基于铌酸锂光波导的高速全光信号处理技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
全光信号处理是未来高速大容量全光通信网络的关键技术。基于铌酸锂光波导的全光信号处理具有超快、低噪声等优点,近年来受到越来越多的关注。本文围绕基于周期极化反转铌酸锂(PPLN)光波导的二阶和级联二阶非线性效应开展了全光波长转换、全光逻辑门、全光码型转换、全光信号再生和全光超宽带(UWB)信号产生等理论和实验研究,发现了二阶非线性和PPLN光波导“光相位擦除”新特性,具体内容如下:
     (1)讨论了基于PPLN光波导全光信号处理的基本理论。推导了倍频(SHG)、和频(SFG)、差频(DFG)、级联倍频和差频(cSHG/DFG)、级联和频与差频(cSFG/DFG)等二阶和级联二阶非线性效应非耗尽近似条件下的解析解,分析了转换效率和转换带宽,比较了转换功能和相位共轭即光谱反转特性。
     (2)对一个传统观念“二阶非线性和PPLN光波导完全透明”产生疑问并通过实验和理论论证了PPLN光波导其实也存在“不透明”的一面,并由此发现了二阶非线性和PPLN光波导“光相位擦除”的新特性。利用这一“光相位擦除”新特性实验实现了40 Gbit/s载波抑制归零码(CSRZ)到归零码(RZ)的码型转换、40 Gbit/s差分相移键控(DPSK)信号的真解调、光双二进制码(ODB)到非归零码(NRZ)和RZ的码型转换、传号交替反转码(AMI)到RZ的码型转换以及单极性伪归零码(S-PRZ)的产生。另外,实验发现了四波混频(FWM)“不透明”的一面及其“光相位擦除”新特性,同时实现了40 Gbit/s CSRZ到RZ的全光码型转换。
     (3)实验研究了基于PPLN光波导二阶和级联二阶非线性效应的高速全光波长转换。基于cSFG/DFG实验实现了40 GHz皮秒脉冲固定输入-可变输出(可调谐)、可变输入-固定输出、可变输入-可变输出等多功能全光波长转换以及同时正反向波长转换。构建新颖的PPLN光波导双环腔可调谐波长转换器基于cSFG/DFG实验实现了可调谐全光波长转换,无需任何外界注入连续光源,装置结构简单易实现,有效降低了系统复杂性和成本。基于cSHG/DFG实验实现了40 GHz皮秒脉冲“广播式”波长转换和40 Gbit/s频移键控(FSK)、光双二进制(ODB)、传号交替反转(AMI)等先进高级调制格式的波长转换。
     (4)理论和实验研究了基于PPLN光波导二阶和级联二阶非线性效应的高速全光逻辑门。基于SFG实验实现了40 Gbit/s NRZ非(NOT)门,理论研究了40 Gbit/s双向半减器、异或门(XOR)、或门(OR)。基于cSFG/DFG提出并理论研究了仅利用单个PPLN光波导同时实现40 Gbit/s与(AND)门、XOR门、OR门、半加器和半减器。实验实现了20 Gbit/s和40 Gbit/s三信道NRZ和RZ输入AND门以及20 Gbit/s和40 Gbit/s三信道NRZ-DPSK和RZ-DPSK输入XOR门。实验研究了40 Gbit/s CSRZ同时码型转换和AND门、CSRZ-DPSK同时码型转换和XOR门。基于cSHG/DFG实验实现了40 Gbit/s CSRZ的AND门。
     (5)理论和实验研究了基于PPLN光波导二阶和级联二阶非线性效应的高速全光码型转换。提出一种新颖的PPLN光波导环形镜码型转换器,基于SFG、cSHG/DFG、cSFG/DFG理论研究了40 Gbit/s NRZ到RZ的码型转换。实验实现了基于cSHG/DFG、cSFG/DFG 10 Gbit/s和20 Gbit/s NRZ到RZ的码型转换,采用全光时钟提取的方法获得同步抽运光时钟。提出并理论研究了40 Gbit/s NRZ-DPSK到RZ-DPSK、NRZ到CSRZ、RZ到CSRZ、NRZ-DPSK到CSRZ-DPSK以及RZ-DPSK到CSRZ-DPSK的码型转换并进行了验证性实验。
     (6)提出并理论研究了基于PPLN光波导的全光信号再生。基于cSHG/DFG且将信号光置于SHG过程准相位匹配(QPM)波长处,此时波长转换具有提高消光比、光信噪比和品质因子的功能,因而可以改善信号质量。
     (7)理论和实验研究了基于PPLN光波导的全光UWB脉冲信号产生。提出一种新的思路和方法用于产生任意阶UWB脉冲信号,即将UWB脉冲视为“过冲”和“下冲”的合成,利用参量放大可产生“过冲”而参量衰减可产生“下冲”,基于级联PPLN光波导SFG和cSHG/DFG理论研究了UWB Monocycle、UWB Doublet、UWB Triplet、UWB Quadruplet和UWB Quintuplet的产生。基于单个PPLN光波导SFG参量衰减作用实验实现了UWB Monocycle的产生。
All-optical signal processing is a key technology in future high-speed large-capacity all-optical communication networks. The all-optical signal processing using lithium niobate waveguides has distinct advantages of ultra-fast response and low noise, which has attracted more and more attentions in the recent years. In this dissertation, by using various second-order nonliearities and their cascading in peridocially poled lithium niobate (PPLN) waveguides, we focus on the theoretical and experimental investigations on several important all-optical signal processing applications including all-optical wavelength conversions, all-optical logic gates, all-optical format conversions, all-optical signal regeration, and all-opticl ultrawideband (UWB) signal generation. In particular, we discover a new characteristic of second-order nonlinearity and PPLN called“optical phase erasure”. The detailed research contents can be found as follows.
     (1) The basic theories of PPLN-based all-optical signal processing are discussed. The analytical solutions to second-harmonic generation (SHG), sum-frequency generation (SFG), difference-frequency generation (DFG), cascaded second-harmonic generation and difference-frequency generation (cSHG/DFG), and cascaded sum- and difference-frequency generation (cSFG/DFG) are derived under the non-depletion approximation. The conversion efficiency and conversion bandwidth are analyzed. The conversion functions and optical phase conjugation (i.e. spectral inversion) are compared with each other.
     (2) We start a doubt on a traditional concept that“second-order nonlinearity and PPLN waveguide are always completely transparent”. It is interesting to find that the PPLN waveguide actually also has the“non-transparent”aspect via both experimental and theoretical demonstrations. As a consequence, we discover a new characteristic of second-oder nonlinearity and PPLN waveguide capable of removing the optical phase information, which is called“optical phase erasure”. With the help of such new characterictic of“optical phase erasure”, we experimentally demonstrate 40 Gbit/s format conversion from carrier-suppressed return-to-zero (CSRZ) to return-to-zero (RZ), true demodulation of 40 Gbit/s differential phase-shift keying (DPSK) signals, 40 Gbit/s format conversions from optical duobinary (ODB) to non-return-to-zero (NRZ) or RZ, from alternate-mark inversion (AMI) to RZ, and the generation of single-polarity pseudo-return-to-zero (S-PRZ) signal. In addition, the“non-transparent”aspect and corresponding“optical phase erasure”characteristic of four-wave mixing (FWM) are also discovered in the experiment, based on which 40 Gbit/s all-optical format conversion from CSRZ to RZ is also experimentally demonstrated.
     (3) We experimentally investigate the high-speed all-optical wavelength conversions using various second-order nonlinearities and their cascading in PPLN waveguides. Based on cSFG/DFG, multi-functional all-optical wavelength conversion including fixed-in variable-out (tunable), variable-in fixed-out, and variable-in variable-out for 40 GHz picosecond pulses are carried out in the experiment. Simultaneously non-inverted and inverted wavelength conversions are observed. We design a novel PPLN-based double-ring tunble wavelength converter, with which tunable wavelength conversion for picosecond pulses is experimentally demonstrated. No external continuous-wave (CW) sources are required, which makes the configuration compact and easy to realize and effectively reduce the system complexity and cost. Based on cSHG/DFG, multicasting wavelength coversion for 40 GHz picosecond pulses, 40 Gbit/s wavelength conversions for advanced modulations formats including frequency-shift keying (FSK), ODB and AMI are successfully implemented in the experiment.
