多分量信号分离与参数估计研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在当今信息时代,信号环境复杂多变。对于接收设备而言,接收到的信号通常为多个分量信号的混合。对多分量信号进行分离,以提取出有用信号中蕴涵的信息,成为在理论上和实践上均具有重要意义的研究课题。与传统单分量信号的处理不同,多分量信号处理难度和计算复杂度更大。本文针对这一问题,首先按照通道数目与分量信号数目大小关系进行了分类,对于不同类型,明确了解决问题的不同前提条件和思路。其次,对于单通道这一特殊情况,阐明了多分量信号分离与参数估计的一致性。在此基础上,本文对于单通道多分量信号分离与参数估计,提出了一系列算法。同时,在正定条件下,对传统的独立分量分析方法进行了改进。主要成果如下:
     1.在单通道条件下,提出了一种基于累积量方程组的角度调制信号混合矢量估计算法。算法通过对角度调制信号等价概率密度函数的推导和各统计量的计算,建立累积量方程组,并通过方程组的求解得到混合矢量的估计。该算法对多分量角度调制信号混合矢量进行估计时,并不需要分量信号的具体调制类型的先验信息,只需要它们属于角度调制信号即可,使其具有较为广泛的应用范围。
     2.在单通道条件下,针对各分量信号具有相同信号形式的情况,提出了一种基于重要性采样的联合参数估计算法,并针对多分量多项式相位信号和多分量正弦调频信号,分别推导了重要性采样估计器。算法采用了两次解耦的思想,首先是对最大似然估计中与数据呈线性关系的参数和与数据呈非线性关系的参数的解耦,其次是通过重要性采样,对多分量信号的解耦。作为一种非迭代算法,该算法避免了常规迭代算法中初值选择不当而陷于局部极值的不利影响;同时,相对于直接针对多分量信号的全局最优算法的联合搜索,该算法通过对多分量信号的解耦,减少了搜索维数。
     3.在单通道条件下,针对各分量信号为脉冲串形式的情况,分别提出了基于信号模型和基于奇异值分解的单通道多分量脉冲串信号分离算法。基于信号模型的算法利用脉冲串信号特点,将信号与混合系统建模为线性方程组的形式,通过对方程组的求解,恢复各分量信号。在这一算法中,针对分量脉冲串信号固定脉冲重复间隔和变化脉冲重复间隔的情况,分别进行了讨论。此外,基于奇异值分解的算法利用固定脉冲重复间隔的脉冲串信号的周期性,将单通道混合信号重排为矩阵形式,并通过奇异值分解实现多分量信号分离。在这些算法中,对于不同分量信号的脉内信息不作具体要求。
     4.在正定条件下,提出了一种基于相关熵的盲源分离算法,作为对独立分量分析方法的改进。与传统独立分量分析方法利用四阶统计量或时间结构的盲源分离不同,算法从信息理论学习中的相关熵概念出发,利用相关熵中蕴涵的各偶数阶统计信息,通过参数化中心相关熵与独立性测度的关系,建立代价函数,并通过优化算法对其进行寻优,从而得到解混矩阵并分离出源信号。
In modern information age, the signal environment is complicated and varying. The receiver always receives the mixture of many multicomponent signals. Separating these signals in order to extract the information implied in the useful signal, becomes a research task with significance both in theory and in practice. However, unlike the processing technologies specified for the monocomponent signal, the ones for the multicomponent signals are more difficult, and have heavier computational complexity. Aiming at this multicomponent case, this paper sorts the separation problem into different categories according to the relationship between the number of channels and the number of components. Further, the coherence of separation and parameter estimation of multicomponent signals in single channel case is illustrated. On this basis, this paper proposes a series of algorithms for the multicomponent signal separation and parameter estimation in a single channel. Besides, for the determined separation problem, this paper improves the traditional independent component analysis method. The main contributions of this paper are as follows:
     1. For the single channel case, a mixing vector estimation algorithm of multicomponent angle modulated signals based on cumulant system of equations is proposed. This algorithm derives the equivalent probability density function of the angle modulated signals, computes the corresponding statistics, and establishes the cumulant system of equations. Then the mixing vector estimation is achieved through the solution of the system of equations. This algorithm does not require specific information about the modulation types of these angle modulated signals, and can be used in a wide range of applications.
