一、鼠疫菌毒力相关蛋白与人蛋白相互作用的初步研究 二、鼠疫菌Ⅲ型分泌系统内蛋白相互作用及LcrG调控的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
鼠疫是由鼠疫耶尔森氏菌引发的的一种烈性传染病,历史上曾经发生三次人间鼠疫的世界大流行。鼠疫菌的致病机制依赖于它和宿主之间的相互作用而实现。揭示鼠疫菌与人之间的蛋白相互作用是深入了解其致病机制的重要基础,同时为研究有效的预防和控制鼠疫的发生和传播的手段提供线索。本研究包括三部分:首先,采用高通量的酵母双杂交技术(Y2H),以推测的鼠疫菌毒力相关蛋白为诱饵筛选人脾脏cDNA文库,旨在获得鼠疫菌与人之间蛋白相互作用的初步网络,并且获得一批重要的蛋白相互作用(PPI),为深入揭示鼠疫菌的致病机制提供研究靶标;其次,应用Y2H阵列筛选技术筛选鼠疫菌III型分泌系统(T3SS)内部蛋白质间的相互作用,为进一步阐明T3SS的结构和功能奠定基础;第三,为进一步了解负调控因子LcrG在鼠疫菌T3SS基因表达中的作用,应用全基因组芯片进行了鼠疫菌野生株和lcrG突变株的比较转录谱学研究。
     第一部分:鼠疫菌毒力相关蛋白与人蛋白质相互作用的研究
     我们根据鼠疫菌和假结核菌的比较基因组学研究结果和本实验室开展的鼠疫菌在不同刺激条件下的表达谱、血清抗体谱、蛋白芯片筛选的试验结果,参考文献中鼠疫菌相关研究的最新进展最终确定可能与人蛋白相互作用的鼠疫菌蛋白152个(占鼠疫菌整个基因组的3.75%)。利用高通量Y2H技术筛选鼠疫菌与人之间的PPI。本研究采用基于Gateway重组技术的ProQuest? Two-Hybrid System,便于高通量平行操作。通过Gateway重组技术,成功构建了154个诱饵载体,对应于152个鼠疫菌蛋白的ORFs。其中存在自激活的诱饵有3个,分别是:YPCD1.26c,YPCD1.31c和YPMT1.61c。
     通过顺序转化法进行规模化Y2H筛选,共对151个无自激活活性的诱饵至少筛选一次人脾脏cDNA文库。筛选平板上长出的候选克隆分别通过生长实验鉴定HIS和ADE报告基因表型,X-Gal分析鉴定lacZ报告基因表型。对得到的阳性克隆进行测序,实验共得到成功测序的克隆1087个。用NCBI网站的BLAST功能进行数据库检索,得到符合ORFs读框的克隆833个。对应于非冗余猎物分子185个,鼠疫菌诱饵蛋白92个,及由此构成的359个相互作用对,组成我们的核心数据集。实验未筛选到文献报道的已知相互作用。在这359对相互作用对中,60对出现频率为两次,91对出现频率在三次或三次以上,分别占总数的16.7%和25.5%,说明我们的筛选结果可信度较高。
     随后采用实验验证和生物信息学分析的方法进一步评价相互作用的可信度。实验部分,进行了酵母回转实验和GST pull down实验。我们对读框正确的359对相互作用进行了回转实验,经过表型鉴定,208对相互作用表现为阳性,阳性率为57.9%。得到对应于67个诱饵、109个猎物蛋白的208对相互作用。挑选酵母回转实验阳性的鼠疫菌和人蛋白相互对21个,进行GST pull down实验验证,约占全部回转阳性的相互作用对的10%。21对相互作用中涉及6个猎物蛋白,由于其中1个猎物蛋白不能释放到上清中,导致7对相互作用暂时无法验证。在剩余的14对相互作用中,13对验证为阳性,阳性率为92.8%,证明通过Y2H筛选及回转验证实验得到的208对鼠疫菌和人蛋白之间的相互作用数据可靠性较高。利用双杂交筛选获得数据,参考文献及充分挖掘现有的公共数据库(BIND,BioGRID,DIP,GeneRIF,HPRD,IntAct,MINT和Reactome等),使用Cytoscape软件绘制并分析网络的结构和功能特点,评价网络的可靠性。从文献中的人PPI网络中提取与鼠疫菌蛋白发生相互作用的人的蛋白(HYT, human protein targeted by Y.pestis proteins)及这些蛋白间的相互作用,得到了HYT-HYT之间相互作用的网络。将此网络与鼠疫菌蛋白与人蛋白之间的相互作用网络融合得到了一个有176个节点,252条连线的网络。代表包括67个鼠疫菌蛋白和109个人蛋白的252对相互作用,其中含有109个HYT在已知的人PPI网络中拓展得到的44对相互作用。文献中报道的112个与EB病毒相互作用的人蛋白中有26个(26/112=23%)也与鼠疫菌相互作用,提示病毒与细菌可能在攻击宿主防御系统时采用了相似的策略,都是攻击人体PPI网络中的重要节点。这与目前已有的病原与宿主PPI的研究结果一致。在用GO biological process ID进行富集分析时发现,参与物种间相互作用的蛋白、多物种相互作用的蛋白、细胞黏附蛋白和一些细胞内的负调控蛋白得到显著性的富集;在用GO molecular function ID进行富集分析时发现,细胞骨架蛋白、转录因子结合蛋白、整合素蛋白、蛋白酶体蛋白等得到显著性的富集。这些蛋白很可能在鼠疫菌致病过程中发挥重要作用。说明我们筛到的PPI可能与鼠疫菌的感染过程密切相关。最后,我们根据深入文献调研,对筛选到的潜在相互作用进行了推测性的分析。
     鼠疫菌和宿主间的相互作用就是一系列鼠疫菌与人体蛋白的相互作用产成的协同作用,我们筛到的PPI在鼠疫菌感染人体的过程中具体发挥怎样的作用还有待于进一步深入的研究。本文以高通量的筛选方法研究鼠疫菌与人体蛋白之间的相互作用,获得了相互作用的初步网络,对网络进行了拓扑结构和功能分析,揭示了鼠疫菌与人之间PPI的主要方式,为深入研究鼠疫菌的致病机制提供了靶标。
     第二部分:鼠疫菌T3SS内PPI的研究
     pCD1质粒为3种对人致病的耶尔森氏菌所共有的,是耶尔森氏菌必须的毒力因子,它编码T3SS。该系统在鼠疫菌表面形成针状小体,能将至少6种效应蛋白(Yersinia outer membrane proteins,Yops)注射到宿主细胞中去。Yops一般具有蛋白酶的活性,通过对宿主蛋白的作用改变宿主细胞骨架结构、抵抗吞噬作用、干扰信号转导通路,从而抑制宿主正常的免疫响应。
     证实T3SS内部不同组分之间的PPI有助于预测和阐明Ysc机制的结构和功能。本实验选取鼠疫菌pCD1质粒编码基因中去除复制、分配相关基因、转座酶基因等后剩余57个基因,应用Y2H阵列筛选技术,进行T3SS内部相互作用的研究。实验共获得19对相互作用蛋白,其中的8对是以前的研究中曾经报道过的,剩余11对未见描述。相互作用主要分为三类:伴侣分子和分泌底物的相互作用,分泌调控复合体的相互作用与其他相互作用。有些相互作用发生在未知功能的假定蛋白之间;有些假定蛋白与已知的T3SS成分相互作用,提示他们可能是Ysc分泌机制新的成员。这些实验结果将有助于将来进一步阐明T3SS的结构和功能。确切的相互作用及意义有待于进一步研究。
     第三部分:负调控因子LcrG对T3SS基因表达影响的研究
     耶尔森氏菌T3SS由温度、钙离子、谷氨酸水平、PH值、营养获得和接触真核细胞等环境因素紧密调节,并与病原体的生命周期密切联系。T3SS装置又称作低钙反应刺激元(LCRS)。已知LcrG是Yops分泌的负调控因子,在37℃,体外Ca2+存在/缺失的条件下,lcrG突变株持续分泌Yops,并伴随生长抑制。
     为了更好的了解LcrG在调控鼠疫菌LCRS中的作用,我们构建了一个非极性的lcrG突变株,进行了比较转录组学分析。实验发现,lcrG突变株相比野生株有很多T3SS基因上调。免疫印记实验分析同样表明lcrG突变株分泌更多的YopM和LcrV蛋白。此外,通过体外(HeLa细胞和巨噬细胞)和体内(小鼠全身感染)实验分析lcrG突变株,均显示毒力显著减弱:在巨噬细胞中阻止TNF-α分泌的能力严重受损;BALB/c小鼠的LD50增加约600倍。尽管Yops在突变株中过表达,但转位到真核细胞中却明显受到阻碍,这一结论以前的报道一致。因此我们推断,LcrG不仅负调控Yops分泌,而且可能也负调控T3SS基因转录,使Yop合成和分泌保持在一个合适的水平。这一功能可能是通过间接机制显示的。
