三十烷醇(TA)纳米制剂的制备及对小麦、绿豆种苗生长的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
三十烷醇(TA)作为一种新型植物调节剂,目前在我国有着广泛的应用和研究。本论文在综述三十烷醇研究进展及应用的基础上,采用纳米技术方法处理,制备出三十烷醇纳米制剂,通过比较,初步研究了该制剂对小麦、绿豆种苗生长的影响。主要研究结果如下:
     1、通过超声波振荡法处理制备三十烷醇的纳米制剂,经过扫描电镜及透射电镜检测及粒径计算分布软件系统分析,三十烷醇颗粒粒径可达到50-200nm;将三十烷醇纳米制剂配制成不同浓度(0-2mg/L范围内:0.5mg/L、1.0mg/L、1.5mg/L、2.0mg/L),以相同浓度TA原剂及水为对照,研究对小麦和绿豆种苗生长发育的影响。
     2、不同浓度的TA纳米制剂及相同浓度的TA原剂处理后均能提高种子的萌发率和萌发势,而TA纳米制剂促进作用更加明显,其中最为明显的是0.5mg/L的处理组,TA纳米制剂处理种子后,与相同浓度TA原剂和水对照比较,萌发率分别提高了1.2%和3.2%。
     3、TA纳米制剂对处理的幼苗生长促壮效应更明显,表现在增加苗高、根长、根数以及增加叶片鲜重、干重。其中最为明显的是0.5mg/L的处理组,TA纳米制剂处理后,与相同浓度TA原剂和水对照比较,小麦苗高分别增加了6.5%和8.6%、根长分别增加了7.2%和9.5%、鲜重分别增加了20.5%和21.3%、干重分别增加了23.1%和26.5%。
     4、TA纳米制剂对处理的幼苗生理指标有一定影响,表现在提高叶片叶绿素含量、提高MDA含量、增加酶的活性。其中最为明显的是0.5mg/L的处理组,TA纳米制剂处理后,与相同浓度TA原剂和水对照比较,小麦叶绿素含量分别增加了26.1%和31.2%、MDA含量分别增加了11.2%和13.5%、CAT含量分别增加了20.5%和22.7%、POD含量分别增加了21.3%和26.3%。
     经过对超声波振荡法、球磨法等多种纳米制剂制备方法的探索后,本研究采用超声波震荡法,此法制备的三十烷醇纳米制剂物相纯净、无杂质存在,且颗粒大小分布均匀。关于纳米生物制剂更加适宜的制备方法及其作用机理,有待进一步研究。
Triacontanol plants as a new regulator, is currently in our country have a wide range of applications and research. Summary of the papers in Triacontanol (TA) and application of research based on the means of dealing with the use of nano-technology, nano-prepared Triacontanol agents, through comparison, the preliminary study of the preparation of the wheat, the growth of mung bean seedlings impact. The main findings are as follows:
     1, By ultrasonic oscillation method to deal with the preparation of nano-Triacontanol agents, after scanning electron microscopy and transmission electron microscopy detection and calculation of the distribution of particle size analysis software the particle size Triacontanol up to 50-200nm; will Triacontanol the original agents Triacontanol preparation of nano-agents at different concentrations (0-2mg / L range:0.5mg/L、1.0mg/L、1.5mg/L、2.0mg/L) to cultivate wheat and mung bean seeds and seedlings to study the different concentrations of nano-agents and general agents of wheat and mung bean seedling growth and development.
     2, Different concentrations of TA can be improved germination rate and germination potential after soaking the seed, and preparations to deal with nano-TA on seed germination after the more obvious role. In, 0.5mg / L nano-agent deal with the TA after seed germination rate than the control group increased 1.2% and 3.2%..
     3, TA Nano-agents to deal with the strong effect of seedling growth and promote more obvious in the increase in seedling height, root length, root number and increased leaf fresh weight, dry weight. Morphological indicators of the overall performance of the most obvious is that when the concentration of 0.5mg / L TA treated nano-formulations, compared with the control group increased by 6.5% and 8.6% in seedling height, root length increased by 7.2% and 9.5%, fresh weight increase of20.5% and 21.3%, dry weight an increase of 23.1% and 26.5%.
     4, TA Nano-agents to deal with the physical growth of the seedlings have a certain influence, reflected in the chlorophyll content to increase and improve MDA content, increased the enzyme activity. Physiological indicators of the performance of the most obvious is that when the concentration of 0.5mg / L TA treated nano-formulations, compared with the control group, chlorophyll content increased by 26.1% and 31.2%, MDA content increased by 11.2% and 13.5%, CAT concentration increased by 20.5% and 22.7%, POD was increased of 21.3% and 26.3%.
