光纤通信中微波光子信号的产生和处理技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着微波光子技术的飞速发展,以光电振荡器(OEO)为代表的微波源信号产生技术、以微波光子滤波器为代表的信号处理技术、以光子上变频为代表的光-无线融合技术等相关研究成为热点。
     本工作在分析了OEO的基本原理上,创造性地构建了基于光纤布拉格光栅(FBG)的双激光器双振荡腔OEO,实验中得到了振荡频率为4.99881998GHz、单边带(SSB)相噪为-113dBc/Hz、边模抑制比(SMSR)大于60dB的微波信号。本工作创造性地利用光纤中的分数TALBOT效应,通过光脉冲重复率加倍的方法,实现微波频率的2倍频、4倍频、5倍频和8倍频技术,通过理论计算、仿真和实验实现了将光纤锁模激光器(MLFL)产生的重复率10GHz、脉宽2.8ps的光脉冲倍频到20GHz、40GHz、50GHz,将重复率5GHz、脉宽3ps的光脉冲8倍频到40GHz。
     本工作根据半导体光放大器(SOA)中的基于载流子密度动态变化的光-光调制作用相关理论,利用SOA中的交叉增益调制(XGM)和交叉相位调制(XPM)非线性效应实现了将1.25Gb/s基带信号上变频为30GHz毫米波信号;实验分析了SOA偏置电流、两光波长间隔、滤波器偏移量等因素对上变频调制度的影响。
     本文工作创造性提出基于FP-LD的“无本振光子上变频”技术,应用光信号注入FP-LD中的一周期(P1)振荡效应,实现了NRZ-OOK信号的上变频,产生了最低10GHz、最高30GHz的副载波强度调制(SCM)信号;通过实验还验证了2Gb/s的RZ-OOK信号分别上变频到12GHz、14.28GHz成为SCM信号。
     本文创造性利用“无本振光子上变频”级联偏振延时干涉仪(PDI)的方法,实现了无本振毫米波信号的产生。根据FP-LD输出的无本振光子上变频信号的正啁啾特性,利用单模光纤实现时域压缩后通过PDI滤波得到副载波二次谐波分量,将原有的微波信号转换为频率加倍的毫米波信号;实验中得到了27.8GHz的SCM信号和31.4GHz毫米波信号。
     本文创造性利用光注入FP-LD的P1振荡效应,实现了将光的相位信息转换成为副载波的相位信息。实验中1.3Gb/s、2.7Gb/s、2Gb/s的光移相键控(PSK)信号分别转换成为14.3GHz、15.12GHz、16GHz的副载波调相信号;分别将2GHz、3GHz、4GHz、5GHz、10GHz、13GHz的正弦调相信号分别转换成为22GHz、21GHz、24GHz、25GHz、10GHz、13GHz的副载波调频(FM)信号。
With the great development of the microwave photonics technology, the microwave source generation, microwave signal processing in fiber-optics and fiber-wireless convergence technology are well focused on. The representatives mentioned above are optoelectronics oscillator (OEO), microwave photonics filter and photonics frequency up-conversion.
     The basic principle of OEO is analyzed and a dual-loop OEO based on FBG is proposed. The obtained microwave with frequency of 4.99881998GHz is obtained with 60dB SMSR and SSB phase noise of -113dBc/Hz.
     The frequency doubling, quadrupling, quintupling and octupling of microwave are realized by multiplying repetition frequency of optical pulse based on fractional TALBOT effect in fiber. The theoretical computing, simulation and experiments also works out the frequency multiplication. In the experiments, the self-manufactured chromatic dispersion compensator helps in 20GHz, 40GHz, 50GHz pulse generation from 10GHz pulse with 2.8 ps width, and helps in 40GHz pulse generation from 5GHz pulse with 3 ps width.
     The opto-opto modulation based on carrier population dynamics in SOA is studied and the cross gain modulation and cross phase modulation are employed to up-converte 1.25Gb/s baseband signal in SOA. The involved factor such as biased current, wavelength interval and center window detuning of opical filter are considered and analyzed.