Plague is a severe epidemic caused by Y. pestis and has caused three pandimes in human history. The pathogenic mechanism of Y. pestis depends on its interactions with the hosts. Revealing the protein-protein interactions (PPI) between Y. pestis and its host will not only lay a significant foundation for thoroughly understanding of its pathogenic mechanism, but also provide clues to develope efficient means for plague preventing and controlling. There are three parts in this research. First, by applying a high throughput Yeast Two-Hybrid (Y2H) System, the predicted virulence-related proteins of Y. pestis were used as baits to screen human spleen cDNA library. This study aims to obtain a primary PPI network between Y. pestis and huamn and a set of important interactions, so as to provide targets for deeply revealing the pathogenic mechanism of Y. pestis. Second, we systemically analyze the protein interactions within Y. pestis T3SS using yeast two hybrid system. Our results will help us to elucidate the structure and function of T3SS. Third, to better understand the role of negative regulator LcrG on T3SS, we compared the transcriptional profiles from wild-type strain and ?lcrG mutant by using whole-genome microarrays.
     PART 1 Investigation of interactions between Y.pestis virulence related proteins and human proteome
     We identified 152 Y. pestis proteins (about 3.75% of the Y. pestis full genome) that might interact with human proteins according to the results of previous studies carried in our lab, including the comparative genomics of Y. pestis and Y. pseudotuberculosis, the gene expression profile under different stimuli, serum antibody profile of infected hosts, and the current progress of Y. pestis research from references. Our research adopted the ProQuest Two-Hybrid System (Invitrogen) based on the Gateway Recombination Technology, which facilitate the high throughput parallel operation. Through the gateway recombination technology, 154 bait vectors corresponding to 152 ORFs of Y. pestis proteins (two of them were fragmented) were constructed. Three of them (YPCD1.26c, YPCD1.31c and YPMT1.61c) were self-activating baits.
     High-throughput Y2H screening were carried out using sequential transformation method. 151 non-self-activating baits were screened against the human spleen cDNA library for at least once. The candidate clones grown on the selective plates were selected further by analyzing the auxotrophic phenotypes of reporter genes his and ade and the X-Gal assay to identify the phenotype of reporter gene lacZ, respectively. The prey-vectors form positive clones were isolated and sequenced. Total of 1087 preys were successfully sequenced. The BLAST program of the NCBI website was used to search the database, 833 clones containing the inframe inserts of full or partial ORFs were identified, which were corresponding to 185 non-redundant prey molecules. These 185 prey formed 359 interactions with 92 proteins of Y. pestis, which constituted our core data set. No known interactions reported previously were screened out in our experiment. Among these 359 interaction pairs, 60 occurred twice and 91 occurred three times or more, which represented 16.7% and 25.5% of the total PPIs number, respectively, suggesting that our screening results should be credible.