     (4) We theoretically and experimentally study the high-speed all-optical logic gates using various second-order nonlinearities and their cascading in PPLN waveguides. Based on SFG, 40 Gbit/s NRZ logic NOT gate is experimentally demonstrated. 40 Gbit/s dual-direction half-subtracter, logic XOR gate, logic OR gate are theoretically investigated. Basd on cSFG/DFG, single-PPLN-based 40 Gbit/s logic AND gate, logic XOR gate, logic OR gate, half-adder, and half-subtracter are theoretically studied. 20 Gbit/s and 40 Gbit/s three-input NRZ/RZ logic AND gate and three-input NRZ-DPSK/RZ-DPSK logic XOR gate are experimentally implemented. 40 Gbit/s logic AND gate for CSRZ together with CSRZ-to-RZ format conversion and 40 Gbit/s logic XOR gate for CSRZ-DPSK accompanied with CSRZ-DPSK-to-RZ-DPSK format conversion are demonstrated in the experiment. Based on cSHG/DFG, 40 Gbit/s logic AND gate for CSRZ but without format conversion is experimentally performed.
     (5) We theoretically and experimentally investigate the high-speed all-optical format conversions using various second-order nonlinearities and their cascading in PPLN waveguides. We propose a novel PPLN loop mirror (PPLN-LM)-based format converter. 40 Gbit/s format conversion from NRZ to RZ is theoretically studied by using SFG, cSHG/DFG, and cSFG/DFG in a PPLN-LM format converter. All-optical 10 Gbit/s and 20 Gbit/s NRZ-to-RZ format conversions are successfully demonstrated in the experiment. The synchronized pump optical clock is obtained with the help of all-optical clock recovery. We also propose and theoretically investigate all-optical 40 Gbit/s format conversions from NRZ-DPSK to RZ-DPSK, from NRZ to CSRZ, from RZ to CSRZ, from NRZ-DPSK to CSRZ-DPSK, and from RZ-DPSK to CSRZ-DPSK. In addition, experimental verifications of 40 Gbit/s NRZ-to-RZ, NRZ-to-CSRZ, and NRZ-DPSK-to-RZ-DPSK format conversions are performed in the experiment.
     (6) We propose and theoretically study the all-optical signal regeneration using a PPLN waveguide. It is found that the cSHG/DFG with the signal set at the SHG QPM wavelength has the ability to enhance the extinction ratio (ER), optical signal-to-noise ratio (OSNR) and Q-factor, and therefore is capable of improving the signal quality.
     (7) We theoretically and experimentally investigate the all-optical UWB signal generation using PPLN waveguides. A new idea is suggested to generate the arbitray-order UWB signal pulses, i.e. the UWB pulses can be regarded as the combination of“overshoots”and“undershoots”. It is possible to generate“overshoots”by parametric amplification and to achieve“undershoots”by parametric attenuation. By using SFG and cSHG/DFG in cascaded PPLN waveguides, we theoreticall demonstrate the generation of UWB Monocycle, UWB Doublet, UWB Triplet, UWB Quadruplet and UWB Quintuple. Additionally, by using the parametric attenuation effect during the SFG process in single PPLN waveguide, we successfully implement the generation of UWB monocycle in the experiment.
引文
[1] Saruwatari M. All-optical signal processing for terabit/second optical transmission. IEEE J. Sel. Topics Quantum Electron., 2000, 6 (6) : 1363~1374
    [2] Brackett C A. Dense wavelength division multiplexing networks: Principles and applications. IEEE J. Sel. Areas Commun., 1990, 8 (6) : 948~964
    [3] Spirit D M, Ellis A D, Barnsley P E. Optical time division multiplexing: Systems, networks. IEEE Commun. Mag., 1994, 32 (12) : 56~62
    [4] Yoo S J B. Wavelength conversion technologies for WDM network applications. J. Lightw. Technol., 1996, 14 (6) : 955~966
    [5] Ramamurthy B, Mukherjee B. Wavelength conversion in WDM networking. IEEE J. Sel. Areas Commun., 1998, 16 (7) : 1061~1073
    [6] Elmirghani J M H, Mouftah H T. All-optical wavelength conversion: technologies and applications in DWDM networks. IEEE Commun. Mag., 2000, 38 (3) : 86~92
    [7] Vlachos K, Pleros N, Bintjas C et al. Ultrafast time-domain technology and its application in all-optical signal processing. J. Lightw. Technol., 2003, 21 (9) : 1857~1868
    [8] Danielsen S L, Hansen P B, Stubkjaer K E. Wavelength conversion in optical packet switching. J. Lightw. Technol., 1998, 16 (12) : 2095~2108
    [9] Takada A, Park J H. Architecture of ultrafast optical packet switching ring network. J. Lightw. Technol., 2002, 20 (12) : 2306~2315
    [10] Dorren H J S, Hill M T, Liu Y et al. Optical packet switching and buffering by using all-optical signal processing methods. J. Lightw. Technol., 2003, 21 (1) : 2~12
    [11] Antoniades N, Yoo S J B, Bala K et al. An architecture for a wavelength- interchanging cross-connect utilizing parametric wavelength converters. J. Lightw. Technol., 1999, 17 (7) : 1113~1125
    [12] Olsson B E, Blumenthal D J. All-optical demultiplexing using fiber cross-phase modulation (XPM) and optical filtering. IEEE Photon. Technol. Lett., 2001, 13 (8) : 875~878
    [13] Hansryd J, Andrekson P A, Westlund M et al. Fiber-based optical parametric amplifiers and their applications. IEEE J. Sel. Topics Quantum Electron., 2002, 8 (3) : 506~520
    [14] Islam M N, Boyraz ?. Fiber parametric amplifiers for wavelength band conversion.IEEE J. Sel. Topics Quantum Electron., 2002, 8 (3) : 527~537
    [15] Lee J H. All-optical signal processing devices based on holey fiber. IEICE Trans. Electron., 2005, E88-C (3) : 327~334
    [16] Chow K K, Lin C L. Photonic crystal fibers for nonlinear signal processing. Technical Digest of OFC’08, 2008. paper OMP6
    [17] Bogoni A, Scaffardi M, Ghelfi P et al. Nonlinear optical loop mirrors: investigation solution and experimental validation for undesirable counterpropagating effects in all-optical signal processing. IEEE J. Sel. Topics Quantum Electron., 2004, 10 (5) : 1115~1123
    [18] Maguire P J, Barry L P, Krug T et al. Optical signal processing via two-photon absorption in a semiconductor microcavity for the next generation of high-speed optical communications network. J. Lightw. Technol., 2006, 24 (7) : 2683~2692
    [19] Cotter D, Manning R J, Blow K J et al. Nonlinear optics for high-speed digital information processing. Science, 1999, 286 (5444) : 1523~1528
    [20] Liu Y, Tangdiongga E, Li Z et al. Error-free 320-Gb/s all-optical wavelength conversion using a single semiconductor optical amplifier. J. Lightw. Technol., 2007, 25 (1) : 103~108
    [21] Stegeman G I, Hagan D J, Torner L.χ(2) cascading phenomena and their applications to all-optical signal processing, mode-locking, pulse compression and solitons. Opt. Quantum Electron., 1996, 28 (12) : 1691~1740
    [22] Chou M H, Parameswaran K R, Fejer M M et al. Optical signal processing and switching with second-order nonlinearities in waveguides. IEICE Trans. Electron., 2000, E83-C (6) : 869~874
    [23] Asobe M, Nishida Y, Tadanaga O et al. Wavelength conversion using quasi-phase matched LiNbO3 waveguides. IEICE Trans. Electron., 2005, E88-C (3) : 335~341
    [24] Langrock C, Kumar S, McGeehan J E et al. All-optical signal processing usingχ(2) nonlinearities in guided-wave devices. J. Lightw. Technol., 2006, 24 (7) : 2579~2592