     A novel‘photonics frequency up-conversion with RF-local oscillator free’scheme is proposed via optical injection into a FP-LD. According to the period-one oscillation (P1) due to optical injection in FP-LD, the NRZ-OOK signal are up-converted to subcarrier modulation (SCM) signal. SCM signals with the subcarrier frequency ranging from 10GHz to 30GHz are generated and the 12GHz, 14.28GHz SCM signal are produced via 2Gb/s RZ-OOK injecting to FP-LD.
     According to the positive frequency chirp of SCM signal which is induced by carrier population dynamics in FP-LD, the temporal compressing of subcarrier is achieved by signal transmission in SMF. Furthermore, the second harmonic component of compressed SCM is extracted by a polarization delay interferometer (PDI). Thus the microwave SCM is doubled to millimeter wave signal. The 27.8GHz SCM signal is obtained from 13.9GHz SCM and so does the 31.4GHz millimeter wave signal from 15.7GHz SCM.
     The phase information of optical is converted to microwave phase information due to P1 oscillation in FP-LD in conditon of optical injection. In experiments, the 1.3Gb/s, 2.7Gb/s and 2Gb/s PSK signals are converted to 14.3 GHz, 15.12GHz and 16GHz SCM signals respectively; a series of sine phase modulated signals at 2GHz, 3GHz, 4GHz, 5GHz, 10GHz and 13GHz are converted to 22GHz, 21GHz, 24GHz, 25GHz, 10GHz and 13GHz subcarrier FM signal.
引文
[1] F. P. Kapron, D. B. Keck, and R. D. Maurer,“Radiation losses in glass optical waveguides,”Appl. Phys. Lett., Nov 1970, 17(10): 423-425.
    [2] R. J. Meers L. Reekie, I. M. Jauncey, D. N. Payne,“Low-noise erbium-doped fiber amplifier at 1.54mm,”Electron. Lett., 1987, 23(19): 1026–1028.
    [3] E. Desurvire, J. R. Simpson, and P. C. Becker,“High-gain, erbium-doped traveling-wave fiber amplifier,”1987, Opt. Lett., 12(11): 888–890.
    [4] C. A. Brackett,“Dense wavelength division multiplexing networks: principles and applications”, IEEE J. Select. Area Commun., 1990, vol.8: 373-380.
    [5] Weber, H.G.; Ferber, S.; Kroh, M.; Schmidt-Langhorst, C.; Ludwig, R.; Marembert, V.; Boerner, C.; Futami, F.; Watanabe, S.; Schubert, C.;“Single channel 1.28 Tbit/s and 2.56 Tbit/s DQPSK transmission”, Electronics Letters, Vol. 42, No. 3, Feb. 2006, pp:178-179
    [6] Gnauck, A.H.; Charlet, G.; Tran, P.; Winzer, P.J.; Doerr, C.R.; Centanni, J.C.; Burrows, E.C.; Kawanishi, T.; Sakamoto, T.; Higuma, K.;“25.6-Tb/s WDM Transmission of Polarization-Multiplexed RZ-DQPSK Signals”, Journal of Lightwave Technology, Vol. 26, No. 1, Jan. 2008, pp:79-84
    [7] K. Schneider, R. Driad, R. E. Makon, A. Tessmann, R. Aidam, R. Quay, M. Schlechtweg, and G.Weimann,“InP/InGaAs-DHBT distributed amplifier MMIC’s exceeding 80 GHz bandwidth,”presented at the IEEE MTT-S Int. Microwave Symp., Long Beach, CA, Jun. 2005.
    [8] Karl Schneider, Rachid Driad, Robert E. Makon, et al.“Comparison of InP/InGaAs DHBT Distributed Amplifiers as Modulator Drivers for 80-Gbit/s Operation,”IEEE Transactions on Microwave Theory and Techniques, Vol. 53, No. 11, pp. 3378-3387, Nov. 2005
    [9] S. Masuda, T. Takahashi, and K. Joshin,“An over-100-GHz InP HEMT flip-chip distributed baseband amplifier with inverted microstrip line structure for optical transmission system,”IEEE J. Solid-State Circuits, vol. 38, no. 9, pp. 1479–1484, Sep. 2003.