     Subsequently, experimental validation and bioinformatics analysis were adopted to determine the reliability of those interactions. In the experimental part, we evaluated the technical false positive by plasmid retransformation in yeast and GST pull-down assay. Plasmid retransformation assay were carried out in 375 pairs PPIs and 208 pairs shown to be positive through phenotypic identification, with a positive rate of 57.9% that is comparable with the published YTH work . We obtained 208 PPIs between 67 baits and 109 preys. Among the 208 PPIs that shown to be positive in the plasmid rescue from yeast experiment, 21 were selected for GST pull-down assay, representing 10% of the total retransformation-positive protein pairs (208 pairs). Of these 21 interaction pairs, six prey proteins were involved, and 7 interaction pairs were unable to be validated because of the inability of a prey protein to release into the supernatant of cell lysate. Of the rest 14 interaction pairs, 13 were validated positive and one negative by GST pull-down assay, resulting in a positive rate of 92.8%, indicating that the data set of 208 pairs of protein-protein interactions between Y. pestis and human protein had comparatively high reliability. With the thoroughly mining the current public database (BIND, BioGRID, DIP, GeneRIF, HPRD, IntAct, MINT and Reactome etc.), we construct a network using the data set consisting of 208 PPIs, and analyzed the characteristics of its structure and function. Network between HYT-HYT (HYT, human protein targeted by Y.pestis proteins) were also obtained by extracting HYT and their interactions from human interaction networks form existing references. These two networks were fused with each other to form a network with 176 nodes and 252 lines, representing 252 pairs of interactions involving 67 Y. pestis proteins and 109 human proteins, which including 44 pairs of interactions between 109 HYT, which was extracted form the known human protein interaction networks. The relatively high reliability of those interactions was validated by topological analysis and functional GO analysis. Among the 112 human proteins that were found to interact with Epstein-Barr virus by YTH, 26 also interacted with Y. pestis (26/112=23%), which suggested that the virus and the bacteria might use similar strategy to attack the important nodes of human protein interaction network and the host’s defending system. This result was consisted with the current understanding of pathogen-host protein interaction. When processing GO biological process ID enrichment analysis, proteins involved in interspecies interactions and multi-species interactions, cell adhesion proteins, some intracellular negative regulatory proteins were significantly enriched. Processing GO molecular function ID enrichment analysis, cytoskeleton proteins, transcription factor binding proteins, integrins and proteasome proteins were significantly enriched. These proteins may play important roles in the pathogenesis of Y. pestis. Finally, we conducted predictive analysis of those interactions based on deeply investigation of related references. Interactions between Y.pestis and its host were coordinated effects produced by a series of Y. pestis and human protein interactions, and further studies are needed to define the roles of those PPIs in the process of Y. pestis infection.
     This study investigated the PPIs between Y. pestis and its host by high throughput screening method. We obtained a primary interaction network between Y. pestis and human proteins, which had been subjected to topological analysis and functional analysis further. The results revealed the main pattern of protein-protein interactions between Y. pestis and human and provided lots of targets for elucidating the pathogenic mechanism of Y. pestis.
     PART 2 Protein-Protein interactions within Type III Secretion System of Y. pestis
     pCD1 is a common plasmid owned by three pathogenic Yersinia species. It is the essential virulence determinant of Y. pestis and encodes T3SS that can form injectisome on the surface of the bacteria and inject at least six Yops(Yersinia outer membrane proteins)into the host cell. Yop effectors usually have various protease activities, that render the pathogens’ability to inhibit the normal immune response of the host by alter the cytoskeletal structure of the hots cell, resist phagocytosis and interfere with signal transduction pathways.
     Identifying the interaction of among the components of T3SS is helpful for predicting and elucidating the structure and function of the Ysc injectisome. This study selected 57 genes from the pCD1 plasmid encoded-genes by excluding those related with plasmid replication and partition, and the putative transposase genes. YTH matrix technique was used to study the interactions within T3SS. Totally 19 pairs of interaction proteins were obtained in the research. Eight pairs of which were reported previously, and the rest 11 pairs hadn’t been reported yet. The interactions were classified into three major types: i) interaction between the chaperon and secretory substrate; ii) interaction between secretory regulation complexes; iii) other interactions. Several putative proteins with unknown function were involved in interactions with the known T3SS proteins or another unknown function protein, indicating that they might be new members of T3SS. These results are helpful for elucidating the T3SS structure and function in the future. Further studies are needed to define the precise interaction and significance.
     PART 3 Study on the regulatory role of LcrG on the T3SS transcription
     Yersinia T3SS is tightly regulated by environmental factors that are closely related to the life cycle of the pathogens, such as temperature, calcium and glutamine levels, pH, nutrient availability, and contact with eukaryotic cells. It is known that LcrG is a negative regulator for the secretion of Yops. At mammalian body temperature, i.e. 37℃, ?lcrG mutant consistently secretes Yops in the presence or absence of Ca2+ in vitro, accompanied by growth restriction.
     In this work, to better understand the roles of LcrG in the regulation of LCRS in Y. pestis, we compared the transcriptional profiles from wild-type strain and ?lcrG mutant by using whole-genome microarrays. It was found that most T3SS genes were up-regulated in the ?lcrG mutant when compared with the wild-type strain, and immunoblotting analysis also revealed that more YopM and LcrV proteins were secreted by the ?lcrG mutant. Furthermore, the virulence of the ?lcrG mutant was dramatically attenuated in both in vitro (HeLa cells and macrophage cells) and in vivo (mice systemic infection) analysis. The capability to inhibit TNF-αsecretion in macrophages was severely impaired and the LD50 in BALB/c mice was increased by approximately 600 folds. Although Yops were overexpressed in the ?lcrG mutant, the translocation of them into the eukaryotic cells was severely hampered, which was consistent with the previous report.
     We therefore speculate that LcrG could play a negative regulatory role not only in the Yop secretion but also in the transcription of T3SS genes, and this function is possibly exerted through indirect mechanisms.
引文
1. Perry, R.D. and J.D. Fetherston, Yersinia pestis--etiologic agent of plague. Clin Microbiol Rev, 1997. 10(1): p. 35-66.
    2.刘振才,鼠疫系列教材-人类鼠疫及临床学.中国地方病防治杂志编辑部内部资料, 1999.
    3.纪树立,腾.,詹心如等,中国鼠疫自然疫源地的发现与研究.中华流行病学杂志, 1990. 11(特刊1号): p. 1-42.
    4. Bossi, P. and F. Bricaire, [The plague, possible bioterrorist act]. Presse Med, 2003. 32(17): p. 804-7.
    5. Achtman, M., et al., Yersinia pestis, the cause of plague, is a recently emerged clone of Yersinia pseudotuberculosis. Proc Natl Acad Sci U S A, 1999. 96(24): p. 14043-8.
    6. Zhou, D., et al., Genetics of metabolic variations between Yersinia pestis biovars and the proposal of a new biovar, microtus. J Bacteriol, 2004. 186(15): p. 5147-52.
    7. Cowan, C., et al., Invasion of epithelial cells by Yersinia pestis: evidence for a Y. pestis-specific invasin. Infect Immun, 2000. 68(8): p. 4523-30.
    8. Lahteenmaki, K., M. Kukkonen, and T.K. Korhonen, The Pla surface protease/adhesin of Yersinia pestis mediates bacterial invasion into human endothelial cells. FEBS Lett, 2001. 504(1-2): p. 69-72.
    9. Cornelis, G.R., Yersinia type III secretion: send in the effectors. J Cell Biol, 2002. 158(3): p. 401-8.
    10. Cornelis, G.R., et al., The virulence plasmid of Yersinia, an antihost genome. Microbiol Mol Biol Rev, 1998. 62(4): p. 1315-52.
    11. Cornelis, G.R., Molecular and cell biology aspects of plague. Proc Natl Acad Sci U S A, 2000. 97(16): p. 8778-83.
    12. Cornelis, G.R., The Yersinia Yop virulon, a bacterial system to subvert cells of the primary host defense. Folia Microbiol (Praha), 1998. 43(3): p. 253-61.