    [25] Jackel J L, Rice C E, Veselka J J. Proton exchange for high index waveguides in LiNbO3. Appl. Phys. Lett. 1982, 41 (7) : 607~608
    [26] Brener I, Chou M H, Chaban E et al. Polarization insensitive wavelength converter based on cascaded nonlinearities in LiNbO3 waveguides. Electron. Lett., 2000, 36 (1) : 66~67
    [27] Suchoski P G, Findakly T K, Leonberger F J. Stable low-loss protonexchangedLiNbO3 waveguide devices with no electro-optic degradation. Opt. Lett., 1988, 13 (11) : 1050~1052
    [28] Parameswaran K R, Route R K, Kurz J. R et al. Highly efficient SHG in buried waveguides formed using annealed and reverse proton exchange. Opt. Lett., 2002, 27 (3) : 179~181
    [29] Hadi K El, Rastogi V, Shenoy M R et al. Spectral measurement of the film-substrate index difference in proton-exchanged LiNbO3 waveguides. Appl. Opt., 1998, 37 (27) : 6463~6467
    [30] Rams J, Cabrera J M. Preparation of proton-exchange LiNbO3 waveguides in benzoic acid vapor. J. Opt. Soc. Am. B, 1999, 16 (3) : 401~406
    [31] Rams J, Cabrera J M. Nonlinear optical efficient LiNbO3 waveguides proton exchanged in benzoic acid vapor: Effect of the vapor pressure. J. Appl. Phys., 1999, 85 (3) :1322~1328
    [32] Ivanov V S, Ganshin V A, Korkishko Y N. Analysis of ion exchanged Me : LiNbO3 and Cu : LiTaO3 waveguides by AES, SAM, EPR and optical methods. Vacuum, 1992, 43 (4) : 317~324
    [33] Destefanis G L, Gailliard J P, Ligeon E L et al. The formation of waveguides and modulators in LiNbO3 by ion implantation. J. Appl. Phys., 1979, 50 (12) : 7898~7905
    [34] Hofmann D, Schreiber G, Haasse C et al. Quasi-phase-matched difference-frequency generation in periodically poled Ti:LiNbO3 channel waveguides. Opt. Lett., 1999, 24 (13) : 896~898
    [35] Hofmann D, Herrmann H, Schreiber G et al. Continuous-wave mid-infrared optical parametric oscillators with periodically poled Ti:LiNbO3 waveguides. Technical Digest of ECIO’99, 1999. 81
    [36] Fujiwara T, Srivastava R, Cao X et al. Comparison of photorefractive index change in proton-exchanged and Ti-diffused LiNbO3 waveguides. Opt. Lett., 1993, 18 (5) : 346~348
    [37] Young W M, Fejer M M, Digonnet M J F et al. Feigelson, Fabrication, characterization and index profile modeling of high-damage resistance Zn-diffused waveguides in congruent and MgO:lithium niobate. J. Lightw. Technol.,1992, 10 (9) : 1238~1246
    [38] Schreiber G, Suche H, Lee Y L et al. Efficient cascaded difference frequency conversion in periodically poled Ti:LiNbO3 waveguides using pulsed and cwpumping. Appl. Phys. B, 2001, 73 (5-6) : 501~504
    [39] Tamada H, Yamada A, Saitoh M. LiNbO3 thin-film optical waveguide grown by liquid phase epitaxy and its application to second-harmonic generation. J. Appl. Phys., 1991, 70 (5) : 2536~2541
    [40] Yamada A, Tamada H, Saitoh M et al. Liquid phase epitaxial growth of LiNbO3 thin film using Li2O-B2O3 flux system. J. Cryst. Growth, 1993, 132 (1-2) : 48~60
    [41] Kawaguchi T, Mizuuchi K, Yoshino T et al. Liquid-phase epitaxial growth of Zn-doped LiNO3 thin films and optical damage resistance for second-harmonic generation. J. Crystal Growth, 1999, 203 (1-2) : 173~178
    [42] Asobe M, Miyazawa H, Tadanaga O et al. A highly damage-resistant Zn:LiNbO3 ridge waveguide and its application to a polarization-independent wavelength converter. IEEE J. Quantum Electron., 2003, 39 (10) : 1327~1333
    [43] Nishida Y, Miyazawa H, Asobe M et al. Direct-bonded QPM-LN ridge waveguide with high damage resistance at room temperature. Electron. Lett., 2003, 39 (7) : 609~611
    [44] Nishida Y, Miyazawa H, Asobe M et al. 0-dB wavelength conversion using direct-bonded QPM-Zn:LiNbO3 ridge waveguide. IEEE Photon. Technol. Lett., 2005, 17 (5) : 1049~1051
    [45] Sugita T, Mizuuchi K, Yamamoto K et al. Highly efficient second-harmonic generation in direct-bonded MgO:LiNbO3 pure crystal waveguide. Electron. Lett., 2004, 40 (21) : 1359~1361
    [46] Suhara T, Fujimura M. Waveguide Nonlinear-Optic Device, ser. Springer Series in Photonics. Berlin, Germany: Springer-Verlag, 2003. 188~120
    [47] Armstrong A, Bloembergen N, Dcuing J et al. Interactions between light waves in a nonlinear dielectric. Phys. Rev., 1962, 127 (6) : 1918~1939
    [48] Franken P A, Ward J F. Optical harmonics and nonlinear phenomena. Rev. Mod. Phys., 1963, 35 (1) : 23~39
    [49] Fejer M M, Magel G A, Jundt D H et al. Quasi-phase-matched second harmonic generation: tuning and tolerances. IEEE J. Quantum Electron., 1992, 28 (11) : 2631~2654
    [50] Zhu S N, Zhu Y Y, Ming N B. Quasi-phase-matched third-harmonic generation in a quasi-periodic optical superlattice. Science, 1997, 278 (5339) : 843~846
    [51] Skipetrov S E. Disorder is the new order. Nature, 2004, 432 : 285~286
    [52] Baudrier-Raybaut M, Ha?dar R, Kupecek Ph et al. Random quasi-phase-matching inbulk polycrystalline isotropic nonlinear materials. Nature, 2004, 432 : 374~376
    [53] Hum D S, Fejer M M Quasi-phasematching C R. Physique, 2007, 8 (2) : 180~198
    [54] Chou M H, Brener I, Fejer M M et al. 1.5-μm-band wavelength conversion based on cascaded second-order nonlinear in LiNbO3 waveguides. IEEE Photon. Technol. Lett., 1999, 11 (6) : 653~655
    [55] Xu C Q, Okayama H, Kawahara M. 1.5μm band efficient broadband wavelength conversion by difference frequency generation in a periodically domain-inverted LiNbO3 channel waveguide. Appl. Phys. Lett., 1993, 63 (26) : 3559~3561
    [56] Banfi G P, Datta P K, Degiorgio V. Wavelength shifting and amplification of optical pulses through cascaded secondorder processes in periodically poled lithium niobate. Appl. Phys. Lett., 1998, 73 (2) : 136~138
    [57] Chou M H, Hauden J, Arbore M A et al. 1.5-μm-band wavelength conversion based on difference-frequency generation in LiNbO3 waveguides with integrated coupling structures. Opt. Lett., 1998, 23 (13) : 1004~1006
    [58] Xu C Q, Shinozaki K, Okayama H et al. Three wave mixing using a fiber ring resonator. J. Appl. Phys., 1997, 81 (3) : 1055~1062
    [59] Zhou B, Xu C Q, Chen B. Comparison of difference-frequency generation and cascadedχ(2) based wavelength conversions in LiNbO3 quasi-phase-matched waveguides. J. Opt. Soc. Am. B, 2003, 20 (5) : 846~852
    [60] Min Y H, Lee J H, Lee Y L et al. Tunable all-optical wavelength conversion of 5 ps pulses by cascaded sum- and difference frequency generation (cSFG/DFG) in a Ti:PPLN waveguide. Technical Digest of OFC’03, 2003. 767~768
    [61] Yamawaku J, Takada A, Yamazaki E et al. Selective wavelength conversion using PPLN waveguide with two pump configuration. Technical Digest of CLEO’03, 2003. 1135~1136
    [62] Lee Y L, Jung C, Noh Y-C et al. Channel-selective wavelength conversion and tuning in periodically poled Ti:LiNbO3 waveguides. Opt. Exp., 2004, 12 (12) : 2649~2655
    [63] Lee Y L, Yu B-A, Jung C et al. All-optical wavelength conversion and tuning by the cascaded sum- and difference frequency generation (cSFG/DFG) in a temperature gradient controlled Ti:PPLN channel waveguide. Opt. Exp., 2005, 13 (8) : 2988~2993