    [10] Robert Lewén,“Segmented Transmission-Line Electroabsorption Modulators,”Journal of Lightwave Technology, Vol. 22, No. 1, pp. 172-179, Jan. 2004.
    [11] A. Beling, H.-G. Bach, G. G. Mekonnen, T. Eckhardt, R. Kunkel, D. Schmidt, and C. Schubert,“Highly Efficient PIN Photodetector Module for 80 Gbit/s and Beyond,”OFC 2005, OFM1.
    [12]王廷尧等,“用户网接入技术与工程”,人民邮电出版社,2007.
    [13]吴波,于晋龙,张祖松等.“基于FP-LD注入的无本振光载波全光混频技术.光学学报”, 2010, 30 (11): 3140~3147
    [14] Chien, H. -. and Y. -. Hsueh, et al.“Optical Millimeter-Wave Generation and Transmission Without Carrier Suppression for Single- and Multi-Band Wireless Over Fiber Applications,”Journal ofLightwave Technology, 2010, 28(16): 2230-2237.
    [15] Zhensheng, J. and Y. Jianjun, et al.“Multiband Signal Generation and Dispersion-Tolerant Transmission Based on Photonic Frequency Tripling Technology for 60-GHz Radio-Over-Fiber Systems,”IEEE Photonics Technology Letters, 2008, 20 (17): 1470-1472.
    [16] JIA Z, YU J, BOJVIN D, et al.“Bidirectional RoF links using optically up-converted DPSK for downstream and remodulated OOK for upstream,”IEEE Photonics Technology Letters, 2007, 19 (9): 653-655.
    [17] YU J, JIA Z, YU J, et al.“Novel RoF network architecture for providing both wireless and wired broadband services,”Microwave and Optical Technology Letters, 2007, 49(3):659-662.
    [18] Yu, J. and G. -. Chang, et al.“Cost-Effective Optical Millimeter Technologies and Field Demonstrations for Very High Throughput Wireless-Over-Fiber Access Systems,”Journal of Lightwave Technology, 2010, 28 (16): 2376-2397.
    [19] Jianping, Y.“Photonics for ultrawideband communications,”IEEE Microwave Magazine, 2009, 10 (4): 82-95.
    [20] Pan, S. and J. Yao“UWB-Over-Fiber Communications: Modulation and Transmission,”Journal of Lightwave Technology, 2010, 28 (16): 2445-2455.
    [21] Pan, S. and J. Yao“Optical generation of polarity- and shape-switchable ultrawideband pulses using a chirped intensity modulator and a first-order asymmetric Mach-Zehnder interferometer,”Optics Letters, 2009, 34 (9): 1312-1314.
    [22] YUEN R, FERNANDO X N. IEEE802.11 and WCDMA Multisystem RadioTransmission over Fiber for Wireless Access [EB/OL].
    [23] PIQUERAS M A, VIDAL B, CORRAL J L, et al.“Direct photonic generation of electrical vector modulations at microwave/millimeter-wave frequencies,”IEEE Photonics Technology Letters, 2005,17(9): 1947-1949.
    [24] WIBERG A, MILLAN P, ANDRES M, et al.“Fiber-optic 40-GHz mm-wave link with 2.5 Gb/s data transmission,”IEEE Photonics Technology Letters, 2005, 17(9): 1938-1940.
    [25] Weiss, M. and M. Huchard, et al.“60-GHz Photonic Millimeter-Wave Link for Short- to Medium-Range Wireless Transmission Up to 12.5 Gb/s,”Journal of Lightwave Technology, 2008, 26 (15): 2424-2429.
    [26] ISMAIL T, LIU C P, MITCHELL J, et al.“Multichannel broadband wireless transmission over fibre using feed-forward linearised uncooled DFB laser,”Proceedings of 30th European Conference on Optical Communication (ECOC’04): Sep 5-9,2004, Stockholm of Sweden, 2004, vol.2, pp:208-209.
    [27] James, J. and S. Pengbo, et al.“Millimeter-Wave Wireless Local Area Network Over Multimode Fiber System Demonstration,”IEEE Photonics Technology Letters, 2010, 22 (9): 601-603.