    13. Hinnebusch, B.J., et al., Role of Yersinia murine toxin in survival of Yersinia pestis in the midgut of the flea vector. Science, 2002. 296(5568): p. 733-5.
    14. Hinnebusch, J., et al., Murine toxin of Yersinia pestis shows phospholipase D activity but is not required for virulence in mice. Int J Med Microbiol, 2000. 290(4-5): p. 483-7.
    15. Du, Y., R. Rosqvist, and A. Forsberg, Role of fraction 1 antigen of Yersinia pestis in inhibition of phagocytosis. Infect Immun, 2002. 70(3): p. 1453-60.
    16. Abramov, V.M., et al., Structural and functional similarity between Yersinia pestis capsular protein Caf1 and human interleukin-1 beta. Biochemistry, 2001. 40(20): p. 6076-84.
    17. Friedlander, A.M., et al., Relationship between virulence and immunity as revealed in recent studies of the F1 capsule of Yersinia pestis. Clin Infect Dis, 1995. 21 Suppl 2: p. S178-81.
    18. Perry, R.D., et al., Yersiniabactin from Yersinia pestis: biochemical characterization of the siderophore and its role in iron transport and regulation. Microbiology, 1999. 145 ( Pt 5): p. 1181-90.
    19. Gehring, A.M., et al., Iron acquisition in plague: modular logic in enzymatic biogenesis of yersiniabactin by Yersinia pestis. Chem Biol, 1998. 5(10): p. 573-86.
    20. Miller, D.A., et al., Yersiniabactin synthetase: a four-protein assembly line producing the nonribosomal peptide/polyketide hybrid siderophore of Yersinia pestis. Chem Biol, 2002. 9(3): p. 333-44.
    21. Hinnebusch, B.J., R.D. Perry, and T.G. Schwan, Role of the Yersinia pestis hemin storage (hms) locus in the transmission of plague by fleas. Science, 1996. 273(5273): p. 367-70.
    22. Lillard, J.W., Jr., et al., The haemin storage (Hms+) phenotype of Yersinia pestis is not essential for the pathogenesis of bubonic plague in mammals. Microbiology, 1999. 145 ( Pt 1): p. 197-209.
    23. Lindler, L.E. and B.D. Tall, Yersinia pestis pH 6 antigen forms fimbriae and is induced by intracellular association with macrophages. Mol Microbiol, 1993. 8(2): p. 311-24.
    24. Makoveichuk, E., et al., pH6 antigen of Yersinia pestis interacts with plasma lipoproteins and cell membranes. J Lipid Res, 2003. 44(2): p. 320-30.
    25. Bearden, S.W. and R.D. Perry, The Yfe system of Yersinia pestis transports iron and manganese and is required for full virulence of plague. Mol Microbiol, 1999. 32(2): p. 403-14.
    26. Prior, J.L., et al., The failure of different strains of Yersinia pestis to produce lipopolysaccharide O-antigen under different growth conditions is due to mutations in the O-antigen gene cluster. FEMS Microbiol Lett, 2001. 197(2): p. 229-33.
    27. Prior, J.L., et al., Characterization of the lipopolysaccharide of Yersinia pestis. Microb Pathog, 2001. 30(2): p. 49-57.
    28. Williams, K., et al., Investigation into the role of the serine protease HtrA in Yersinia pestis pathogenesis. FEMS Microbiol Lett, 2000. 186(2): p. 281-6.
    29. Oyston, P.C., et al., The response regulator PhoP is important for survival under conditions of macrophage-induced stress and virulence in Yersinia pestis. Infect Immun, 2000. 68(6): p. 3419-25.
    30. Garcia, E., et al., Molecular characterization of KatY (antigen 5), a thermoregulated chromosomally encoded catalase-peroxidase of Yersinia pestis. J Bacteriol, 1999. 181(10): p. 3114-22.
    31. Feodorova, V.A. and Z.L. Devdariani, The interaction of Yersinia pestis with erythrocytes. J Med Microbiol, 2002. 51(2): p. 150-8.
    32. Fields S., e.a., A novel genetic system to detect protein-protein interactions. Nature, 1989. 340(6230): p. 245-6.
    33. Rain J.C., e.a., The protein-protein interaction map of Helicobacter pylori. Nature 2001. 409: p. 211–215.
    34. Uetz P., e.a., A comprehensive analysis of protein-protein interactions in Saccharomyces cerevisiae. Nature 2000. 403: p. 623–627.
    35. Ito T., e.a., A comprehensive two-hybrid analysis to explore the yeast protein interactome. Proc. Natl. Acad. Sci, 2001 98: p. 4569–4574.
    36. Li S., e.a., A map of the interactome network of the metazoan C.elegans. Science 2004. 303: p. 540–543.
    37. Giot L., e.a., A protein interaction map of Drosophila melanogaster. Science 2003. 302: p. 1727–1736.
    38. Stelzl U., e.a., A human protein-protein interaction network: a resource for annotating the proteome. Cell 2005. 122(6): p. 957-68.
    39. Rual J.F., e.a., Towards a proteome-scale map of the human protein-protein interaction network. Nature, 2005 437(7062): p. 1173-8.
    40. Uetz P., e.a., Herpesviral protein networks and their interaction with the human proteome. science, 2006. 311(5758): p. 239-42.
    41. de Chassey, B., et al., Hepatitis C virus infection protein network. Mol Syst Biol, 2008. 4: p. 230.
    42. Calderwood, M.A., et al., Epstein-Barr virus and virus human protein interaction maps. Proc Natl Acad Sci, 2007. . 104(18): p. 7606-11.
    43. Dyer, M.D., T.M. Murali, and B.W. Sobral, The landscape of human proteins interacting with viruses and other pathogens. PLoS Pathog, 2008. 4(2): p. e32.
    44. Cornelis, G.R., The type III secretion injectisome. Nat Rev Microbiol 2006. . 4: p. 811-825.
    45. Koster, M., et al., The outer membrane component, YscC, of the Yop secretion machinery of Yersinia enterocolitica forms a ring-shaped multimeric complex. Mol Microbiol, 1997. 26(4): p. 789-97.
    46. Burghout, P., et al., Role of the pilot protein YscW in the biogenesis of the YscC secretin in Yersinia enterocolitica. J Bacteriol, 2004. 186(16): p. 5366-75.
    47. Woestyn, S., et al., The cytosolic SycE and SycH chaperones of Yersinia protect the region of YopE and YopH involved in translocation across eukaryotic cell membranes. Mol Microbiol, 1996. 20(6): p. 1261-71.