     Through the ultrasonic oscillation, ball milling and other methods of preparation of nano-formulations, after exploration, the selection method using ultrasonic vibration, the Triacontanol prepared phase pure nano-agents without the existence of impurities, and particle size distribution.On to explore a wide range of preparation methods of nano-biological agents and their mechanism of action, pending further study.
引文
[1]史秀娟,王学海.植物源农药研究现状与展望.现代农业科技. 2006, 2: 34-36.
    [2]刘德盛,张群,陆东和.我国三十烷醇研究进展及其在农业上的应用前景.中国工程科学. 2001(3):91-94.
    [3]姜忠义,王艳强.纳米生物技术.中国生物工程杂志. 2002, 22(6): 75-78.
    [4]姜忠义,王艳强.纳米生物技术及其应用.现代化工. 2002, 22(4): 10-13.
    [5]张立德,牟季美.纳米材料和纳米结构.北京:科技出版社, 2001,2-31.
    [6]姜忠义.纳米生物技术.化学工业出版社. 2003.1.
    [7]洪海龙,贺文智,索全伶,阿山.制备超细微粒的超临界流体沉淀技术新进展.化学进展. 2005, 17(5):789-792.
    [8]徐辉碧,杨祥良,谢长生.纳米技术在中药研究的应用.中国药科大学学报. 2001, 32(3):161-1651.
    [9]朱勋,刁美艳.纳米科技与纳米经济.河北工业科技. 2003.20(5):6.
    [10]范秀珍,三十烷醇影响水稻产量的生理机制研究,福建师范大学硕士学位论文, 2004,4.
    [11]李青苗,杨文钰.纳米科学. 2003, 11(3):66-69.
    [12]周彦兵.纳米科技在生命科学领域的应用.生物学通报. 2002, 37 (12):10-11.
    [13]马小艺,陈海斌.纳米材料在生物医学领域的应用与前景展望.研究进展. 2006, 3(32):13-15.
    [14]伍一军,陈瑞,刘承芸,李薇.农药残留及其纳米颗粒的毒性问题.农药. 2005, 44(8):370-371.
    [15]段利敏,何培建,于红妮.油性物质纳米制剂制备方法.海峡药学.2007,19(1):80-82
    [16]艾秀娟,陈建海,平渊,周红玲等.高压均质技术在纳米制剂制备中的应用.医药导报.2007,26(9):1055-1057
    [17]杨哲.纳米制剂技术在靶向制剂研究中的应用进展.中国医学工程杂志.2003,11(6):63-67
    [18]平其能.纳米药物制剂的现在和将来.中国药师.2002,5(7):421-423
    [19]卢丽丽,肖敏,赵晗,王鹏,钱新民.氟代糖在糖苷酶研究中的应用.生物工程学报. 2006, 22(2):351-360.
    [20]阎建辉,黄可龙,王跃龙,刘素琴.环保型溴虫腈纳米农药制剂的应用.化工学报. 2006, 57(1):91-96.
    [21]刘幸海,李正名,王宝雷.具有农业生物活性壳寡糖的研究进展.农药学学报. 2006, 8(1):1-7.
    [22]邵健,孙维.壳聚糖在药物制剂中的应用研究进展.中国海洋药物杂志. 2005, 24(1):52-55.
    [23]吕凤林,何凤慈.利用纳米材料制作多肽疫苗佐剂的思考.生物化学与生物物理进展. 2001, 28(6):832-835.
    [24]陈福良,王仪,郑斐能,张向才,周建华. 5%烯唑醇微乳剂的研制.农药. 2001, 40(3):12-13.
    [25]李泳雪,王春龙,李杰.纳米技术在现代中药制剂中的应用.中草药. 2002, 33(8):673-675.
    [26]岳志劲.纳米技术在药物制剂中的应用研究综述.雁北师范学院学报. 2002, 18(2):51-53.
    [27]马国,邓盛齐.纳米技术在药学中的研究应用进展.国外医药抗生素分册. 2004, 25(5):233-237.
    [28]孙芸,诸勇健.纳米技术在中药制剂中的应用.新疆中医药. 2005, 23 (1):43-44.
    [29]朱勋,靳新位,刁美艳.纳米科技与纳米经济.河北工业科技. 2003, 20 (5):6-9.