    [28] Lethien, C. and C. Loyez, et al.“Review of Glass and Polymer Multimode Fibers Used in a Wimedia Ultrawideband MB-OFDM Radio Over Fiber System,”Journal of Lightwave Technology, 2009, 27 (10): 1320-1331.
    [29] Nirmalathas, A. and P. A. Gamage, et al. (2010).“Digitized Radio-Over-Fiber Technologies for Converged Optical Wireless Access Network,”Journal of Lightwave Technology, 2010, 28 (16): 2366-2375.
    [30] Ho-Chul, J. and K. Hoon, et al.“Full-Duplex Radio-Over-Fiber System Using Phase-Modulated Downlink and Intensity-Modulated Uplink,”IEEE Photonics Technology Letters, 2009, 21 (1): 9-11.
    [31] IKEDA K, KURI T, KITAYAMA K.“Simultaneous three-band modulation and fiber-optic transmission of 2.5 Gb/s baseband, microwave, and 60 GHz-band signals on a single wavelength,”Journal of Lightwave Technology, 2003, 21(12): 3194-3202.
    [32] NAKASYOTANI T, TODA H, KITAYAMA K. WDM“millimeter-waveband radio-on-fiber system using a supercontinuum light source,”Journal of Lightwave Technology, 2006, 24(1): 404-410.
    [33] FUJISE M.“Millimeter-wave RoF road-vehicle communications,”Proceedings of the 2000 Microwave Workshops and Exhibition (MWE'00), Dec 12-14, 2000, Yokohama, Japan. Piscataway, NJ,USA: IEEE, 2000:141-146.
    [34] OGUSU M, INAGAKI K, MIZUGUCHI Y.“400 Mb/s BPSK data transmission at 60 GHz-band mm-wave using a two-mode injection-locked fabry-Perot laser,”Proceedings of International Topical Meeting on Micriwave Photonics (MWP’00), Sep 6-8,2000, Oxford, UK. Piscataway, NJ,USA: IEEE, 2000:31-34.
    [35] Park, C. S. and Y. -. Yeo, et al.“Demonstration of the GbE Service in the Converged Radio-Over-Fiber/Optical Networks,”Journal of Lightwave Technology, 2010, 28 (16): 2307-2314.
    [36] Lin, Y. -. and P. -. Tien, et al.“A Novel Passive Optical Network Architecture Supporting Seamless Integration of RoF and OFDMA Signals,”IEEE Photonics Technology Letters, 2010, 22 (6): 419-421.
    [37] Hai-Han, L. and M. Hsien-Li, et al.“Radio-on-Fiber Transport Systems Integration With 622-Mb/s Baseband Transmission,”IEEE Photonics Technology Letters, 2008, 20 (19): 1618-1620.
    [38] KURI T, TODA H, KITAYAMA K.“Dense wavelength-division multiplexing millimeter-wave-band radio-on-fiber signal transmission with photonic downconversion,”Journal of Lightwave Technology, 2003, 21(6): 1510-1517.
    [39] SONG H J, LEE J S, SONG J I.“Error-free simultaneous all-optical upconversion of WDM radio-over-fiber signals,”IEEE Photonics Technology Letters, 2005,17(8): 1731-1733.
    [40] SEO J H, CHOI C S, KANG Y S, et al.“SOA-EAM frequency up/down-converters for 60 GHz bi-directional radio-on-fiber systems,”IEEE Transactions on Microwave Theory and Techniques, 2006, 54(2): 959-966.
    [41] Jianjun, Y. and G. Jinxing, et al.“Seamless integration of an 8×2.5 Gb/s WDM-PON and radio-over-fiber using all-optical up-conversion based on Raman-assisted FWM,”IEEE Photonics Technology Letters, 2005, 17 (9): 1986-1988.
    [42] Zhensheng, J. and Y. Jianjun, et al.“All-optical 16×2.5 Gb/s WDM signal simultaneous up-conversion based on XPM in an NOLM in ROF systems,”IEEE Photonics Technology Letters, 2005,17 (12): 2724- 2726.