    [64] Nirmalathas A, Sumimoto H, Wada N et al. Tunable wavelength conversion of 40Gb/s RZ signals using cascaded SFG-DFG within PPLN waveguides. Technical Digest of CLEO/Pacific Rim’05, 2005. paper CThM2-4
    [65] Nirmalathas A, Wada N, Awaji K. Cascaded second order nonlinearity based tunable wavelength conversion of 80 Gb/s RZ signals. Technical Digest of ECOC’05, 2005. paper Th 1.6.5
    [66] Nirmalathas A, Furukawa H, Lee K A et al. Tunable wavelength conversion using PPLN at data rates up to 160 Gb/s. Technical Digest of Photonics in Switching’06, 2006. 1~3
    [67] Furukawa H, Nirmalathas A, Wada N et al. Tunable all-optical wavelength conversion of 160 Gbit/s RZ signals based on cascaded SFG-DFG in PPLN waveguide. Technical Digest of OFC’06, 2006. paper OWW5
    [68] Furukawa H, Nirmalathas A, Wada N et al. Tunable all-optical wavelength conversion of 160-Gb/s RZ optical signals by cascaded SFG-DFG generation in PPLN waveguide. IEEE Photon. Technol. Lett., 2007, 19 (6) : 384~386
    [69] Furukawa H, Nirmalathas A, Wada N et al. All optical tunable wavelength conversion at > 160 Gb/s. Technical Digest of OFC’07, 2007. paper OTuI1
    [70] Hüttl B, Coca A G, Suche H et al. 320 Gbit/s DQPSK all-optical wavelength conversion using periodically poled LiNbO3. Technical Digest of CLEO/QELS’07, 2007. paper CThF1
    [71] Hüttl B, Elschner R, Suche H et al. All-optical wavelength converter concepts for high data rate D(Q)PSK transmission. Technical Digest of APOC’07, 2007, 6783 : 678323
    [72] Chen Y P, Chen X F, Xie S W et al. Polarization dependence of quasi-phase-matched second harmonic generation in bulk LiNbO3. J. Opt. A: Pure Appl. Opt., 2002, 4 (3) : 324~328
    [73] Zeng X L, Chen X F, Wu F et al. Second-harmonic generation with broadened flattop bandwidth in aperiodic domain-inverted gratings. Optics Communications, 2002, 204 (1-6) : 407~411
    [74] Chen Y P, Wu R, Zeng X L et al. Type I quasi-phase-matched blue second harmonic generation with different polarizations in periodically poled LiNbO3. Opt. Laser Technol., 2006, 38 (1) : 19~22
    [75] Xue T, Yu J, Yang T X et al. Theoretical analysis of the 1.5μm band all-optical wavelength converters based on cascaded second-order nonlinearity in LiNbO3 waveguide. Acta Phys. Sin., 2005, 51 (1) : 91~98
    [76] Yu S, Gu W Y. Wavelength conversions in quasi-phase matched LiNbO3 waveguide based on double-pass cascadedχ(2) SFG+DFG interactions. IEEE J. Quantum Electron., 2004, 40 (11) : 1548~1554
    [77] Yu S, Gu W Y. A tunable wavelength conversion and wavelength add/drop scheme based on cascaded second-order nonlinearity with double-pass configuration. IEEE J. Quantum Electron., 2005, 41 (7) : 1007~1012
    [78] Gao S M, Yang C X, Xiao X S et al. Performance evaluation of tunable channel-selective wavelength shift by cascaded sum- and difference-frequency generation in periodically poled lithium niobate waveguides. J. Lightw. Technol., 2007, 25 (3) : 710~718
    [79] Sun J Q, Liu W. Multiwavelength generation by utilizing second-order nonlinearity of LiNbO3 waveguides in fiber lasers. Opt. Commun., 2003, 224 (1-3) : 125~130
    [80] Sun J Q, Liu W, Tian J et al. Multichannel wavelength conversion exploiting cascaded second-order nonlinearity in LiNbO3 waveguides. IEEE Photon. Technol. Lett., 2003, 15 (12) : 1743~1745
    [81] Sun J Q, Liu D M, Huang D X. Difference-frequency generation among ultrashort optical pulses in quasi-phase-matching waveguides. Opt. Quantum Electron., 2004, 36 (6) : 577~587
    [82] Sun J Q, Yuan X H, Liu D M. Tunable wavelength conversion between picosecond pulses using cascaded second-order nonlinearity in LiNbO3 waveguides. Appl. Phys. B, 2005, 80 (6) : 681~685
    [83] Sun J Q, Ma Z T, Liu D M et al. Wavelength conversion between picosecond pulses using cascaded second-order nonlinearity in LiNbO3 waveguides. Opt. Quantum Electron., 2005, 37 (5) : 443~456
    [84] Sun J Q, Huang D X, Liu D M. Simultaneous wavelength conversion and pulse compression exploiting cascaded second-order nonlinear processes in LiNbO3 waveguides. Opt. Commun., 2006, 259 (1) : 321~327
    [85] Sun J Q. Wavelength conversion between picosecond pulses in periodically poled LiNbO3 waveguides using pulsed pumping. Microw. Opt. Technol. Lett., 2005, 46 (5) : 464~466
    [86] Kumar S, Gurkan D, Willner A E et al. All-optical half adder using a PPLN waveguide and an SOA. Technical Digest of OFC’04, 2004. paper WN2
    [87] Kumar S, Willner A E, Gurkan D et al. All-optical half adder using an SOA and a PPLN waveguide for signal processing in optical networks. Opt. Exp., 2006, 14 (22) : 10255~10260
    [88] McGeehan J E, Kumar S, Willner A E. All-optical digital half-subtracter/adder using semiconductor optical amplifiers and a PPLN waveguide. Technical Digest ofCLEO’05, 2005. paper CTuX6
    [89] McGeehan J E, Kumar S, Willner A E. Simultaneous optical digital half-subtraction and–addition using SOAs and a PPLN waveguide. Opt. Exp., 2007, 15 (9) : 5543~5549
    [90] McGeehan J E, Giltrelli, Willner A E. All-optical digital 3-input AND gate using sum- and difference-frequency generation in a PPLN waveguide. Technical Digest of LEOS’05, 2005. paper TuC1.2
    [91] McGeehan J E, Giltrelli, Willner A E. All-optical digital 3-input AND gate using sum- and difference-frequency generation in PPLN waveguide. Electron. Lett., 2007, 43 (7) : 409~410
    [92] Lee Y L, Yu B-A, Eom T J et al. All-optical AND/NAND logic gates based on Ti:PPLN waveguide by cascaded nonlinear optical processes. Technical Digest of CLEO’06, 2006. paper CThO3
    [93] Lee Y L, Yu B-A, Eom T J et al. All-optical AND and NAND gates based on cascaded second-order nonlinear processes in a Ti-diffused periodically poled LiNbO3 waveguide. Opt. Exp., 2006, 14 (7) : 2776~2782
    [94] Asobe M, Yokohama I, Itoh H et al. All-optical switching by use of cascading of phase-matched sum-frequency-generation and difference-frequency-generation processes in periodically poled poled LiNbO3. Opt. Lett., 1997, 22 (5) : 274~276
    [95] Yokohama I, Asobe M, Yokoo A et al. All-optical switching by use of cascading of phase-matched sum-frequency generation and difference-frequency generation processes. J. Opt. Soc. Am. B, 1997, 14 (12) : 3368~3377
    [96] Kanbara H, Itoh H, Asobe M et al. All-optical switching based on cascading of second-order nonlinearities in a periodically poled Titanium-diffused lithium niobate waveguide. IEEE Photon. Technol. Lett., 1999, 11 (3) : 328~330
    [97] Parameswaran K R, Fujimura M, Chou M H et al. Low-power all-optical gate based on sum frequency mixing in APE waveguides in PPLN. IEEE Photon. Technol. Lett., 2000, 12 (6) : 654~656
    [98] Ishizuki H, Suhara T, Fujimura M et al. Wavelength conversion type picosecond optical switching using a waveguide QPM-SHG/DFG device. Opt. Quantum Electron., 2001, 33 (7-10) : 953~961
    [99] Suhara T, Ishizuki H. Integrated QPM sum-frequency generation interferometer device for ultrafast optical switching. IEEE Photon. Technol. Lett., 2001, 13 (11) : 1203~1205