    [30]阎建辉,黄可龙,王跃龙,刘素琴.环保型溴虫腈纳米农药制剂的应用.化工学报. 2006, 57(1):91-96.
    [31]陈立军,张心亚,黄洪,沈慧芳,陈焕钦.超临界流体在纳米材料制备中的应用.化工新型材料. 2005, 33(9):5-9.
    [32]陈敏,赵亚平,蒋思媛,朱斌雄.超临界流体制备超细微粒实验装置的设计.实验室研究与探索. 2004, 23(1):53-55.
    [33]任杰,张鹏.利用超临界流体沉积技术制备超细粒子.建筑材料学报. 2005, 8(4):417-422.
    [34]潘亚清,郑铁军,李宝英,郭玉莲. 5%烯唑醇微粉种衣剂的研制与应用.中国农学通报. 2004, 22(2):319-322.
    [35]刘艳如,余萍.水溶性壳聚糖对小鼠免疫功能与移植性肿瘤的影响.福建师范大学学报. 1999, 15(4):66-70.
    [36]梁勤,黄少康,陈盛,林曦.甲壳胺对水稻根生长的促进作用.福建师范大学学报. 2001, 17(1):64-66.
    [37]韩德元,许光善,任肇利.新型植物生长调节剂甲壳胺的生物学特性及其在农业上的应用.北京农业科学. 2001, 5:30-33.
    [38]冀宪领,盖英萍,牟志美,李卫国,卢杰.壳聚糖对桑树种子萌发及幼苗生理生化特性影响的研究.蚕业科学. 2002, 28(3):253-255.
    [39]肖华山,范子南.多效唑和三十烷醇对水稻种子萌发和生长过程的生理影响.福建农业科技. 1997, 2:9-10.
    [40]潘继红,曹军,张仁健.猴头菇喷三十烷醇的增产效应.
    [41]潘继红,王建华,田种,张仁健.金针菇喷三十烷醇的增产效应.
    [42]常振江,陈敏资.三十烷醇促进裙带菜增产的统计分析.应用简报. 2003. 327-329.
    [43]吴瑞敏,江宇.三十烷醇对海带幼苗生长效应的影响.福建水产. 1992(3):33-36.
    [44]张跃平,王大志,高亚辉,程兆第.三十烷醇对极大螺旋藻生物量及生化组成的影响.海洋学报. 2006(28):106-109.
    [45]梁存钧,吴贤聪.三十烷醇对魔芋后期生长的影响.安徽师大学报1992:75-79.
    [46]阮少江.三十烷醇对平菇生长的影响.肇庆学院学报. 2002(23):93-96.
    [47]姜虎生,汤洁,周波.三十烷醇对无菌苗生根及愈伤组织细胞繁殖的影响.长春师范学院学报. 2003(22):54-56.
    [48]张丽娟,吴志明.三十烷醇对小石花菜藻体生长发育的影响研究.中国生态农业学报. 2004(12):117-118.
    [49]焦顺兴,杨春华,王沙生.三十烷醇对杨树光合作用和生长的影响.河南林学院学报. 1991(6):251-257.
    [50]云兴福,彭秀芝.三十烷醇和6-糠基氨基嘌呤对黄瓜果实生长的影响.
    [51]范秀珍,肖华山,刘德盛,蔡文燕.三十烷醇和磷酸二氢钾混用对水稻的生理效应.福建师范大学学报(自然科学版). 2003(19):80-84.
    [52]彭子模,赵红艳,丛媛媛,李韶山.三十烷醇和亚硫酸氢钠对小麦生长发育的影响.新疆农业科学. 2000(5):212-214.
    [53]郑春明,徐礼根,程海峰,徐程.三十烷醇磷酸酯钾对芽菜生长的影响.植物生理学通讯. 2000(36):225-227.
    [54]张巧,徐红辉,周舫,陈小玉,姚武,许东,吴逸明.三十烷醇原药急性毒性测定.郑州大学学报(医学版). 2008(43):364-366.
    [55]赵怡红,王金福,杜玉宁,康义.三十烷醇在苜蓿种植中的应用.宁夏农林科技. 2003(6):16-17.
    [56]孔庆环,温鲁,朱寿荣,张萍,刘艳文,翁梁.三十烷醇在松菇生料栽培中的增产效应.江苏农业科学. 2006(6):353-355.
    [57]刘晓静,柳小妮.多效唑和烯效唑对草地早熟禾一些生化指标及其抗性的影响.草业学报. 2003, 15(2):48-53.