    [43] Seo, Y. -. and C. -. Choi, et al.“All-optical signal up-conversion forradio-on-fiber applications using cross-gain modulation in semiconductor optical amplifiers,”IEEE Photonics Technology Letters, 2002, 4 (10): 1448- 1450.
    [44] Ho-Jin, S. and S. L. Jeong, et al.“Error-free simultaneous all-optical upconversion of WDM radio-over-fiber signals,”IEEE Photonics Technology Letters, 2005, 17 (8): 1731-1733.
    [45] Li, W. and J. Yao“Microwave Generation Based on Optical Domain Microwave Frequency Octupling,”IEEE Photonics Technology Letters, 2010, 22 (1): 24-26.
    [46] Neyer A, Voges E“Hybrid electro-optical multivibrator operating by finite feedback delay,”Electronics Letters, 1982, 18(2): 59-60.
    [47] Yao X. S., Maleki L“High frequency optical subcarrier generator,”Electronics Letters, 1994, 30(18): 1525-1526
    [48] Yao, X. S. and L. Maleki.“Optoelectronic oscillator for photonic systems,”IEEE Journal of Quantum Electronics, 1996,32 (7): 1141-1149.
    [49] M. Kaba, H-W. Li, A.S. Daryous,“Improving thermal stability of opto-electronic oscillators,”IEEE microwave magazine, 2006:38-47.
    [50] X. Steve Yao and Lute Maleki,“Multiloop Optoelectronic Oscillator,”IEEE J. QUANTUM ELECTRONICS, 2000, 36(1):79-84.
    [51] Jiang Yang, Yu Jin-Long,“An Optical Domain Combined Dual-Loop Optoelectronic Oscillator,”IEEE Photonics technology letters, 2007, 19(11):807-809.
    [52] Chang, D. H. and H. R. Fetterman, et al.“39-GHz optoelectronic oscillator using broad-band polymer electrooptic modulator,”Photonics Technology Letters, IEEE, 2002, 14(2): 191-193.
    [53] E. Shumakher and G. Eisenstein“Noise properties of mutually sustained microwave-optoelectronic oscillator pair,”ELECTRONICS LETTERS, 2005, 41(13): 768-769.
    [54] Devgan, P. S. and V. J. Urick, et al“A Low-Jitter Master-Slave Optoelectronic Oscillator Employing All-Photonic Gain. Microwave Photonics,”2007 IEEE International Topical Meeting on Microwave Photonics, 2007, pp:70-73.
    [55] Hudek, K. M. and A. Hati, et al.“Further Examination of the Injection-Locked Dual Optoelectronic Oscillator,”IEEE International Frequency Control Symposium, 2007 Joint with the 21st European Frequency and Time Forum,2007,pp:796-800.
    [56] Shouhua, H and M. Lute, et al.“A 10 GHz optoelectronic oscillator with continuous frequency tunability and low phase noise,”Proceedings of the IEEE International Frequency Control Symposium and PDA Exhibition, 2001,pp:720-727
    [57] Kwang-Hyun, L and K. Jae-Young, et al.“Hybrid Dual-Loop Optoelectronic Oscillators,”2007 IEEE International Topical Meeting on Microwave Photonics, 2007, pp:74-77.
    [58] Salik, E. and Y. Nan, et al“An Ultralow Phase Noise Coupled OptoelectronicOscillator,”IEEE Photonics Technology Letters, 2007, 19 (6): 444-446.
    [59] Lasri, J. and A. Bilenca, et al“A self-starting hybrid optoelectronic oscillator generating ultra low jitter 10-GHz optical pulses and low phase noise electrical signals,”Photonics Technology Letters, 2002, IEEE 14 (7): 1004- 1006.
    [60] J, L. and D. P, et al.“Ultralow timing jitter 40-Gb/s clock recovery using a self-starting optoelectronic oscillator,”IEEE Photonics Technology Letters, 2004, 16 (1): 263-265.
    [61] H, T. and S. M“40-Gb/s optical clock recovery using an injection-locked optoelectronic oscillator,”IEEE Photonics Technology Letters, 2005, 17 (1): 211-213.