    [100] Kanter G S, Kumar P, Parameswaran K R et al. Wavelength-selective pulsed all-optical switching based on cascaded second-order nonlinearity in a periodically poled lithium-niobate waveguide. IEEE Photon. Technol. Lett., 2001, 13 (4) : 341~343
    [101] Kawanishi S, Chou M H, Fujiura K et al. All-optical modulation and time-division-multiplexing of 100Gbit/s signal using quasi-phasematched mixing in LiNbO3 waveguides. Electron. Lett., 2000, 36 (18) : 1568~1569
    [102] Ohara T, Takara H, Shake I et al. 160-Gb/s optical-time-division multiplexing with PPLN hybrid integrated planar lightwave circuit. IEEE Photon. Technol. Lett., 2003, 15 (2) : 302~304
    [103] Ohara T, Takara H, Shake I et al. 160-Gb/s OTDM transmission using integrated all-optical MUX/DEMUX with all-channel modulation and demultiplexing. IEEE Photon. Technol. Lett., 16 (2) : 650~652
    [104] Fukuchi Y, Sakamoto T, Taira K et al. All-optical time-division demultiplexing of 160 Gbit/s signal using cascaded second-order nonlinear effect in quasi-phase matched LiNbO3 waveguide device. Electron. Lett., 2003, 39 (10) : 789~790
    [105] Imeshev G, Galvanauskas A, Harter D et al. Engineerable femtosecond pulse shaping by second-harmonic generation with fourier synthetic quasi-phase-matching gratings. Opt. Lett., 1998, 23 (11) : 864~866
    [106] Imeshev G, Arbore M A, Fejer M M et al. Ultrashort-pulse second harmonic generation with longitudinally nonuniform quasi-phase-matching gratings: Pulse compression and shaping. J. Opt. Soc. Am. B, 2000, 17 (2) : 304~318
    [107] Imeshev G, Arbore M A, Kasriel S et al. Pulse shaping and compression by second-harmonic generation with quasi-phase-matching gratings in the presence of arbitrary dispersion. J. Opt. Soc. Am. B, 2000, 17 (8) : 1420~1437
    [108] Imeshev G, Fejer M M, Galvanauskas A et al. Pulse shaping by difference-frequency mixing with quasi-phase-matching gratings. J. Opt. Soc. Am. B, 2001, 18 (4) : 534~539
    [109] Ashihara S, Shimura T, Kuroda K et al. Optical pulse compression using cascaded quadratic nonlinearties in periodically poled lithium niobate. Appl. Phys. Lett., 2004, 84 (7) : 1055~1057
    [110] Gurkan D, Kumar S, Willner A E et al. Simultaneous label swapping and wavelength conversion of multiple independent WDM channels in an all-optical MPLS network using PPLN waveguides as wavelength converters. J. Lightw. Technol., 2003, 21 (11) :2739~2745
    [111] Wang Y, Yu C, Yan L et al. Continuously-tunable dispersionless 44-ns all optical delay element using a two-pump PPLN, DCF, and a dispersion compensator. Technical Digest of ECOC’05, 2005. 793~794
    [112] Wang Y, Yu C, Yan L et al. 44-ns continuously tunable dispersionless optical delay element using a PPLN waveguide with two-pump configuration, DCF, and a dispersion compensator. IEEE Photon. Technol. Lett., 2007, 19 (11) : 861~863
    [113] Christen L, Fazal I, Yilmaz O F et al. Tunable 105-ns optical delay for 80-Gbit/s RZ-DQPSK, 40-Gbit/s RZ-DPSK, and 40-Gbit/s RZ-OOK signals using wavelength conversion and chromatic dispersion. Technical Digest of OFC’08, 2008. paper OTuD1
    [114] Kawanishi S, Yamamoto T, Nakazawa M et al. High sensitivity waveform measurement with optical sampling using quasi-phasematched mixing in LiNbO3 waveguide. Electron. Lett., 2001, 37 (13) : 842~844
    [115] Chou M H, Brener I, Lenz G et al. Efficient wide-band and tunable midspan spectral inverter using cascaded nonlinearities in LiNbO3 waveguides. IEEE Photon. Technol. Lett., 2000, 12 (1) : 82~84
    [116] Brener I, Mikkelsen B, Raybon G et al. 160 Gb/s wavelength shifting and phase conjugation using periodically poled LiNbO3 waveguide parametric converter. Electron. Lett., 2000, 36 (21) : 1788~1790
    [117] Brener I, Mikkelsen B, Raybon G et al. Parametric wavelength conversion and phase conjugation in LiNbO3 waveguides. Technical Digest of LEOS’00, 2000. 766~767
    [118] Jansen S L, Sp?lter S, Khoe G D et al. 16×40 Gb/s over 800 km of SSMF using mid-link spectral inversion. IEEE Photon. Technol. Lett., 2004, 16 (7) : 1763~1765
    [119] Jansen S L, Khoe G-D, Waardt H de et al. Mixed data rate and format transmission (40-Gbit/s non-return-to-zero, 40-Gbit/s duobinary, and 10-Gbit/s non-return-to-zero) by mid-link spectral inversion. Opt. Lett., 2004, 29 (20) : 2348~2350
    [120] Jansen S L, van den Borne D, Climent C et al. 10,200 km 22×2×10 Gb/s RZ-DQPSK dense WDM transmission without inline dispersion compensation through optical phase conjugation. Technical Digest of OFC’05, 2005. paper PDP28
    [121] Jansen S L, van den Borne D, Spinnler B et al. Optical phase conjugation for ultra long-haul phase-shift-keyed transmission. J. Lightw. Technol., 2006, 24 (1) : 54~64
    [122] Jansen S L, van den Borne D, Krummrich P M et al. Phase conjugation for increased system robustness. Technical Digest of OFC’06, 2006. paper OTuK3
    [123] Jansen S L, van den Borne D, Krummrich P M et al. Long-haul DWDM transmission systems employing optical phase conjugation. IEEE J. Sel. Topics Quantum Electron., 2006, 12 (4) : 505~520
    [124] Chowdhury A, Raybon G, Essiambre R J et al. Compensation of intrachannel nonlinearities in 40-Gb/s pseudolinear systems using opticalphase conjugation. J. Lightw. Technol., 2005, 23 (1) : 1172~1177
    [125] Cardakli M C, Gurkan D, Havstad S A et al. Tunable all-optical time-slot-interchange and wavelength conversion using difference-frequency-generation and optical buffers. IEEE Photon. Technol. Lett., 2002, 14 (2) : 200~202
    [126] Christen L, Yilmaz O F, Nuccio S et al. Tunable time-slot-interchange of 40-Gb/s optical packets using conversion/dispersion-based tunable 100-ns delays. Technical Digest of OFC’08, 2008. paper OThA4
    [127] Gurkan D, Hauer M C, Sahin A B et al. Demonstration of multi-wavelength all-optical header recognition using a PPLN and optical correlators. Technical Digest of ECOC’01, 2001. 312~313
    [128] McGeehan J E, Kumar S, Gurkan D et al. All optical decrementing of a packet’s time-to-live (TTL) field and subsequent dropping of a zero-TTL packet. J. Lightw. Technol., 2003, 21 (11) : 2746~2752
    [129] Zheng Z, Weiner A M. Spectral phase correlation of coded femtosecond pulses by second-harmonic generation in thick nonlinear crystals. Opt. Lett., 2000, 25 (13) : 984~986
    [130] Zheng Z, Weiner A M, Parameswaran K R et al. All-optical recognition of spectrally coded optical pulses using periodically poled lithium niobate second-harmonic waveguides for ultrashort pulse optical code division multiple-access. Technical Digest of CLEO’00, 2000. 194~195
    [131] Zheng Z, Weiner A M, Parameswaran K R et al. Low-power spectral phase correlator using periodically poled LiNbO3 waveguides. IEEE Photon. Technol. Lett., 2001, 13 (4) : 376~378
    [132] Jiang Z, Seo D S, Yang S-D et al. Spectrally coded O-CDMA system with four users at 2.5 Gbit/s using low power nonlinear processing. Electron. Lett., 2004, 40 (10) : 623~625
    [133] Jiang Z, Seo D S, Yang S-D et al. Four-user, 2.5-Gb/s, spectrally coded OCDMA system demonstration using low-power nonlinear processing. J. Lightw. Technol., 2005, 23 (1) : 143~158