     2. For the single channel case, a joint parameter estimation algorithm based on importance sampling is proposed, where each component signal has the same expression. The importance sampling estimators for the multicomponent polynomial phase signals and for the multicomponent sinusoidal frequency modulated signals, respectively, are derived. This algorithm has two decoupling operations. The first one is to decouple the parameters linearly related to the data and those nonlinearly related to the data in maximum likelihood estimation, while the other one is to decouple multicomponent signals using importance sampling. As a non-iterative algorithm, this algorithm avoids getting the local maxima from an inappropriate choice of the initial value. Besides, as opposed to the global optimization algorithm where the joint grid search is directly applied on the multicomponent signals, this algorithm decreases the searching dimension via the decoupling of the multicomponent signals.
     3. For the single channel case, the multicomponent pulse train signal separation algorithm based on the signal model and the one based on singular value decomposition are proposed, respectively. The algorithm based on the signal model uses characteristics of the pulse train signal to model the signal and the mixing system as the form of the linear system of equations. Subsequently, the component signals are recovered via the solution of the system of equations. This algorithm has two versions, one is for the fixed pulse repetition interval signals, and the other is for the varying pulse repetition interval signals. Besides, the algorithm based on singular value decomposition uses the periodicity of the fixed pulse repetition interval signal to reconstruct the mixing signal to a matrix form. Subsequently, the multicomponent signal separation is achieved based on singular value decomposition. These algorithms do not have the specific request for the intra-pulse information.
     4. For the determined case, a blind source separation algorithm is presented, as an improvement for the traditional independent component analysis. As opposed to the blind source separation based on the fourth statistics or the temporal structure, this algorithm is from the concept of correntropy in information theoretic learning. Using the information of even order statistics implied in correntropy, the cost function is established based on the relationship between the parameterized center correntropy and the test of independence. Subsequently, the demixing matrix and the recovered sources are obtained by using the optimization algorithm.
引文
[1] A. Hyvarinen, J. Karhunen, E. Oja. Independent component analysis. NY: John Wiley & Sons, 2001, 389-448
    [2] A. Cichocki, S. Amari. Adaptive Blind Signal and Image Processing: Learning Algorithms and Applications. Chichester: John Wiley & Sons, 2002, 1-41
    [3]杨福生,洪波.独立分量分析的原理与应用.北京:清华大学出版社, 2006, 33-195
    [4] S. Choi, A. Cichocki. Adaptive blind separation of speech signals: Cocktail party problem. Proc. International Conference on Speech Processing, 1997, 617-622
    [5] J. Herault, C. Jutten. Space or time adaptive signal processing by neural network models. AIP Conference Proceedings, 1986, 206-211
    [6] C. Jutten, J. Herault. Blind separation of sources, part I: An adaptive algorithm based on neuromimetic architecture. Signal Processing, 1991, 24(1): 1-10
    [7] P. Comon, C. Jutten, J. Herault. Blind separation of sources, Part II: Problems statement. Signal Processing, 1991, 24(1): 11-20
    [8] P. Comon. Independent component analysis, a new concept? Signal Processing, 1994, 36(3): 287-314