    48. Jackson, M.W. and G.V. Plano, Interactions between type III secretion apparatus components from Yersinia pestis detected using the yeast two-hybrid system. FEMS Microbiol Lett, 2000. 186(1): p. 85-90.
    49. Swietnicki, W., et al., Novel protein-protein interactions of the Yersinia pestis type III secretion system elucidated with a matrix analysis by surface plasmon resonance and mass spectrometry. J Biol Chem, 2004. 279(37): p. 38693-700.
    50. Fields, K.A., G.V. Plano, and S.C. Straley, A low-Ca2+ response (LCR) secretion (ysc) locus lies within the lcrB region of the LCR plasmid in Yersinia pestis. J Bacteriol, 1994. 176(3): p. 569-79.
    51. Cornelis, G.R., Type III secretion: a bacterial device for close combat with cells of their eukaryotic host. Philos Trans R Soc Lond B Biol Sci, 2000. 355(1397): p. 681-93.
    52. Bleves, S., et al., Up-regulation of the Yersinia enterocolitica yop regulon by deletion of the flagellum master operon flhDC. J Bacteriol, 2002. 184(12): p. 3214-23.
    53. Brubaker, R.R., Influence of Na(+), dicarboxylic amino acids, and pH in modulating the low-calcium response of Yersinia pestis. Infect Immun, 2005. 73(8): p. 4743-52.
    54. Motin, V.L., et al., Temporal global changes in gene expression during temperature transition in Yersinia pestis. J Bacteriol, 2004. 186(18): p. 6298-305.
    55. Sarker, M.R., et al., LcrG is required for efficient translocation of Yersinia Yop effector proteins into eukaryotic cells. Infect Immun, 1998. 66(6): p. 2976-9.
    56. Boyd, A.P., et al., Heparin interferes with translocation of Yop proteins into HeLa cells and binds to LcrG, a regulatory component of the Yersinia Yop apparatus. Mol Microbiol, 1998. 27(2): p. 425-36.
    57. Reina, L.D., et al., LcrG secretion is not required for blocking of Yops secretion in Yersinia pestis. BMC Microbiol, 2008. 8: p. 29.
    58. Nilles, M.L., et al., Yersinia pestis LcrV forms a stable complex with LcrG and may have a secretion-related regulatory role in the low-Ca2+ response. J Bacteriol, 1997. 179(4): p. 1307-16.
    59. Matson, J.S. and M.L. Nilles, Interaction of the Yersinia pestis type III regulatory proteins LcrG and LcrV occurs at a hydrophobic interface. BMC Microbiol, 2002. 2(1): p. 16.
    1. Parkhill, J., et al., Genome sequence of Yersinia pestis, the causative agent of plague. Nature, 2001. 413(6855): p. 523-7.
    2. Deng, W., et al., Genome sequence of Yersinia pestis KIM. J Bacteriol, 2002. 184(16): p. 4601-11.
    3. Song, Y., et al., Complete genome sequence of Yersinia pestis strain 91001, an isolate avirulent to humans. DNA Res, 2004. 11(3): p. 179-97.
    4. Chain, P.S., et al., Insights into the evolution of Yersinia pestis through whole-genome comparison with Yersinia pseudotuberculosis. Proc Natl Acad Sci U S A, 2004. 101(38): p. 13826-31.
    5. Uetz, P., et al., Herpesviral protein networks and their interaction with the human proteome. Science, 2006. 311(5758): p. 239-42.
    6. Calderwood, M.A., et al., Epstein-Barr virus and virus human protein interaction maps. Proc Natl Acad Sci U S A[J], 2007. 104(18): p. 7606-11.
    7. Li, S., C.M. Armstrong, N. Bertin, et al., A map of the interactome network of the metazoan C. elegans. Science[J], 2004. 303(5657): p. 540-543.
    8. Formstecher, E.e.a., Protein interaction mapping: a Drosophila case study. Genome Res, 2005. 15: p. 376-84
    9. Rual J.F., e.a., Towards a proteome-scale map of the human protein-protein interaction network. Nature, 2005 437(7062): p. 1173-8.
    10. Lim J, e.a., A protein-protein interaction network for human inherited ataxias and disorders of Purkinje cell degeneration. Cell, 2006. 125(4): p. 801-814.
    11. Giot, L., J.S. Bader, C. Brouwer, et al., A protein interaction map of Drosophila melanogaster. Science[J], 2003. 302(5651): p. 1727-1736.
    12. Stelzl U., e.a., A human protein-protein interaction network: a resource for annotating the proteome. Cell 2005. 122(6): p. 957-68.
    13. de Chassey, B., et al., Hepatitis C virus infection protein network. Mol Syst Biol, 2008. 4: p. 230.
    14. Liu HP, W.C., Chang YS, PRA1 promotes the intracellular trafficking and NF-kappaB signaling of EBV latent membrane protein 1. EMBO J. , 2006 25(17): p. 4120-30.
    15. D, T., Evolution of von Willebrand factor A (VWA) domains. Biochem Soc Trans, 1999. 27(6): p. 835-40.
    16. Brinster S, P.B., Bierne H, Alberti A, Makhzami S, Sanguinetti M, Serror P, Enterococcal leucine-rich repeat-containing protein involved in virulence and host inflammatory response. Infect Immun, 2007. 75(9): p. 4463-71.
    17. Bartra, S.S., et al., Resistance of Yersinia pestis to complement-dependent killing is mediated by the Ail outer membrane protein. Infect Immun, 2008. 76(2): p. 612-22.
    18. Malone AS, C.Y., Yousef AE, Genes of Escherichia coli O157:H7 that are involved in high-pressure resistance. Appl Environ Microbiol, 2006 72(4): p. 2661-71.
    19. Wilson CG, K.T., Regan L, 19The crystal structure of NlpI. A prokaryotic tetratricopeptide repeat protein with a globular fold. FEBS J, 2005. 272(1): p. 166-79.
    20. Barnich N, B.M., Claret L, Darfeuille-Michaud A, Involvement of lipoprotein NlpI in the virulence of adherent invasive Escherichia coli strain LF82 isolated from a patient with Crohn's disease. Infect Immun- , 2004 72(5): p. 2484-93.
    21. Tadokoro A, H.H., Kishimoto T, Makino Y, Fujisaki S, Nishimura Y, Interaction of the Escherichia coli lipoprotein NlpI with periplasmic Prc (Tsp) protease. J Biochem, 2004. 135(2): p. 185-91.