    [134] Jiang Z, Seo D S, Yang S-D et al. Four-user 10-Gb/s spectrally phase-coded O-CDMA system operating at ~30 fJ/bit. IEEE Photon. Technol. Lett., 2005, 17 (3) : 705~707
    [135] Gurkan D, Kumar S, Sahin A et al. All optical wavelength and time 2-D code converter for dynamically reconfigurable O-CDMA networks using a PPLN waveguide. Technical Digest of OFC’03, 2003. 654~656
    [136] Agis F G, Ware C, Erasme D et al. 10 GHz clock recovery using an opto-electronic phase-locked loop based on three-wave mixing in periodically-poled lithium niobate. Technical Digest of CLEO’06, 2006. Paper JWB34
    [137] Agis F G, Ware C, Erasme D et al. 10-GHz clock recovery using an optoelectronic phase-locked loop based on three-wave mixing in periodically poled lithium niobate. IEEE Photon. Technol. Lett., 2006, 18 (13) : 1460~1462
    [138] Oxenl?we L K, Agis F G, Ware C et al. 640 Gbit/s clock recovery using periodically poled lithium niobate. Electron. Lett., 2008, 44 (5) : 370~371
    [139] Oxenl?we L K, Agis F G, Ware C et al. 640 Gbit/s data transmission and clock recovery using an ultra-fast periodically poled lithium niobate device. Technical Digest of OFC’08, 2008. paper PDP22
    [140] Kee C-S, Lee J M, Lee Y L. Multiwavelength ?olc filters based onχ(2) nonlinear quasiperiodic photonic crystals with Fibonacci sequences. Appl. Phys. Lett., 2007, 91 (25) : 251110
    [141] Lee Y L, Yu N E, Kee C-S et al. Waveguide-type wavelength-tunable ?olc filter in a periodically poled Ti:LiNbO3 waveguide. IEEE Photon. Technol. Lett., 2007, 19 (19) : 1505~1507
    [142] Lee Y L, Yu N E, Kee C-S et al. Wavelength filtering characteristics of ?olc filter based on Ti:PPLN channel waveguide. Opt. Lett., 2007, 32 (19) : 2813~2815
    [143] Lee Y L, Yu N E, Kee C-S et al. All-optical wavelength tuning in ?olc filter based on Ti:PPLN waveguide. Electron. Lett., 2008, 44 (1) : 30~32
    [144] L’Huillier J A, Torosyan G, Theuer M et al. Generation of THz radiation using bulk, periodically and aperiodically poled lithium niobate– Part 1: Theory. Appl. Phys. B, 2007, 86 (2) : 185~196
    [145] L’Huillier J A, Torosyan G, Theuer M et al. Generation of THz radiation using bulk, periodically and aperiodically poled lithium niobate– Part 2: Experiments. Appl. Phys. B, 2007, 86 (2) : 197~208
    [146] Amer N, Danielson J R, Lee Y-S. Generation of arbitrary THz waveforms via opticalrectification in fanned-out periodically-poled lithium niobate. Technical Digest of CLEO’06, 2006. paper CTuGG7
    [147] Hartl I, Imeshev G, Fermann M E et al. Integrated self-referenced frequency-comb laser based on a combination of fiber and waveguide technology. Opt. Exp., 2005, 13 (17) : 6490~6496
    [148] Hartl I, Fermann M E, Langrock C et al. 170MHz spaced, self-referenced fiber-frequency-comb. Technical Digest of CLEO’06, 2006. paper CTuH4
    [149] Albota M A, Wong F N C. Efficient single-photon counting at 1.55μm by means of frequency upconversion. Opt. Lett., 2004, 29 (13) : 1449~1451
    [150] Vandevender A P, Kwiat P G.. High efficiency single photon detection via frequency up-conversion. J. Mod. Opt., 2004, 51 (9-10) : 1433~1445
    [151] Roussev R V, Langrock C, Kurz J R et al. Periodically poled lithium niobate waveguide sumfrequency generator for efficient single-photon detection at communication wavelengths. Opt. Lett., 2004, 29 (13) : 1518~1520
    [152] Langrock C, Diamanti E, Roussev R V et al. Highly efficient single-photon detection at communication wavelengths by use of upconversion in reverse-proton-exchanged periodically poled LiNbO3 waveguides. Opt. Lett., 2005, 30 (13) : 1725~1727
    [153] Tanzilli S, Tittel W, Halder M et al. A photonic quantum information interface. Nature, 2005, 437 (7055) : 116~120
    [154] Takesue H, Diamanti E, Langrock C et al. 1.5-μm single photon counting using polarization-independent up-conversion detector. Opt. Exp., 2006, 14 (26) : 13067~13072
    [155] Jiang Y-K, Tomita A. Generation of polarization-entangled photon pairs using periodically poled lithium niobate waveguides in a fiber loop. Technical Digest of CLEO2006, 2006. paper QMG3
    [156] Zhang Q, Xie X, Takesue H et al. Correlated photon-pair generation in reverseproton-exchange PPLN waveguides with integrated mode demultiplexer at 10 GHz clock. Opt. Exp., 2007, 15 (16) : 10288~10293
    [157] Castelletto S, Degiovanni I P, Schettini V et al. Comparison of photon counting and analog techniques for the measurement of photon pair generation in a PPLN waveguide. J. Opt. Soc. Am. B, 2008, 25 (1) : 7~14
    [158] Gao S, Gao Y. Simultaneous generation of two pairs of entangled photons in periodically poled lithium niobate crystals. Technical Digest of CLEO’07, 2007. paper JWA34
    [159] Gao S M, Yang C X. Two channels of entangled twin photons generated by quasi-phase-matched spontaneous parametric down-conversion in periodically poled lithium niobate crystals. J. Opt. Soc. Am. B, 2008, 25 (5) : 734~740
    [160] Takesue H, Diamanti E, Langrock C et al. 10-GHz clock differential phase shift quantum key distribution experiment. Opt. Exp., 2006, 14 (20) : 9522~9530
    [161] Diamanti E, Takesue H, Langrock C et al. 100 km differential phase shift quantum key distribution experiment with low jitter up-conversion detectors. Opt. Exp., 2006, 14 (26) : 13073~13082
    [162] Chou M H. Optical frequency mixers using three-wave mixing for optical fiber communications: [Ph.D. Dissertation]. Stanford: Department of Applied Physics, Stanford University, 1999
    [163] Parameswaran K R. Highly efficient optical frequency mixers: [Ph.D. Dissertation]. Stanford: Department of Electrical Engineering, Stanford University, 2002
    [164] Kurz J R. Integrated optical-frequency mixers: [Ph.D. Dissertation]. Stanford: Department of Applied Physics, Stanford University, 2003
    [165] Roussev R V. Optical-frequency mixers in periodically poled lithium niobate: materials, modeling and characterization: [Ph.D. Dissertation]. Stanford: Department of Applied Physics, Stanford University, 2006
    [166] Langrock C. Classical and low-light-level detection and pulse characterization using optical frequency mixers: [Ph.D. Dissertation]. Stanford: Department of Electrical Engineering, Stanford University, 2007
    [167] Xu C Q, Shinozaki K, Okayama H et al. Three wave mixing using a fiber ring resonator. J. Appl. Phys., 1997, 81 (3) : 1055~1062
    [168] Ni P G, Ma B Q, Wang X H et al. Second-harmonic generation in two-dimensional periodically poled lithium niobate using second-order quasiphase matching. Appl. Phys. Lett., 2003, 82 (24) : 4230~4232
    [169] Fonseca-Campos J, Wang Y, Chen B et al. 40-GHz picosecond-pulse second-harmonic generation in an MgO-doped PPLN waveguide. J. Lightw. Technol., 2006, 24 (10) : 3698~3708
    [170] Xu C Q, Bracken J, Chen B. Intracavity wavelength conversions employing a MgO-doped LiNbO3 quasi-phase-matched waveguide and an erbium-doped fiber amplifier. J. Opt. Soc. Am. B, 2003, 20 (10) : 2142~2149