    [9] A. J. Bell, T. J. Sejnowski. An information-maximization approach to blind separation and blind deconvolution. Neural computation, 1995, 7(6): 1129-1159
    [10] T. W. Lee, M. Girolami, T. J. Sejnowski. Independent component analysis using an extended infomax algorithm for mixed subgaussian and supergaussian sources. Neural computation, 1999, 11(2): 417-441
    [11] E. Oja. The nonlinear PCA learning rule in independent component analysis. Neurocomputing, 1997, 17(1): 25-45
    [12] A. Hyvarinen. Fast and robust fixed-point algorithms for independent component analysis. IEEE Transactions on Neural Networks, 1999, 10(3): 626-634
    [13] S. I. Amari. Natural gradient works efficiently in learning. Neural computation, 1998, 10(2): 251-276
    [14] J. F. Cardoso. High-order contrasts for independent component analysis. Neural computation,1999, 11(1): 157-192
    [15] A. Belouchrani, K. Abed-Meraim, J. F. Cardoso, et al. A blind source separation technique using second-order statistics. IEEE Transactions on Signal Processing, 1997, 45(2): 434-444
    [16]张贤达.时间序列分析:高阶统计量方法.北京:清华大学出版社, 1996, 334-355
    [17]张贤达,保铮.盲信号分离.电子学报, 2001, 29(12A): 1766-1771
    [18]柳艳红.盲信号分离、信号重构及FSK信号检测算法研究: [博士学位论文].北京:北京交通大学, 2006
    [19]谭丽丽.语音信号盲分离算法的研究: [博士学位论文].广州:华南理工大学, 2001
    [20]徐异凌.盲信号分离方法及应用研究: [博士学位论文].成都:电子科技大学, 2004
    [21]张明键.盲分离算法的研究: [博士学位论文].广州:华南理工大学, 2004
    [22]冶继民.信源数目未知与变化时的盲信号分离方法研究: [博士学位论文].西安:西安电子科技大学, 2005
    [23]梅铁民.盲源信号分离时域与频域算法研究: [博士学位论文].大连:大连理工大学, 2006
    [24]袁连喜.线性盲源分离算法的理论与应用研究: [博士学位论文].哈尔滨:哈尔滨工程大学, 2006
    [25]张安清.盲分离技术及其在水声信号中的应用研究: [博士学位论文].大连:大连理工大学, 2006
    [26]张旭秀.盲源分离及其在脑电信号处理中应用的研究: [博士学位论文].大连:大连理工大学, 2006
    [27]李云霞.盲信号分离算法及其应用: [博士学位论文].成都:电子科技大学, 2008
    [28]刘建强.非平稳环境中的盲源分离算法研究: [博士学位论文].西安:西安电子科技大学, 2009
    [29]杨尚明.盲信号分离ICA理论与应用: [博士学位论文].成都:电子科技大学, 2009
    [30]徐先峰.利用参量结构解盲源分离算法研究: [博士学位论文].西安:西安电子科技大学, 2010
    [31]张华.基于联合(块)对角化的盲分离算法的研究: [博士学位论文].西安:西安电子科技大学, 2010
    [32] S. S. Chen, D. L. Donoho, M. A. Saunders. Atomic decomposition by basis pursuit. SIAM journal on scientific computing, 1999, 20(1): 33-61
    [33] P. G. Georgiev, F. Theis, A. Cichocki. Optimization algorithms for sparse representations and applications. Multiscale Optimization Methods and Applications, 2006, 85-99
    [34] Y. Li, A. Cichocki, S. Amari. Analysis of sparse representation and blind source separation.Neural computation, 2004, 16(6): 1193-1234
    [35] M. Zibulevsky, B. A. Pearlmutter. Blind source separation by sparse decomposition in a signal dictionary. Neural computation, 2001, 13(4): 863-882
    [36] P. Bofill, M. Zibulevsky. Underdetermined blind source separation using sparse representations. Signal Processing, 2001, 81(11): 2353-2362
    [37] B. A. Olshausen, D. J. Field. Sparse coding with an overcomplete basis set: A strategy employed by V1? Vision research, 1997, 37(23): 3311-3325
    [38] A. Hyvarinen. Independent component analysis in the presence of gaussian noise by maximizing joint likelihood. Neurocomputing, 1998, 22(1-3): 49-67
    [39] M. S. Lewicki, B. A. Olshausen. Probabilistic framework for the adaptation and comparison of image codes. JOSA A, 1999, 16(7): 1587-1601
    [40] B. A. Olshausen, K. J. Millman. Learning sparse codes with a mixture-of-Gaussians prior. Advances in Neural Information Processing Systems, 2000, 841-847
    [41] M. S. Lewicki, T. J. Sejnowski. Learning overcomplete representations. Neural computation, 2000, 12(2): 337-365
    [42] T. W. Lee, M. S. Lewicki, M. Girolami, et al. Blind source separation of more sources than mixtures using overcomplete representations. IEEE Signal Processing Letters, 1999, 6(4): 87-90
    [43] L. De Lathauwer, P. Comon, B. De Moor, et al. ICA algorithms for 3 sources and 2 sensors. Proceedings of the IEEE Signal Processing Workshop on Higher-Order Statistics, 1999, 116-120