    [62] Zhou, E. and X. Xu, et al.“Photonic Ultrawideband Pulse Generation With HNL-DSF-Based Phase and Intensity Modulator,”IEEE Photonics Technology Letters, 2011, 23 (7): 396-398.
    [63] Fangzheng, Z. and F. Songnian, et al.“UWB Impulse Radio Transmitter Using an Electrooptic Phase Modulator Together With a Delay Interferometer,”IEEE Photonics Technology Letters, 2010, 22 (20): 1479-1481.
    [64] Palaci, J. and G. E. Villanueva, et al.“Single Bandpass Photonic Microwave Filter Based on a Notch Ring Resonator,”IEEE Photonics Technology Letters, 2010, 22 (17): 1276-1278.
    [65] Zhou, J. Q. and S. Aditya, et al.“Instantaneous Microwave Frequency Measurement Using a Photonic Microwave Filter With an Infinite Impulse Response,”IEEE Photonics Technology Letters, 2010, 22 (10): 682-684.
    [66] X.S.Yao and L. Maleki,“Optoelectronic microwave oscillator”, J. Opt. Soc. Amer.B, 1999, 13(8), 1725-1735.
    [67] X. Steve Yao and Lute Maleki,“Converting light into spectrally pure microwave oscillation”, OPTICS LETTERS, 1996, 21( 7): 483-485
    [68] PHILIPPE B. GALLION and GUY DEBARGE,“Quantum phase noise and field Correlation in Single Frequency Semiconductor Laser Systems”, IEEE J. Quantum electronics, 1984, 20(4), 343-349.
    [69] Jacob Lasri, Preetpaul Devgan, Renyong Tang, and Prem Kumar,“Self-starting optoelectronic oscillator for generating ultra-low-jitter high-rate (10GHz or higher) optical pulses,”OPTICS EXPRESS, 2003, 11(12): 1430-1435.
    [70] H. Hu, J. Yu, N. Bai, L. Zhang, A. Zhang, W. Wang and E. Yang,“10GHz 1.6ps optical pulse generation with 84fs timing jitter,”IEE Electronics Letters, 2007, vol. 43, no. 22, pp. 1222-1223.
    [71] Shiquan, Y. and B. Xiaoyi,“Rational harmonic mode-locking in a phase-modulated fiber laser,”IEEE Photonics Technology Letters, 2006, 18 (12): 1332-1334.
    [72] Coluccelli, N. and G. Galzerano, et al.“Passive mode-locking of diode-pumped Tm:GdLiF4 laser,”Conference on Lasers and Electro-Optics (CLEO) and Quantum Electronics and Laser Science Conference (QELS), 2010, pp:1-2.
    [73] Lianping, H. and M. Haji, et al.“10-GHz Mode-Locked Extended Cavity Laser Integrated With Surface-Etched DBR Fabricated by Quantum-Well Intermixing,”IEEE Photonics Technology Letters, 2011, 23 (2): 82-84.
    [74] H. Hu, J. Yu, L. Zhang, A. Zhang, Y. Li, Y. Jiang, and E. Yang,“Pulse source based on directly modulated laser and phase modulator,”Optics Express, 2007, vol. 15, pp. 8931-8937.
    [75] W. Wang, J. Yu, A. Zhang, B. Han, H. Hu, L. Zhang, E. Yang,“Investigation of a Rate-Selectable All-Optical Packet Clock Recovery System,”IEEE Photonics Technology Letters, 2008, vol. 20, pp. 466-468.
    [76] Shin Arahira, Satoko Kutsuzawa, Yasuhiro Matsui,“Repetition-Frequency Multiplication of Mode-Locked Pulses Using Fiber Dispersion,”JOURNAL OF LIGHTWAVE TECHNOLOGY, 1998, VOL. 16, NO. 3: 405-410.
    [77] Azana, J. and M. A. Muriel,“Temporal self-imaging effects: theory and application for multiplying pulse repetition rates,”IEEE Journal of Selected Topics in Quantum Electronics, 2001, 7 (4): 728-744.
    [78] F. Mitschke and U. Morgner,“The temporal Talbot effect,”Opt. Photon. News,1998, vol. 9, no. 6, pp: 45-47.