    [171] Gallo K, Assanto G. Analysis of lithium niobate all-optical wavelength shifters for the third spectral window. J. Opt. Soc. Am. B, 1999, 16 (5) : 741~753
    [172] Wang Y, Fonseca-Campos J, Xu C Q et al. Picosecond-pulse wavelength conversion based on cascaded second-harmonic generation-difference frequency generation in a periodically poled lithium niobate waveguide. Appl. Opt., 2006, 45 (21) : 5391~5403
    [173] Xu C Q, Chen B. Cascaded wavelength conversions based on sum-frequency generation and difference-frequency generation. Opt. Lett., 2004, 29 (3) : 292~294
    [174] Chen B, Xu C Q. Analysis of novel cascadedχ(2) (SFG+DFG) wavelength conversions in quasi-phase-matched waveguides. IEEE J. Quantum Electron., 2004, 40 (3) : 256~261
    [175] Gao S M, Yang C X, Xiao X S. Bandwidth enhancement and response flattening of cascaded sum- and difference-frequency generation-based wavelength conversion. Opt. Commun., 2006, 266 (1) : 296~301
    [176] Wang Y, Xu C Q. Analysis of picosecond-pulse wavelength conversion based on cascaded sum-frequency generation and difference-frequency generation in quasi-phase-matched LiNbO3 waveguides. Opt. Eng., 2007, 46 (5) : 055003
    [177] Agrawal G P. Nonlinear fiber optics, 2nd ed., Academic, San Diego, 1995. 298~302
    [178] Hobden M V, Warner J. The temperature dependence of the refractive indices of pure lithium niobate. Phys. Lett., 1966, 22 : 243~244
    [179] Shen Y R, The principles of nonlinear optics, New York, Wiley, 1984. 981~985
    [180] Tadanaga O, Asobe M, Miyazawa H et al. 1THz multi-channel optical frequency shifter using quasi-phase-matched LiNbO3 wavelength converters. Electron. Lett., 2002, 38 (23) : 1456~1457
    [181] Yamawaku J, Takara H, Ohara T et al. Simultaneous 25-GHz-spaced DWDM wavelength conversion of 1.03 Tbit/s (103×10 Gb/s) signals in PPLN waveguide. Electron. Lett., 2003, 39 (15) : 1144~1145
    [182] Yamawaku J, Takara H, Ohara T et al. Low-crosstalk 103 channel×10 Gb/s (1.03 Tb/s) wavelength conversion with a quasi-phase-matched LiNbO3 waveguide. IEEE J. Sel. Topics Quantum Electron., 2006, 12 (4) : 521~528
    [183] Yamawaku J, Yamazaki E, Takada A et al. Field demonstration of up to 640 Gb/s (64 ch×10 Gb/s ) GWP switching networks with a QPM-LN wavelength converter in JGNⅡtest bed. IEEE J. Sel. Topics Quantum Electron., 2006, 12 (4) : 529~535
    [184] Wang J, Sun J Q, Zhang X L et al. First demonstration on the non-transparency of PPLN and its potential application of CSRZ-to-RZ format conversion. Technical Digest of OFC’08, 2008. paper JTh33
    [185] Wang J, Sun J Q, Luo C H et al. Experimental demonstration of wavelength conversion between ps-pulses based on cascaded sum- and difference frequency generation (SFG+DFG) in LiNbO3 waveguides. Opt. Exp., 2005, 13 (19) : 7405~7414
    [186] Wang J, Sun J Q, Luo C H et al. Flexible all-optical wavelength conversions of 1.57-ps pulses exploiting cascaded sum- and difference frequency generation (cSFG/DFG) in a PPLN waveguide. Appl. Phys. B, 2006, 83 (4) : 543~548
    [187] Wang J, Sun J Q. Observation of 40-Gbit/s tunable wavelength down- and up-conversions based on cascaded second-order nonlinearity in LiNbO3 waveguides. Opt. Eng., 2007,46 (2): 025005
    [188] Wang J, Sun J Q. All-optical single-to-dual channel wavelength conversion based on sum-frequency generation and difference-frequency generation. Microw. Opt. Technol. Lett., 2006, 48 (10) : 2057~2060
    [189] Wang J, Sun J Q. Simultaneous observation of inverted and noninverted wavelength conversion of picosecond pulses in LiNbO3 waveguides. Microw. Opt. Technol. Lett., 2007, 49 (2) : 295~298
    [190] Wang J, Sun J Q, Zhang X L et al. Experimental observation of tunable wavelength down- and up-conversions of ultra-short pulses in a periodically poled LiNbO3 waveguide. Opt. Commun., 2007, 269 (1) : 179~187
    [191] Wang J, Sun J Q, Kurz J R et al. Tunable wavelength conversion of ps-pulses exploiting cascaded sum- and difference frequency generation in a PPLN-fiber ring laser. IEEE Photonics Technol. Lett., 2006, 18 (20) : 2093~2095
    [192] Wang J, Sun J Q, Sun Q Z. Experimental demonstration of PPLN-based double ring fiber laser and its application to 40 Gb/s wavelength conversion. Technical Digest of APOC’07, 2007, 6782: 67821S
    [193] Wang J, Sun J Q, Luo C H et al. Single-to-multiple channel wavelength conversions and tuning of picosecond pulses in quasi-phase-matched waveguides. Chin. Phys. Lett., 2006, 23 (7) : 1806~1809
    [194] Wang J, Sun J Q, Li J et al. Single-to-dual channel wavelength conversion of picosecond pulses using PPLN-based double-ring fibre laser. Electron. Lett., 2006, 42 (4) : 236~237
    [195] Stubkjaer K E. Semiconductor optical amplifier-based all-optical gates for high-speed optical processing. IEEE J. Sel. Top. Quantum Electron., 2000, 6 (6) : 1428~1435
    [196] Zhang X L, Wang Y, Sun J Q et al. All-optical AND gate at 10Gbit/s based oncascaded single-port-couple SOAs. Opt. Exp., 2004, 12 (3) : 361~366
    [197] Kim J Y, Kang J M, Kim T Y et al. All-optical multiple logic gates with XOR, NOR, OR, and NAND functions using parallel SOA-MZI structures: theory and experiment. J. Lightw. Technol, 2006, 24 (9) : 3392~3399
    [198] Wang J, Sun J Q, Sun Q Z. Experimental observation of a 1.5μm band wavelength conversion and logic NOT gate at 40 Gbit/s based on sum-frequency generation. Opt. Lett., 2006, 31 (11) : 1711~1713
    [199] Wang J, Sun J Q, Sun Q Z et al. All-optical dual-direction half-subtracter based on sum-frequency generation. Opt. Commun., 2008, 281 (4) : 788~792
    [200] Wang J, Sun J Q, Sun Q Z et al. Simple realization of all-optical high-speed (40, 80 and 160 Gbs-1) XOR and OR logic gates using LiNbO3 waveguides. J. Opt. A: Pure Appl. Opt., 2007, 9 (10) : 811~819
    [201] Wang J, Sun J Q, Sun Q Z. Proposal for all-optical switchable OR/XOR logic gates using sum-frequency generation. IEEE Photon. Technol. Lett., 2007, 19 (8) : 541~543
    [202] Wang J, Sun J Q, Sun Q Z. Single-PPLN-based simultaneous half-adder, half-subtracter, and OR logic gate: proposal and simulation. Opt. Exp., 2007, 15 (4) : 1690~1699
    [203] Wang J, Sun J Q, Sun Q Z et al. All-optical 20 Gb/s logic AND gate with tunable single-channel output or dual-channel outputs using a PPLN waveguide. Technical Digest of ECOC’07, 2007. paper 06.3.4
    [204] Wang J, Sun J Q, Sun Q Z et al. Dual-channel-output all-optical logic AND gate at 20 Gbit/s based on cascaded second-order nonlinearity in PPLN waveguide. Electron. Lett., 2007, 43 (17) : 940~941
    [205] Wang J, Sun J Q, Sun Q Z et al. PPLN-based flexible optical logic AND gate. IEEE Photon. Technol. Lett., 2008, 20 (3) : 211~213
    [206] Wang J, Sun J Q, Zhang X L et al. PPLN-based all-optical three-input 20/40 Gb/s AND gate for NRZ/RZ signals and XOR gate for NRZ-DPSK/RZ-DPSK signals. Technical Digest of OFC’08, 2008. paper OMV3
    [207] Wang J, Sun J Q, Zhang X L et al. PPLN-based all-optical 40 Gbit/s three-input logic AND gate for both NRZ and RZ signals. Electron. Lett., 2008, 44 (6) : 413~414