    [44]谢胜利,何昭水,傅予力.基于稀疏元分析的欠定混叠自适应盲分离方法.中国科学E辑:信息科学, 2007, 37(08): 1086-1098
    [45]何昭水,谢胜利,傅予力.稀疏表示与病态混叠盲分离.中国科学E辑:信息科学, 2006, 36(08): 864-879
    [46]何昭水,谢胜利,傅予力.信号的稀疏性分析.自然科学进展, 2006, 16(09): 1167-1173
    [47]傅予力,谢胜利,何昭水.稀疏盲源信号分离的新算法.计算机工程与应用, 2007, 43(09): 84-87
    [48]傅予力,谢胜利,何昭水.稀疏信号的参数分析.武汉大学学报(工学版), 2006, 39(06): 101-104+121
    [49]陈晓军,成昊,唐斌.基于ICA的雷达信号欠定盲分离算法.电子与信息学报, 2010, 32(04): 919-924
    [50]张烨.欠定混合信号的盲分离: [博士学位论文].上海:上海大学, 2009
    [51]王卫华.盲源分离算法及应用研究: [博士学位论文].哈尔滨:哈尔滨工程大学, 2009
    [52]白树忠.欠定盲源分离算法及在语音处理中的应用研究: [博士学位论文].济南:山东大学, 2008
    [53] L. Cohen. What is a multicomponent signal? IEEE International Conference on Acoustics, Speech, and Signal Processing, 1992, 113-116
    [54] J. R. Hopgood, P. J. W. Rayner. Single channel nonstationary stochastic signal separation using linear time-varying filters. IEEE Transactions on Signal Processing, 2003, 51(7): 1739-1752
    [55] G. J. Jang, T. W. Lee, Y. H. Oh. Single-channel signal separation using time-domain basis functions. IEEE Signal Processing Letters, 2003, 10(6): 168-171
    [56] T. Beierholm, B. D. Pedersen, O. Winther. Low complexity Bayesian single channel source separation. IEEE International Conference on Acoustics, Speech, and Signal Processing, 2004, 529-532
    [57] C. J. James, S. Wang. Blind source separation in single-channel EEG analysis: an application to BCI. 28th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, 2006, 6544-6547
    [58] P. Gao, E. C. Chang, L. Wyse. Blind separation of fetal ECG from single mixture using SVD and ICA. Proceedings of the 2003 Joint Conference of the Fourth International Conference on Information, Communications and Signal Processing and the Fourth Pacific Rim Conference on Multimedia, 2003, 1418-1422
    [59] C. James, D. Lowe. Single channel analysis of electromagnetic brain signals through ICA in a dynamical systems framework. Proceedings of the 23rd Annual International Conference of the IEEE Engineering in Medicine and Biology Society, 2001, 1974-1977
    [60] H. Szu, P. Chanyagorn, I. Kopriva. Sparse coding blind source separation through powerline. Neurocomputing, 2002, 48(1-4): 1015-1020
    [61] E. Warner, I. Proudler. Single-channel blind signal separation of filtered MPSK signals. IEE Proceedings - Radar, Sonar and Navigation, 2003, 396-402
    [62] S. Peleg, B. Friedlander. Multi-component signal analysis using the polynomial transform. 1992 Conference Record of The Twenty-Sixth Asilomar Conference on Signals, Systems and Computers, 1992, 751-755
    [63] M. Polad, B. Friedlander. Separation of co-channel FM/PM signals using the discrete polynomial-phase transform. 1994 Sixth IEEE Digital Signal Processing Workshop, 1994, 3-6
    [64] S. Peleg, B. Friedlander. Multicomponent signal analysis using the polynomial-phase transform. IEEE Transactions on Aerospace and Electronic Systems, 1996, 32(1): 378-387
    [65]王璞.多分量多项式相位信号时频分析和参数估计: [硕士学位论文].成都:电子科技大学, 2006
    [66]祝俊,陈兵,唐斌.快速多分量LFM信号的检测与参数估计方法.电子测量与仪器学报, 2008, 22(01): 25-29
    [67] J. Yin, Y. Hua, W. Yang, et al. On the use of a linear data model for parameter estimation of sinusoidal FM signals. International Conference on Communications, Circuits and Systems, 2009, 387-390
    [68] J. Angeby. Estimating signal parameters using the nonlinear instantaneous least squares approach. IEEE Transactions on Signal Processing, 2000, 48(10): 2721-2732
    [69] D. S. Pham, A. M. Zoubir. Analysis of multicomponent polynomial phase signals. IEEE Transactions on Signal Processing, 2007, 55(1): 56-65
    [70] S. Kay, S. Saha. Mean likelihood frequency estimation. IEEE Transactions on Signal Processing, 2000, 48(7): 1937-1946