    22. Ohara M, W.H., Sankaran K, Rick PD, Identification and characterization of a new lipoprotein, NlpI, in Escherichia coli K-12. J Bacteriol, 1999. 181(14): p. 4318-25.
    1.吴志豪,王.建.,贺福初,大规模酵母双杂交技术研究蛋白质相互作用的应用. HEREDITAS, 2006. 228(12): p. 1627~1632.
    2. Cheng, L.W. and O. Schneewind, Type III machines of Gram-negative bacteria: delivering the goods. Trends Microbiol, 2000. 8(5): p. 214-20.
    3. Hueck, C.J., Type III protein secretion systems in bacterial pathogens of animals and plants. Microbiol Mol Biol Rev, 1998. 62(2): p. 379-433.
    4. Cornelis, G.R., The type III secretion injectisome. Nat Rev Microbiol, 2006. 4: p. 811-825.
    5. Marlovits, T.C.e.a., Structural insights into the assembly of the type III secretion needle complex. Science 2004. 306: p. 1040-1042.
    6. Koster, M., et al., The outer membrane component, YscC, of the Yop secretion machinery of Yersinia enterocolitica forms a ring-shaped multimeric complex. Mol Microbiol, 1997. 26(4): p. 789-97.
    7. Burghout, P., et al., Role of the pilot protein YscW in the biogenesis of the YscC secretin in Yersinia enterocolitica. J Bacteriol, 2004. 186(16): p. 5366-75.
    8. Burghout, P., et al., Structure and electrophysiological properties of the YscC secretin from the type III secretion system of Yersinia enterocolitica. J Bacteriol, 2004. 186(14): p. 4645-54.
    9. Bertini, R., Howard, O.M., Dong, H.F., et al., Thioredoxin, a redox enzyme released in infection and inflammation, is a unique chemoattractant for neutrophils, monocytes, and T cells. J Exp Med, 1999. 189(11): p. 1783-1789.
    10. Hoiczyk, E. and G. Blobel, Polymerization of a single protein of the pathogen Yersinia enterocolitica into needles punctures eukaryotic cells. Proc Natl Acad Sci U S A, 2001. 98(8): p. 4669-74.
    11. Agrain, C., et al., Characterization of a Type III secretion substrate specificity switch (T3S4) domain in YscP from Yersinia enterocolitica. Mol Microbiol, 2005. 56(1): p. 54-67.
    12. Agrain, C., et al., Secretion of YscP from Yersinia enterocolitica is essential to control the length of the injectisome needle but not to change the type III secretion substrate specificity. Mol Microbiol, 2005. 57(5): p. 1415-27.
    13. Woestyn, S., et al., YscN, the putative energizer of the Yersinia Yop secretion machinery. J Bacteriol, 1994. 176(6): p. 1561-9.
    14. Sarker, M.R., et al., The Yersinia Yop virulon: LcrV is required for extrusion of the translocators YopB and YopD. J Bacteriol, 1998. 180(5): p. 1207-14.
    15. Hakansson, S., et al., YopB and YopD constitute a novel class of Yersinia Yop proteins. Infect Immun, 1993. 61(1): p. 71-80.
    16. Wattiau, P., S. Woestyn, and G.R. Cornelis, Customized secretion chaperones in pathogenic bacteria. Mol Microbiol, 1996. 20(2): p. 255-62.
    17. Woestyn, S., et al., The cytosolic SycE and SycH chaperones of Yersinia protect the region of YopE and YopH involved in translocation across eukaryotic cell membranes. Mol Microbiol, 1996. 20(6): p. 1261-71.
    18. Iriarte, M., et al., TyeA, a protein involved in control of Yop release and in translocation of Yersinia Yop effectors. Embo J, 1998. 17(7): p. 1907-18.
    19. Forsberg, A., et al., The surface-located YopN protein is involved in calcium signal transduction in Yersinia pseudotuberculosis. Mol Microbiol, 1991. 5(4): p. 977-86.
    20. Skryzpek, E. and S.C. Straley, LcrG, a secreted protein involved in negative regulation of the low-calcium response in Yersinia pestis. J Bacteriol, 1993. 175(11): p. 3520-8.
    21. Jackson, M.W. and G.V. Plano, Interactions between type III secretion apparatus components from Yersinia pestis detected using the yeast two-hybrid system. FEMS Microbiol Lett, 2000. 186(1): p. 85-90.
    22. Swietnicki, W., et al., Novel protein-protein interactions of the Yersinia pestis type III secretion system elucidated with a matrix analysis by surface plasmon resonance and mass spectrometry. J Biol Chem, 2004. 279(37): p. 38693-700.
    23. Sun P, T.J., Austin BP, Cherry S, Waugh DS., Structural characterization of the Yersinia pestis type III secretion system needle protein YscF in complex with its heterodimeric chaperone YscE/YscG. J Mol Biol, 2008. Mar 28(377(3)): p. 819-30.
    24. Day, J.B. and G.V. Plano, A complex composed of SycN and YscB functions as a specific chaperonefor YopN in Yersinia pestis. Mol Microbiol, 1998. 30(4): p. 777-88.
    25. Schubot, F.D., et al., Three-dimensional structure of a macromolecular assembly that regulates type III secretion in Yersinia pestis. J Mol Biol, 2005. 346(4): p. 1147-61.
    1. Perry, R.D. and J.D. Fetherston, Yersinia pestis--etiologic agent of plague. Clin Microbiol Rev, 1997. 10(1): p. 35-66.
    2. Cornelis, G.R., Type III secretion: a bacterial device for close combat with cells of their eukaryotic host. Philos Trans R Soc Lond B Biol Sci, 2000. 355(1397): p. 681-93.
    3. Bleves, S., et al., Up-regulation of the Yersinia enterocolitica yop regulon by deletion of the flagellum master operon flhDC. J Bacteriol, 2002. 184(12): p. 3214-23.
    4. Brubaker, R.R., Influence of Na+, Dicarboxylic Amino Acids, and pH in Modulating the Low-Calcium Response of Yersinia pestis. Infect Immun, 2005. 73(8): p. 4743-52.
    5. Motin, V.L., et al., Temporal global changes in gene expression during temperature transition in Yersinia pestis. J Bacteriol, 2004. 186(18): p. 6298-305.
    6. Fields, K.A., G.V. Plano, and S.C. Straley, A low-Ca2+ response (LCR) secretion (ysc) locus lies within the lcrB region of the LCR plasmid in Yersinia pestis. J Bacteriol, 1994. 176(3): p. 569-79.