    [208] Wang J, Sun J Q, Zhang X L et al. Ultrafast all-optical three-input Boolean XOR operation for differential phase-shift keying signals using periodically poled lithium niobate. Opt. Lett., 2008 (accepted to be published)
    [209] Bigo S, Desurvire E, Gauchard S et al. Bit-rate enhancement through optical NRZ-to-RZ conversion and passive time-division multiplexing for soliton transmission systems. Electron. Lett., 1994, 30 (12) : 984~985
    [210] Lee H K, Kim K H, Ahn J T et al. All-optical format conversion from NRZ to RZ signals using a walk-off balanced nonlinear fibre loop mirror. Electron. Lett., 1996, 32 (25) : 2335~2336
    [211] Chow C W, Wong C S, Tsang H K. All-optical NRZ to RZ format and wavelength converter by dual-wavelength injection locking. Opt. Commun., 2002, 209 (4-6) : 329~334
    [212] Norte D, Willner A E. Experimental demonstrations of all-optical conversion between RZ and NRZ data formats incorporating noninverting wavelength shifting leading to format transparency. IEEE Photon. Technol. Lett., 1996, 8 (5) : 712~714
    [213] Xu L, Wang B C, Baby V et al. All-Optical data format conversion between RZ and NRZ based on a Mach–Zehnder interferometric wavelength converter. IEEE Photon. Technol. Lett., 2003, 15 (2) : 308~310
    [214] Wang J, Sun J Q, Sun Q Z et al. Proposal for all-optical format conversion based on a periodically poled lithium niobate loop mirror. Opt. Lett., 2007, 32 (11) : 1477~1479
    [215] Wang J, Sun J Q, Sun Q Z et al. Proposal and simulation of all-optical NRZ-to-RZ format conversion using cascaded sum- and difference-frequency generation. Opt. Exp., 2007, 15 (2) : 583~588
    [216] Razzari L, Liberale C, Cristiani I et al. Wavelength conversion and pulse reshaping through cascaded interactions in an MZI configuration. IEEE J. Quantum Electron., 2003, 39 (11) : 1486~1491
    [217] Wang J, Sun J Q. All-optical 40Gbit/s format conversion from NRZ to RZ based on SFG in a PPLN waveguide. Technical Digest of ICO20, 2006, 6025: 60250T
    [218] Wang J, Sun J Q. NOLM-based all-optical 40Gbit/s format conversion through sum-frequency generation (SFG) in a PPLN waveguide. Technical Digest of APOC’05, 2005, 6021: 60212H
    [219] Wang J, Sun J Q. Broadband tunable all-optical 40Gbit/s NRZ-to-RZ format conversion exploiting SHG+DFG in LiNbO3 waveguides in a MZI configuration. Technical Digest of APOC’05, 2005, 6021: 602129
    [220] Wang J, Sun J Q, Sun Q Z et al. Experimental observation of all-optical non-return-to- zero-to-return-to-zero format conversion based on cascaded second-order nonlinearity assisted by active mode-locking. Opt. Lett., 2007, 32 (16) : 2462~2464
    [221] Ellis A D, Kelly A E, Nesset D et al. Error-free 100 Gbit/s wavelength conversion using grating assisted cross-gain modulation in 2 mm long semiconductor amplifier. Electron. Lett., 1998, 34 (20) : 1958~1959
    [222] Liu Y, Tangdiongga E, Li Z et al. Error-free 320-Gb/s all-optical wavelength conversion using a single semiconductor optical amplifier,”J. Lightw. Technol., 2007, 25 (1) : 103~108
    [223] Kim C, Kim I, Li X et al. All-optical clock recovery of NRZ data at 40 Gbit/s using Fabry-Perot filter and two-section gain-coupled DFB laser. Electron. Lett., 2003, 39 (20) : 1456~1457
    [224] Zhu G, Wang Q, Dong H et al. 80Gb/s clock recovery with phase locked loop based on LiNbO3 modulators. Opt. Exp., 2004, 12 (15) : 3488~3492
    [225] Kim I, Kim C, Li G et al. 180-GHz clock recovery using a multisection gain-coupled distributed feedback laser. IEEE Photon. Technol. Lett., 2005, 17 (6) : 1295~1297
    [226] Wang J, Sun J Q, Sun Q Z et al. First demonstration of PPLN+RSOA-based tunable all-optical NRZ-to-RZ format conversion. Technical Digest of ECOC’07, 2007. paper P036
    [227] Wang J, Sun J Q, Sun Q Z et al. All-optical format conversion using a periodically poled lithium niobate waveguide and a reflective semiconductor optical amplifier. Appl. Phys. Lett., 2007, 91 (5) : 051107
    [228] Wang J, Sun J Q, Sun Q Z et al. All-optical single-to-dual channel NRZ-to-RZ format converter using a PPLN and a RSOA. Opt. Eng., 2007, 46 : 120501
    [229] Wang J, Sun J Q, Zhang X L et al. Proposal for PPLN-Based all-optical NRZ-to-CSRZ, RZ-to-CSRZ, NRZ-DPSK-to-CSRZ-DPSK, and RZ-DPSK-to-CSRZ-DPSK format conversions. IEEE Photon. Technol. Lett., 2008, 20 (12) : 1039~1041
    [230] Wang J, Sun J Q, Zhang X L et al. All-optical tunable wavelength conversion with extinction ratio enhancement using periodically poled lithium niobate waveguides. J. Lightw. Technol., 2008 (accepted to be published)
    [231] Aiello G R, Rogerson G D. Ultra-wideband wireless systems. IEEE Microw. Mag., 2003, 4 (2) : 36~47
    [232] Porcine D, Research P, Hirt W. Ultra-wideband radio technology: potential and challenges ahead. IEEE Commun. Mag., 2003, 41 (7) : 66~74
    [233] Fontana R J. Recent system applications of short-pulse ultra-wideband (UWB) technology. IEEE Trans. Microw. Theory Tech., 2004, 52 (9) : 2087~2104
    [234] Lin W P, Chen J Y. Implementation of a new ultrawide-band impulse system. IEEEPhoton. Technol. Lett., 2005, 17 (11) : 2418~2420
    [235] Ishida H, Araki K. Design and analysis of UWB bandpass filter with ring filter. Technical Digest of IEEE MTT-S Int., 2004, 3 : 1307~1310
    [236] Zhu L, Sun S, Menzel W. Ultra-wideband (UWB) bandpass filters using multiple-mode resonator. IEEE Microw. Wireless Compon. Lett., 2005, 15 (11) : 796~798
    [237] Yao J P, Zeng F, Wang Q. Photonic generation of ultrawideband signals. J. Lightw. Technol. 2007, 25 (11) : 3219~3235
    [238] Zeng F, Yao J P. An approach to ultra-wideband pulse generation and distribution over optical fiber. IEEE Photon. Technol. Lett., 2006, 18 (7) : 823~825
    [239] Zeng F, Yao J P. Ultrawideband impulse radio signal generation using a high-speed electrooptic phase modulator and a fiber-Bragg-grating-based frequency discriminator. IEEE Photon. Technol. Lett., 2006, 18 (9) : 2062~2064
    [240] Wang Q, Yao J P. UWB doublet generation using a nonlinearly biased electro-optic intensity modulator. Electron. Lett., 2006, 42 (22) : 1304~1305
    [241] Wang Q, Zeng F, Blais S et al. Optical UWB monocycle pulse generation based on cross-gain modulation in a semiconductor optical amplifier. Opt. Lett., 2006, 31 (21) : 3083~3085
    [242] Wang Q, Yao J P. An electrically switchable optical ultrawideband pulse generator. J. Lightw. Technol., 2007, 25 (11) : 3626~3633
    [243] Wang C, Zeng F, Yao J P. All-fiber ultra wideband pulse generation based on spectral shaping and dispersion-induced frequency-to-time conversion. IEEE Photon. Technol. Lett., 2007, 19 (3) : 137~139
    [244] Chen H, Chen M, Qiu C et al. UWB monocycle pulse generation by optical polarization time delay method. Electron. Lett., 2007, 43 (9) : 542~543
    [245] Wang J, Sun J Q, Sun Q Z. All-optical ultrawideband monocycle and doublet generation using cascaded PPLN waveguides. Technical Digest of APOC’07, 2007, 6782: 6782130

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700