    [71] S. Saha, S. M. Kay. Maximum likelihood parameter estimation of superimposed chirps using Monte Carlo importance sampling. IEEE Transactions on Signal Processing, 2002, 50(2): 224-230
    [72] S. Barbarossa, O. Lemoine. Analysis of nonlinear FM signals by pattern recognition of their time-frequency representation. IEEE Signal Processing Letters, 1996, 3(4): 112-115
    [73] C. De Luigi, C. Jauffret. Estimation and classification of FM signals using time frequency transforms. IEEE Transactions on Aerospace and Electronic Systems, 2005, 41(2): 421-437
    [74] L. Angrisani, M. D'Arco, S. L. Moriello, et al. On the use of the warblet transform for instantaneous frequency estimation. IEEE Transactions on Instrumentation and Measurement, 2005, 54(4): 1374-1380
    [75]蔡权伟.多分量信号的信号分量分离技术研究: [博士学位论文].成都:电子科技大学, 2006
    [76]蔡权伟,魏平,肖先赐.基于模型拟合的重叠信号盲分离方法.电子学报, 2005, 33(10): 1794-1798
    [77] P. Maragos, A. Potamianos. Higher order differential energy operators. IEEE Signal Processing Letters, 1995, 2(8): 152-154
    [78]蔡权伟,魏平,肖先赐.单信道多信号分量分离.通信学报, 2006, 27(06): 49-56
    [79]蔡权伟,魏平,肖先赐.基于能量算子的单信道重叠信号盲分离方法.中国科学E辑:信息科学, 2008, 38(4): 607-619
    [80]刘凯.粒子滤波在单通道信号分离中的应用研究: [博士学位论文].合肥:中国科学技术大学, 2007
    [81] K. Liu, H. Li, X. Dai, et al. Particle filtering based separation of chaotic signals. Journal of Information & Computational Science, 2005, 2(2): 283-287
    [82]刘凯,李辉,秦晓卫,等.一种新的重叠混沌信号盲分离算法.中国科学技术大学学报, 2008, 38(10): 1129-1134
    [83] C. Shao-He, T. Shi-Long, W. Jian, et al. A sequential Monte Carlo method for blind signal separation using the difference of time delays. TENCON 2007 - 2007 IEEE Region 10 Conference, 2007, 1-4
    [84] T. Shilong, S. Chen, H. Zheng, et al. Particle filtering based single-channel blind separation of co-frequency MPSK signals. International Symposium on Intelligent Signal Processing and Communication Systems, 2007, 2007, 582-585
    [85]涂世龙,郑辉.同频不同速率数字调制混合信号的单通道盲分离.电路与系统学报, 2010, 15(03): 43-47+42
    [86]黄青华.基于源信号模型的盲分离技术研究及应用: [博士学位论文].上海:上海交通大学, 2007
    [87]彭耿,黄知涛,姜文利,等.单通道盲信号分离研究进展与展望.中国电子科学研究院学报, 2009, 4(3): 268-277
    [88] M. Xiao, S. Xie, Y. Fu. A statistically sparse decomposition principle for underdetermined blind source separation. Intelligent Signal Processing and Communication Systems, 2005, 165-168
    [89] S. Heidari, C. L. Nikias. Co-channel interference mitigation in the time-scale domain: the CIMTS algorithm. IEEE Transactions on Signal Processing, 1996, 44(9): 2151-2162
    [90]张贤达.现代信号处理.北京:清华大学出版社, 2002, 263-348
    [91]北京大学数学系几何与代数教研室前代数小组.高等代数(第三版).北京:高等教育出版社, 2003, 48-49
    [92] S. M. Kay.统计信号处理基础―估计与检测理论(罗鹏飞等译).北京:电子工业出版社, 2006, 23-169
    [93] H. Wang, S. Kay, S. Saha. An importance sampling maximum likelihood direction of arrival estimator. IEEE Transactions on Signal Processing, 2008, 56(10): 5082-5092
    [94] H. Wang, S. Kay. Maximum Likelihood Angle-Doppler Estimator using Importance Sampling.IEEE Transactions on Aerospace and Electronic Systems, 2010, 46(2): 610-622
    [95] M. Pincus. A closed form solution for certain programming problems. Oper. Res., 1962, 690-694
    [96] B. C. Lovell, P. J. Kootsookos, R. C. Williamson. The circular nature of discrete-time frequency estimates. Proc. IEEE Int. Conf. Acoust., Speech, Signal Process., 1991, 3369-3372
    [97] P. Stoica, A. Nehorai. MUSIC, maximum likelihood, and Cramer-Rao bound. IEEE Transactions on Acoustics, Speech and Signal Processing, 1989, 37(5): 720-741
    [98] S. F. Yau, Y. Bresler. A compact Cramer-Rao bound expression for parametric estimation of superimposed signals. IEEE Transactions on Signal Processing, 1992, 40(5): 1226-1230