    [79] J. Aza?a and M. A. Muriel,“Technique for multiplying the repetition rates of periodic trains of pulses by means of a temporal self-imaging effect in chirped fiber gratings,”Opt. Lett., 1999, vol. 24, no. 23, pp: 1672-1674.
    [80] J. Aza?a and M. A. Muriel,“Temporal Talbot effect in fiber gratings and its applications,”Appl. Opt., vol. 38, no. 32, pp: 6700-6704, 1999.
    [81] J. Aza?a and M. A. Muriel,“Simultaneous multiplication of multi-wavelength pulse repetition rates,”in 26th Eur. Conf. Optical Communication (ECOC 2000), Munich, Germany, Sept. 3-7, 2000, P1.13.
    [82] S. Longhi, M. Marano, P. Laporta, O. Svelto, M. Belmonte, B. Agogliati, L. Arcangeli, V. Pruneri, M. N. Zervas, and M. Ibsen,“40-GHz pulsetrain generation at 1.5 m with a chirped fiber grating as a frequency multiplier,”Opt. Lett., vol. 25, 2000, no. 19, pp: 1481-1483.
    [83] S. Arahira, S. Kutsuzawa, Y. Matsui, D. Kunimatsu, and Y. Ogawa,“Repetition-frequency multiplication of mode-locked pulses using fiber dispersion,”J. Lightwave Technol., 1998, vol. 16, no. 3, pp: 405-409.
    [84] I. Shake, H. Takara, S. Kawanishi, and M. Saruwatari,“High-repetition-rate optical pulse generation by using chirped optical pulses,”Electron. Lett., 1998, vol. 34, no. 8, pp:792-793.
    [85] C.-B. Huang and Y. Lai,“Loss-less pulse intensity repetition-rate multiplication using optical all-pass filtering,”IEEE Photon. Technol. Lett., 2000, vol. 12, no. 2, pp: 167-169.
    [86] Caraquitena, J.,“Repetition-Rate Multiplication of an Electrooptic Pulse Source Using the Temporal Talbot Effect: A Theoretical Analysis,”IEEE Photonics Technology Letters, 2008, 20 (8): 647-649.
    [87] G. P. Agrawal贾东方余震虹等译,“非线性光纤光学原理及应用”,电子工业出版社,2002:29
    [88] D.K. Mybnaev, L.L. Scheiner,“Fiber-Optic Communications Technology”, Prentice Hall, 2001, 523-541.
    [89] K. Sato, H. Toba,“Reduction of mode partition noise by using semiconductor optical amplifiers”, IEEE Quantum Electronics, 2001, 7(2): 328 - 333.
    [90] M. Usami, R.Inohara, K. Nishimura and M. Tsurusawa,“Experimental Analysis of Cross Gain Modulation and Cross Phase Modulation in SOA with Assist Light Injection”, 2002 IEEE/LEOS Summer Topic, July 2002, pp:TuK1-21-TuK1-22.
    [91] C. Porzi, A. Bogoni, L. Poti, and G. Contestabile,“Polarization and wavelength-independent time-division demultiplexing based on copolarized-pumps FWM in an SOA”, IEEE Photonics Tech. Letters, 2005, 17(3): 633-635.
    [92]王文睿,“光分组交换网络中关键技术的研究”,天津大学博士论文,2010
    [93]于晋龙,王耀天,?张爱旭,“40Gb/s信号全光3R再生实验”光学学报, 2007,27(5):801-806
    [94]陈根祥,路慧敏,等“光纤通信技术基础”,高等教育出版社,2010
    [95] Chan, S. C. and S. K. Hwang, et al.“Period-one oscillation for photonic microwave transmission using an optically injected semiconductor laser,”Optics Express, 2007, 15(22): 14921-14935.
    [96] Erneux, T. and V. Kovanis, et al.“Mechanism for period-doubling bifurcation in a semiconductor laser subject to optical injection,”Physical Review A, 1996, 53(6): 4372.
    [97] Pochet, M. and N. A. Naderi, et al.“Dynamic behavior of an injection-locked quantum-dash Fabry-Perot laser at zero-detuning,”Optics Express, 2009, 17(23): 20623-20630.