    7. Cornelis, G.R., Molecular and cell biology aspects of plague. Proc Natl Acad Sci U S A, 2000. 97(16): p. 8778-83.
    8. Cornelis, G., et al., Homology between virF, the transcriptional activator of the Yersinia virulence regulon, and AraC, the Escherichia coli arabinose operon regulator. J Bacteriol, 1989. 171(1): p. 254-62.
    9. Hoe, N.P. and J.D. Goguen, Temperature sensing in Yersinia pestis: translation of the LcrF activator protein is thermally regulated. J Bacteriol, 1993. 175(24): p. 7901-9.
    10. Day, J.B., F. Ferracci, and G.V. Plano, Translocation of YopE and YopN into eukaryotic cells by Yersinia pestis yopN, tyeA, sycN, yscB and lcrG deletion mutants measured using a phosphorylatable peptide tag and phosphospecific antibodies. Mol Microbiol, 2003. 47(3): p. 807-23.
    11. Bergman, T., et al., Analysis of the V antigen lcrGVH-yopBD operon of Yersinia pseudotuberculosis: evidence for a regulatory role of LcrH and LcrV. J Bacteriol, 1991. 173(5): p. 1607-16.
    12. Skryzpek, E. and S.C. Straley, LcrG, a secreted protein involved in negative regulation of the low-calcium response in Yersinia pestis. J Bacteriol, 1993. 175(11): p. 3520-8.
    13. Wulff-Strobel, C.R., A.W. Williams, and S.C. Straley, LcrQ and SycH function together at the Ysc type III secretion system in Yersinia pestis to impose a hierarchy of secretion. Mol Microbiol, 2002. 43(2): p. 411-23.
    14. Williams, A.W. and S.C. Straley, YopD of Yersinia pestis plays a role in negative regulation of the low-calcium response in addition to its role in translocation of Yops. J Bacteriol, 1998. 180(2): p. 350-8.
    15. Sarker, M.R., et al., LcrG is required for efficient translocation of Yersinia Yop effector proteins into eukaryotic cells. Infect Immun, 1998. 66(6): p. 2976-9.
    16. Boyd, A.P., et al., Heparin interferes with translocation of Yop proteins into HeLa cells and binds to LcrG, a regulatory component of the Yersinia Yop apparatus. Mol Microbiol, 1998. 27(2): p. 425-36.
    17. Reina, L., et al., LcrG secretion is not required for blocking of Yops secretion in Yersinia pestis. BMC Microbiology, 2008. 8(1): p. 29.
    18. Nilles, M.L., et al., Yersinia pestis LcrV forms a stable complex with LcrG and may have a secretion-related regulatory role in the low-Ca2+ response. J Bacteriol, 1997. 179(4): p. 1307-16.
    19. Matson, J.S. and M.L. Nilles, Interaction of the Yersinia pestis type III regulatory proteins LcrG and LcrV occurs at a hydrophobic interface: correction. BMC Microbiol, 2002. 2(1): p. 25.
    20. Brown, W.F., Variance Estimation in the Reed-Muench Fifty Per Cent End-Point Determination. Am J Hyg, 1964. 79: p. 37-46.
    21. Straley, S.C. and W.S. Bowmer, Virulence genes regulated at the transcriptional level by Ca2+ in Yersinia pestis include structural genes for outer membrane proteins. Infect Immun, 1986. 51(2): p. 445-54.
    22. Zhou, D., et al., DNA microarray analysis of genome dynamics in Yersinia pestis: insights into bacterial genome microevolution and niche adaptation. J Bacteriol, 2004. 186(15): p. 5138-46.
    23. Han, Y., et al., DNA microarray analysis of the heat- and cold-shock stimulons in Yersinia pestis. Microbes Infect, 2005. 7(3): p. 335-48. - 102 -
    24. Matson, J.S. and M.L. Nilles, LcrG-LcrV interaction is required for control of Yops secretion in Yersinia pestis. J Bacteriol, 2001. 183(17): p. 5082-91.
    25. Song, Y., et al., Complete genome sequence of Yersinia pestis strain 91001, an isolate avirulent to humans. DNA Res, 2004. 11(3): p. 179-97.
    26. Nilles, M.L., K.A. Fields, and S.C. Straley, The V antigen of Yersinia pestis regulates Yop vectorial targeting as well as Yop secretion through effects on YopB and LcrG. J Bacteriol, 1998. 180(13): p. 3410-20.
    27. Dube, P.H., et al., The rovA mutant of Yersinia enterocolitica displays differential degrees of virulence depending on the route of infection. Infect Immun, 2003. 71(6): p. 3512-20.
    28. Ellison, D.W., M.B. Lawrenz, and V.L. Miller, Invasin and beyond: regulation of Yersinia virulence by RovA. Trends Microbiol, 2004. 12(6): p. 296-300.
    29. Kapatral, V., et al., Temperature-dependent regulation of Yersinia enterocolitica Class III flagellar genes. Mol Microbiol, 1996. 19(5): p. 1061-71.
    30. Horne, S.M. and B.M. Pruss, Global gene regulation in Yersinia enterocolitica: effect of FliA on the expression levels of flagellar and plasmid-encoded virulence genes. Arch Microbiol, 2006. 185(2): p. 115-26.
    31. Deng, W., et al., Genome sequence of Yersinia pestis KIM. J Bacteriol, 2002. 184(16): p. 4601-11.
    32. Young, G.M., et al., The Yersinia enterocolitica motility master regulatory operon, flhDC, is required for flagellin production, swimming motility, and swarming motility. J Bacteriol, 1999. 181(9): p. 2823-33.
    33. Cambronne, E.D., J.A. Sorg, and O. Schneewind, Binding of SycH chaperone to YscM1 and YscM2 activates effector yop expression in Yersinia enterocolitica. J Bacteriol, 2004. 186(3): p. 829-41.
    34. Wilharm, G., W. Neumayer, and J. Heesemann, Recombinant Yersinia enterocolitica YscM1 and YscM2: homodimer formation and susceptibility to thrombin cleavage. Protein Expr Purif, 2003. 31(2): p. 167-72.
    35. Rimpilainen, M., A. Forsberg, and H. Wolf-Watz, A novel protein, LcrQ, involved in the low-calcium response of Yersinia pseudotuberculosis shows extensive homology to YopH. J Bacteriol, 1992. 174(10): p. 3355-63.
    36. Francis, M.S., H. Wolf-Watz, and A. Forsberg, Regulation of type III secretion systems. Curr Opin Microbiol, 2002. 5(2): p. 166-72.
    37. DeBord, K.L., N.S. Galanopoulos, and O. Schneewind, The ttsA gene is required for low-calcium-induced type III secretion of Yop proteins and virulence of Yersinia enterocolitica W22703. J Bacteriol, 2003. 185(12): p. 3499-507.
