips. J Bacteriol, 1989a, 171(1): 569-572.
    160. Smit G, Logman T J, Boerrigter M E, Kijne J W and Lugtenberg B J. Purification and partial characterization of the Rhizobium leguminosarum biovar viciae Ca2+-dependent adhesin, which mediates the first step in attachment of cells of the family Rhizobiaceae to plant root hair tips. J Bacteriol, 1989b, 171(7): 4054-4062.
    161. Smit P, Limpens E, Geurts R, Fedorova E, Dolgikh E, Gough C and Bisseling T. Medicago LYK3, an entry receptor in rhizobial nodulation factor signaling. Plant Physiol, 2007, 145(1): 183-191.
    162. Smit P, Raedts J, Portyanko V, Debelle F, Gough C, Bisseling T and Geurts R. NSP1 of the GRAS protein family is essential for rhizobial Nod factor-induced transcription. Science, 2005,308(5729): 1789-1791.
    163. Smith G P. Filamentous fusion phage: novel expression vectors that display cloned antigens on the virion surface. Science, 1985,228(4705): 1315-1317.
    164. Song W Y, Wang G L, Chen L L, Kim H S, Pi L Y, Holsten T, Gardner J, Wang B, Zhai W X, Zhu L H, Fauquet C and Ronald P. A receptor kinase-like protein encoded by the rice disease resistance gene, Xa21. Science, 1995,270(5243): 1804-1806.
    165. Staehelin C, Granado J, Muller J, Wiemken A, Mellor R B, Felix G, Regenass M, Broughton W J and Boiler T. Perception of Rhizobium nodulation factors by tomato cells and inactivation by root chitinases. Proc Natl Acad Sci USA,1994,91(6):2196-2200.
    166.Staehling-Hampton K,Ciampa PJ,Brook A and Dyson N.A genetic screen for modifiers of E2F in Drosophila melanogaster.Genetics,1999,153(1):275-287.
    167.Stracke S,Kistner C,Yoshida S,Mulder L,Sato S,Kaneko T,Tabata S,Sandal N,Stougaard J,Szczyglowski K and Pamiske M.A plant receptor-like kinase required for both bacterial and fungal symbiosis.Nature,2002,417(6892):959-962.
    168.Subramanian S,Stacey G and Yu O.Endogenous isoflavones are essential for the establishment of symbiosis between soybean and Bradyrhizobium japonicum.Plant J,2006,48(2):261-273.
    169.Sun J,Cardoza V,Mitchell D M,Bright L,Oldroyd G and Harris J M.Crosstalk between jasmonic acid,ethylene and Nod factor signaling allows integration of diverse inputs for regulation of nodulation.Plant J,2006,46(6):961-970.
    170.Sun Y.E3 ubiquitin ligases as cancer targets and biomarkers.Neoplasia,2006,8(8):645-654.
    171.Suzuki M,Okuyama S,Okamoto S,Shirasuna K,Nakajima T,Hachiya T,Nojima H,Sekiya S and Oda K.A novel E2F binding protein with Myc-type HLH motif stimulates E2F-dependent transcription by forming a heterodimer.Oncogene,1998,17(7):853-865.
    172.Takasaki T,Hatakeyama K,Suzuki G,Watanabe M,Isogai A and Hinata K.The S receptor kinase determines self-incompatibility in Brassica stigma.Nature,2000,403(6772):913-916.
    173.Takayama S and Sakagami Y.Peptide signalling in plants.Curr Opin Plant Biol,2002,5(5):382-387.
    174.Tan K,Shaw A L,Madsen B,Jensen K,Taylor-Papadimitriou J and Freemont P S.Human PLU-1 Has transcriptional repression properties and interacts with the developmental transcfipton factors BF-1 and PAX9.J Biol Chem,2003,278(23):20507-20513.
    175.Thomas M C and Chiang C M.The general transcription machinery and general cofactors.Crit Rev Biochem Mol Biol,2006,41(3):105-178.
    176.Timmers A C,Auriac M C and Truchet G.Refined analysis of early symbiotic steps of the Rhizobium-Medicago interaction in relationship with microtubular cytoskeleton rearrangements.Development,1999,126(16):3617-3628.
    177.Tirichine L,Imaizumi-Anraku H,Yoshida S,Murakami Y,Madsen L H,Miwa H,Nakagawa T,Sandal N,Albrektsen A S,Kawaguchi M,Downie A,Sato S,Tabata S,Kouchi H,Parniske M,Kawasaki S and Stougaard J.Deregulation of a Ca2+/calmodulin-dependent kinase leads to spontaneous nodule development.Nature,2006,441(7097):1153-1156.
    178.Tirichine L,Sandal N,Madsen L H,Radutoiu S,Albrektsen A S,Sato S,Asamizu E,Tabata S and Stougaard J.A gain-of-function mutation in a cytokinin receptor triggers spontaneous root nodule organogenesis.Science,2007,315(5808):104-107.
    179.Torii K U,Mitsukawa N,Oosumi T,Matsuura Y,Yokoyama R,Whittier R F and Komeda Y.The Arabidopsis ERECTA gene encodes a putative receptor protein kinase with extracellular leucine-rich repeats.Plant Cell,1996,8(4):735-746.