    [58]徐玉恒,卞建波,王桂香,陈香艳,张永涛,孔令国,彭金海. 5%烯唑醇微乳剂防治芦笋茎枯病.安徽农业科学. 2005, 33(1):53-57.
    [59]李玥莹,陈凤玉.水稻烯效唑浸种对秧苗影响的解剖学观察.中国水稻科学.2001(4).
    [60]杨安平,尚丽蓉,杨耀军,郑万鹏,刘军强,周艳莉.烯效唑浸种对蔬菜生长及产量的影响.山西农业科学. 2003, (5).
    [61]王汝宽.纳米生物.医学情报工作. 2001.22 (2).
    [62]郑凌凌,庄惠如,刘德胜. TA(三十烷醇)乳粉对螺旋藻的促长作用及生理调控.应用与环境生物学报. 2004, 10(5):631-634.
    [63]陈军,易以木,杨希雄.口服毫微粒的研究进展.药学进展. 2000,24(5):262-264.
    [64]王建新,张志荣.固体脂质纳米粒的研究进展.中国药学杂志. 2001,36(2): 73-76.
    [65]M aria M G, B lanco D , C ruze M EM , et al. Fo rm ulation of L - asp araginase- loaded PL GA nanoparticles: in fluence of po lym er p roperties on enzym e loading activity and in vitro release[J],J Contro lled Release, 1998, 52(1 2): 53-62.
    [66]马利敏,张强,李玉珍.胰岛素聚酯纳米粒的制备及药效学研究.中国药学杂志. 2001, 36(1):38-41.
    [67]何林,蒋学华,李屯.阿克拉霉素A聚乳酸毫微粒的制备工艺研究.中国药学杂志. 1998, 33(5):289-291.
    [68]张强,廖工铁.硫酸庆大霉素聚氰基丙烯酸正丁酯毫微球制备工艺.中国药学杂志. 1996, 3(1):24-27.
    [69]段明星,乐志操,马红.氰基丙烯酸酯包裹胰岛素纳米颗粒的结构.中国药学杂志. 1999, 34(1):23-26.
    [70]Wagenear B W ,Mueller B W. Biom aterials [M]. American Chemical Society, Washington DC. 1994, 15: 49.
    [71]W ichert, Rohdew ald. A new method for the p reparation of drug containing polylactic acid microparticles without using organic solvent [J]. J Controlled Release, 1990, 14: 26.
    [72]马世坤,周旋,路翰娜,曹海燕.甲壳素、甲壳胺及其衍生物的研究进展与存在问题.天津医科大学学报. 2004(10):12-14.
    [73]He YW,Loh CS. Induetion of early bolting in Arabidopsis thaliana by triacontanol cerium and lanthanum is correlated with increased endogenous concentration of isopentenyl adenosine(iPAdos). Joumal of Experimental Botany,2002,53(3):505-512.
    [74]Ivanov AQ,Angelov MN. Photosynthesis response to triacontanol correlates with increased dynamics of mesoPhy 11 protoplast and chloroplast menbranes. Plant Growth Regulation,1997,21(2):145-152.
    [75]James MD,Sellden G,Xiao Z-Z,etal. Triacontanol stimulates NADH oxidase of soybean hypocotyl Plasma membrane. Plant Sci. (Limerick), 1991,79(l):31-36.
    [76]Jing Y-M,You SP,Chen J-X. Advance of triacontanol on application and rearsh. International Symposium on Plant Growth Regulators. The Seience and Technology Publish House. P.R. Korea,1993:146-154.
    [77]Kothiala N,Mishra SD. Plant growth regulator induced photoassimilate Partitioning at different stages of growth in barley (Hordeum vulgare L). Photosythetica,1991,25(4):589-595.
    [78]李忠光,李江鸿,杜朝昆.在单一提取系统中同时测定五种植物抗氧化酶.云南师范大学学报,2002,22(6):44-48.
    [79]李合生.植物生理生化实验原理和技术.北京:高等教育出版社,2000. 164-165.
    [80]刘德盛,陆修闽,何明忠,肖华山,范秀珍.植物生长调节剂三十烷醇( TA)乳粉对水稻产量的影响.中国工程科学. 2002(4):82-88.
    [81]黄晓东,胡林,王玉健,徐汉虹.α-三联噻吩水基纳米悬浮剂的制备及测定.华东交通大学学报. 2006, 23(2):158-160.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700