    1. Drewes G, B.T., Global approaches to protein–protein interactions. Curr Opin Cell Biol, 2003. 15(2): p. 199~205.
    2. Bennett, M.A., J.F. Shern,R.A. Kahn, Reverse two-hybrid techniques in the yeast Saccharomyces cerevisiae. Methods Mol Biol[J], 2004. 261: p. 313-326.
    3. Li, S., C.M. Armstrong, N. Bertin, et al., A map of the interactome network of the metazoan C. elegans. Science[J], 2004. 303(5657): p. 540-543.
    4. Giot, L., J.S. Bader, C. Brouwer, et al., A protein interaction map of Drosophila melanogaster. Science[J], 2003. 302(5651): p. 1727-1736.
    5. Bartel, P.L., J.A. Roecklein, D. SenGupta, et al., A protein linkage map of Escherichia coli bacteriophage T7. Nat Genet[J], 1996. 12(1): p. 72-77.
    6. Lee, J.W., S.K. Lee, Mammalian two-hybrid assay for detecting protein-protein interactions in vivo. Methods Mol Biol[J], 2004. 261: p. 327-336.
    7. Ito, T., T. Chiba, R. Ozawa, et al., A comprehensive two-hybrid analysis to explore the yeast protein interactome. Proc Natl Acad Sci U S A[J], 2001. 98(8): p. 4569-4574.
    8. Hu, J.C., M.G. Kornacker, A. Hochschild, Escherichia coli one- and two-hybrid systems for the analysis and identification of protein-protein interactions. Methods[J], 2000. 20(1): p. 80-94.
    9. McCraith, S., T. Holtzman, B. Moss, et al., Genome-wide analysis of vaccinia virus protein-protein interactions. Proc Natl Acad Sci U S A[J], 2000. 97(9): p. 4879-4884.
    10. Rain, J.C., L. Selig, H. De Reuse, et al., The protein-protein interaction map of Helicobacter pylori. Nature[J], 2001. 409(6817): p. 211-215.
    11. Fields S, S.O., A novel genetic system to detect protein-protein interactions. Nature[J], 1989. 340(6230): p. 245~6.
    12. Ho, Y., A. Gruhler, A. Heilbut, et al., Systematic identification of protein complexes in Saccharomyces cerevisiae by mass spectrometry. Nature[J], 2002. 415(6868): p. 180-183.
    13. Nyman, T.A., The role of mass spectrometry in proteome studies. Biomol Eng[J], 2001. 18(5): p. 221-227.
    14. Zhu, H., M. Bilgin, R. Bangham, et al., Global analysis of protein activities using proteome chips. Science[J], 2001. 293(5537): p. 2101-2105.
    15. Alexsandra, Biochem. J.[J], 2002. 367: p. 697-702.
    16. Kelley, B.P., R. Sharan, R.M. Karp, et al., Conserved pathways within bacteria and yeast as revealed by global protein network alignment. Proc Natl Acad Sci U S A[J], 2003. 100(20): p. 11394-11399.
    17. Stuart, J.M., E. Segal, D. Koller, et al., A gene-coexpression network for global discovery of conserved genetic modules. Science[J], 2003. 302(5643): p. 249-255.
    18. Uetz, P., L. Giot, G. Cagney, et al., A comprehensive analysis of protein-protein interactionsin Saccharomyces cerevisiae. Nature[J], 2000. 403(6770): p. 623-627.
    19. Bader, G.D., C.W. Hogue, Analyzing yeast protein-protein interaction data obtained from different sources. Nat Biotechnol[J], 2002. 20(10): p. 991-997.
    20. von Mering, C., R. Krause, B. Snel, et al., Comparative assessment of large-scale data sets of protein-protein interactions. Nature[J], 2002. 417(6887): p. 399-403.
    21. Wojcik, J., I.G. Boneca,P. Legrain, Prediction, assessment and validation of protein interaction maps in bacteria. 2002. 323(4): . J Mol Biol[J], 2002. 323(4): p. 763-770.
    22. Jeong H, M.S.P., Barabasi A L, et al. , Lethality and centrality in protein networks. Nature, 2001. 411(6833): p. 41-42.
    23. Fraser H B, H.A.E., Steinmetz L M, et al., Evolutionary rate in the protein interaction network. Science, 2002. 296(5568): p. 750~2.
    24. Barabasi A L, A.R., Emergence of scaling in random networks. Science, 1999. 286(5439): p. 509~12.
    25. Jeong H, T.B., Albert R, et al. , The large-scale organization of metabolic networks. Nature, 2000. 407(6804): p. 651~4.
    26. Maslov S, S.K., Specificity and stability in topology of protein networks. Science, 2002. 296(5569): p. 910~3.
    27. Goldberg D S, R.F.P., Assessing experimentally derived interactions in a small world. ProcNatl Acad Sci USA, 2003. 100(8): p. 4372~6.
    28. Rives A W, G.T., Modular organization of cellular networks. Proc Natl Acad Sci USA, 2003. 100(3): p. 1128~33.
    29. Spirin V, M.L., Protein complexes and functional modules in molecular networks. Proc Natl Acad Sci USA, 2003. 100(21): p. 12123~8.
    30. Pereira-Leal J B, E.A.J., Ouzounis C A, Detection of functional modules from protein interaction networks. Proteins, 2004. 54(1): p. 49~57.
    31. Joel S. Bader, J.C., When Proteomes Collide. SYSTEMS BIOLOGY
    32. Stelzl U, W.U., Lalowski M, et al., A human proteinprotein interaction network: a resource for annotating the proteome., 2005, 122(6): . Cell, 2005. 122(6): p. 957~968.
    33. Rual J F, V.K., Hao T, et al. , Towards a proteomescale map of the human protein. protein interaction network.Nature, 2005. 437(7062): p. 1173~1178.
    34. Uetz, P., et al., Herpesviral protein networks and their interaction with the human proteome. Science, 2006. 311(5758): p. 239-42.
    35. Calderwood, M.A., et al., Epstein-Barr virus and virus human protein interaction maps. Proc Natl Acad Sci U S A[J], 2007. 104(18): p. 7606-11.
    36. Flajolet M, R.G., Daviet L, et al. , A genomic approach of the hepatitis C virus generates a protein interaction map. Gene, 2000. 242(1-2): p. 369~79.
    37. Dyer, M.D., T.M. Murali, and B.W. Sobral, The landscape of human proteins interacting with viruses and other pathogens. PLoS Pathog, 2008. 4(2): p. e32.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700