    [98] Li, X. and W. Pan, et al.“Chaos Synchronization and Communication of Cascade-Coupled Semiconductor Lasers,”Journal of Lightwave Technology, 2006, 24(12): 4936-4945.
    [99]漆晓琼,“基于光注入半导体激光器技术的光纤无线电系统研究”,兰州大学博士学位论文,2009
    [100] O.K.Tonguz and H.Jung.“Personal Communications Access Networks Using Subcarrier Multiplexed Optical Links,”J. Lightwave Technol., 1996, 14(6) 1400-1409.
    [101] T.B.Simpson and J.M.Liu,“Phase and amplitude characteristics of nearly degenerate four-wave mixing in Fabry-Perot semiconductor lasers,”J. Appl. Phys., 1993, 73: 2587-2589.
    [102] S, K. H. and M. L. J, et al.“35-GHz intrinsic bandwidth for direct modulation in 1.3-μm semiconductor lasers subject to strong injection locking,”IEEE Photonics Technology Letters, 2004, 16 (4): 972-974.
    [103] T. B. Simpson, J.M.Liu,“Nonlinear dynamics induced by external optical injection in semiconductor lasers,”Quantum Semiclass.Opt., 1997, 9:765-784.
    [104] A.Gavrielides,V Kovanis and T.Erneux,“Analytical stability boundariesfor a semiconductor laser subject to optical injection,”Optics Communications, 1997, 136(3): 253-256.
    [105] S.Wieczorek, T. B. Simpson, B. Krauskopf and D. Lenstra,“Bifurcation transitions in an optically injected diode laser: theory and experiment,”Optics Communications, 2003, 215(1-3):125-134.
    [106] V Kovanis,A.Gavrielides,T.B.Simpson and J.M.Liu,“instabilities and chaos in optically injected semiconductor lasers,”Appl.Phys.Lett., 1995, 67: 2780-2782.
    [107]王云才,赵跃鹏,张明江等“外光注入半导体激光器实现时钟分频”,物理学报,2007,56(12): 6982-6988.
    [108]牛生晓,张明江,安义等“外光注入半导体激光器实现重复速率可调全光时钟分频”,2008,57(11):6998-7004.
    [109]颜森林,“交叉相位调制提高半导体激光器混沌载波发射机带宽方法”,物理学报,2010,59(6): 3810-3816.
    [110] Peil, M. and T. Heil, et al.“Chaos-synchronization of semiconductor laser systems in an open-loop configuration: the short cavity regime and its potential for secure communication systems,”EQEC '03, European, Quantum Electronics Conference, 2003.
    [111] Ido Kanter, Yaara Aviad, Igor Reidler, Elad Cohen and Michael Rosenbluh,“an optical ultrafast random bit generator,”Nature Photonics, 2010, 4: 58-61.
    [112] Pochet, M. and N. A. Naderi, et al.“Tunable Photonic Oscillators Using Optically Injected Quantum-Dash Diode Lasers." IEEE Photonics Technology Letters,2010, 22 (11):763-765.
    [113] N. Naderi, M. Pochet, F. Grillot, N. Terry, V. Kovanis, and L. F. Lester,“Modeling the injection-locked behavior of a quantum dash semiconductor laser,”IEEE J. Sel. Topics Quantum Electron., 2009, 15(3): 563–571.
    [114] Hyuk-Kee, S. and E. K. Lau, et al.“Optical Single Sideband Modulation Using Strong Optical Injection-Locked Semiconductor Lasers,”IEEE Photonics Technology Letters, 2007, 19(13): 1005-1007.
    [115] N. Naderi, M. Pochet, F. Grillot, N. Terry, V. Kovanis, and L. F. Lester,“Modeling the injection-locked behavior of a quantum dash semiconductor laser,”IEEE J. Sel. Topics Quantum Electron., 2009, 15(3): 563–571.
    [116] Hyuk-Kee, S. and E. K. Lau, et al.“Optical Single Sideband Modulation Using Strong Optical Injection-Locked Semiconductor Lasers,”IEEE PhotonicsTechnology Letters, 2007, 19(13): 1005-1007.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700