    180.Treisman J E,Luk A,Rubin G M and Heberlein U.eyelid antagonizes wingless signaling during Drosophila development and has homology to the Bright family of DNA-binding proteins.Genes Dev,1997,11(15):1949-1962.
    181.Tsukada S,Simon M I,Witte O N and Katz A.Binding of beta gamma subunits of heterotrimeric G proteins to the PH domain of Bruton tyrosine kinase.Proc Natl Acad Sci U S A,1994,91(23):11256-11260.
    182.Tu X,Wu J,Xu Y and Shi Y.1H,13C and 15N resonance assignments and secondary structure of ADR6DNA-binding domain,J Biomol NMR,2001,21(2):187-188.
    183.Uetz P,Giot L,Cagney G,Mansfield T A,Judson R S,Knight J R,Lockshon D,Narayan V,Srinivasan M, Pochart P, Qureshi-Emili A, Li Y, Godwin B, Conover D, Kalbfleisch T, Vijayadamodar G, Yang M, Johnston M, Fields S and Rothberg J M. A comprehensive analysis of protein-protein interactions in Saccharomyces cerevisiae. Nature, 2000,403(6770): 623-627.
    184. Valentine S A, Chen G, Shandala T, Fernandez J, Mische S, Saint R and Courey A J. Dorsal-mediated repression requires the formation of a multiprotein repression complex at the ventral silencer. Mol Cell Biol, 1998,18(11): 6584-6594.
    185. van-Batenburg F H D, Jonker R and Kijne J W. Rhizobium induces marked root hair curling by redirection of tip growth: a computer simulation Physiol. Plant., 1986, 66(3): 476480.
    186. van Brussel A A, Bakhuizen R, van Spronsen P C, Spaink H P, Tak T, Lugtenberg B J and Kijne J W. Induction of Pre-Infection Thread Structures in the Leguminous Host Plant by Mitogenic Lipo-Oligosaccharides of Rhizobium. Science, 1992,257(5066): 70-72.
    187. Vazquez M, Moore L and Kennison J A. The trithorax group gene osa encodes an ARID-domain protein that genetically interacts with the brahma chromatin-remodeling factor to regulate transcription. Development, 1999,126(4): 733-742.
    188. Vidal M, Braun P, Chen E, Boeke J D and Harlow E. Genetic characterization of a mammalian protein-protein interaction domain by using a yeast reverse two-hybrid system. Proc Natl Acad Sci U S A, 1996, 93(19): 10321-10326.
    189. Vijn I, das Nevas L, van Kammen A, Franssen H and Bisseling T. Nod factors and nodulation in plants. Science, 1993,260(5115): 1764-1765.
    190. Vitousek P M, Aber J D, Howarth R W, Likens G E, Matson P A, W. D, H. S W, Schlesinger and Tilman D G. Human Alteration of the Global Nitrogen Cycle: Causes and Consequences. Ecological Applications, 1997, 7(3): 737-750.
    191. Vitousek P M, Hattenschwiler S, Olander L and Allison S. Nitrogen and nature. Ambio, 2002, 31(2): 97-101.
    192. Webb C F, Yamashita Y, Ayers N, Everts S, Paulin Y, Conley M E and Smith E A. The transcription factor Bright associates with Bruton's tyrosine kinase, the defective protein in immunodeficiency disease. J Immunol, 2000,165(12): 6956-6965.
    193. Whitson R H, Tsark W, Huang T H and Itakura K. Neonatal mortality and leanness in mice lacking the ARID transcription factor Mrf-2. Biochem Biophys Res Commun, 2003, 312(4): 997-1004.
    194. Wilsker D, Patsialou A, Dallas P B and Moran E. ARID proteins: a diverse family of DNA binding proteins implicated in the control of cell growth, differentiation, and development. Cell Growth Differ, 2002, 13(3): 95-106.
    195. Wilsker D, Probst L, Wain H M, Maltais L, Tucker P W and Moran E. Nomenclature of the ARID family of DNA-binding proteins. Genomics, 2005, 86(2): 242-251.
    196. Yang W and Desiderio S. BAP-135, a target for Bruton's tyrosine kinase in response to B cell receptor engagement. Proc Natl Acad Sci U S A, 1997, 94(2): 604-609.
    197. Yoshida S and Parniske M. Regulation of plant symbiosis receptor kinase through serine and threonine phosphorylation. J Biol Chem, 2005, 280(10): 9203-9209.
    198. Yuan Y C, Whitson R H, Liu Q, Itakura K and Chen Y. A novel DNA-binding motif shares structural homology to DNA replication and repair nucleases and polymerases. Nat Struct Biol, 1998, 5(11): 959-964.
    199. Zhao D Z, Wang G F, Speal B and Ma H. The excess microsporocytesl gene encodes a putative leucine-rich repeat receptor protein kinase that controls somatic and reproductive cell fates in the Arabidopsis anther. Genes Dev, 2002, 16(15): 2021-2031.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700