    [99] Z. Mouyan, C. Zhenming, R. Unbehauen. Separation of periodic signals by using an algebraic method. IEEE International Sympoisum on Circuits and Systems 1991, 1991, 2427-2430
    [100] P. P. Kanjilal, S. Palit, G. Saha. Fetal ECG extraction from single-channel maternal ECG using singular value decomposition. IEEE Transactions on Biomedical Engineering, 1997, 44(1): 51-59
    [101] P. Kanjilal, S. Palit. On multiple pattern extraction using singular value decomposition. IEEE Transactions on Signal Processing, 1995, 43(6): 1536-1540
    [102] J. Tsao, B. D. Steinberg. Reduction of sidelobe and speckle artifacts in microwave imaging: The CLEAN technique. IEEE Transactions on Antennas and Propagation, 1988, 36(4): 543-556
    [103] J. C. Principe. Information theoretic learning: Renyi's entropy and Kernel perspectives. New York: Springer, 2010, 1-82
    [104] K. E. Hild, D. Erdogmus, K. Torkkola, et al. Feature extraction using information-theoretic learning. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2006, 28(9): 1385-1392
    [105] E. Santana, J. C. Principe, E. E. Santana, et al. Extraction of signals with specific temporal structure using kernel methods. IEEE Transactions on Signal Processing, 2010, 58(10): 5142-5150
    [106] A. Gunduz, J. C. Principe. Correntropy as a novel measure for nonlinearity tests. Signal Processing, 2009, 89(1): 14-23
    [107] K. H. Jeong, W. Liu, S. Han, et al. The correntropy MACE filter. Pattern Recognition, 2009, 42(5): 871-885
    [108] P. A. Vera, P. A. Estevez, J. C. Principe. Linear projection method based on information theoretic learning. Artificial Neural Networks¨CICANN 2010, 2010, 178-187
    [109] J. W. Fisher III, J. C. Principe. A methodology for information theoretic feature extraction. IEEE World Congress on Computational Intelligence. The 1998 IEEE International Joint Conference on Neural Networks Proceedings, 1998, 1712-1716
    [110] E. Gokcay, J. C. Principe. Information theoretic clustering. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2002, 24(2): 158-171
    [111] R. Jenssen, T. Eltoft, D. Erdogmus, et al. Some equivalences between kernel methods and information theoretic methods. The Journal of VLSI Signal Processing, 2006, 45(1): 49-65
    [112] T. Lehn-Schioler, A. Hegde, D. Erdogmus, et al. Vector quantization using information theoretic concepts. Natural Computing, 2005, 4(1): 39-51
    [113] W. Liu, I. Park, J. C. Principe. An information theoretic approach of designing sparse kernel adaptive filters. IEEE Transactions on Neural Networks, 2009, 20(12): 1950-1961
    [114] R. A. Morejon, J. C. Principe. Advanced search algorithms for information-theoretic learning with kernel-based estimators. IEEE Transactions on Neural Networks, 2004, 15(4): 874-884
    [115] J. C. Principe, D. Xu, Q. Zhao, et al. Learning from examples with information theoretic criteria. The Journal of VLSI Signal Processing, 2000, 26(1): 61-77
    [116] S. Rao, A. De Medeiros Martins, J. C. Principe. Mean shift: An information theoretic perspective. Pattern Recognition Letters, 2009, 30(3): 222-230
    [117] A. Singh, J. C. Principe. Information theoretic learning with adaptive kernels. Signal Processing, 2011, 91(2): 203-213
    [118] R. Li, W. Liu, J. C. Principe. A unifying criterion for instantaneous blind source separation based on correntropy. Signal Processing, 2007, 87(8): 1872-1881
    [119] M. Rao, S. Seth, J. Xu, et al. A test of independence based on a generalized correlation function. Signal Processing, 2011, 91(1): 15-27
    [120] E. Parzen. On estimation of a probability density function and mode. The annals of mathematical statistics, 1962, 33(3): 1065-1076

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700