基于IEEE802.16e的OFDMA物理层研究与仿真
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
宽带无线接入技术成为近年来通信技术市场的最大亮点,是构成未来通信技术的重要组成部分,在其中的移动宽带无线领域,IEEE802.16e具有技术上的权威性和先进性,因而对其物理层研究具有重要的现实意义。
     本文主要针对IEEE 802.16e的OFDMA物理层进行研究。
     首先,阐述了IEEE 802.16标准体系,802.16与WIMAX组织的关系以及802.16标准的相关演进过程,并概括介绍了IEEE 802.16e的协议结构以及OFDMA物理层。
     其次,在OFDM和OFDMA技术原理的基础上详细讨论了OFDMA物理层规范,包括符号描述,帧结构说明以及子载波分配。其中,在符号描述中,给出了时域描述、频域描述、原始参数、派生参数以及发射信号的数学表示。在子载波分配中阐述了下行FUSC、下行PUSC以及上行PUSC。
     然后,给出了OFDMA物理层仿真平台从发送端到接收端的系统结构、主要模块的设计原理以及软件设计接口说明。着重对信道编码方案—卷积码(CC)、分组Turbo码(BTC)、卷积Turbo码(CTC)以及低密度奇偶校验码(LDPC)进行了研究,得到了不同调制方式下各编码方式的系统仿真性能以及CTC、LDPC的不同译码迭代次数的系统仿真性能,同时也对各编码方式的性能优劣进行了对比。
     接着,对IEEE 802.16e中空时编码技术的应用进行了研究,给出了将Alamouti以及V-BLAST应用于OFDMA物理层系统的解决方案以及仿真平台软件设计的改进,仿真得到了应用空时编码技术后的OFDMA物理层系统性能。
     最后,对系统同步性能进行评估,通过理论分析与系统仿真,给出了频率同步误差和符号定时同步误差对系统性能的影响。
Broadband Wireless Access technologies have recently received vast attentions in communication technology market, and become significant components in next generation communication technologies. In the area of mobile wireless broadband, IEEE 802.16e standard family serves as the official standard. It appears worthwhile to study the physical layers.
     This paper focuses on the OFDMA physical layers of IEEE 802.16e.
     Firstly, the IEEE 802.16 standards, the relationship between WIMAX and 802.16 standards and the evolution process of 802.16 are introduced. The structure and the OFDMA physical layer of 802.16e are also generally presented.
     Secondly, based on OFDM and OFDMA principles, the scheme of OFDMA physical layer is discussed in detail, including symbol description, frame structure and subcarriers allocation. In symbol description, time domain description, frequency domain description, primitive parameters, derived parameters and transmitted signal are given. In subcarriers allocation, downlink FUSC, downlink PUSC and uplink PUSC are described.
     Thirdly, system structure from transmitter to receiver of OFDMA physical layer simulation platform, the design principle of the main module and interfaces of software designing are described which focus on channel coding - CC, BTC, LDPC, CTC, and the system performance under different modulation, different coding and CTC, LDPC decoding with different number of iterations. At the same time, the performances of these channel coding are compared.
     Fourthly, space-time coding technology application in IEEE 802.16e is studied. The scheme of Alamouti and V-BLAST application and the improvement on software simulation platform interface design using STC are given. Also the results of system performances are listed.
     Lastly, the system performances of synchronization are evaluated. Through theoretical analysis and the actual system simulation, the effects of timing and frequency synchronization errors on the performance are given.
引文
[1]IEEE Std 802.16~(TM)- 2001."IEEE Standard for Local and metropolitan area networks—Part 16:Air Interface for Fixed Broadband Wireless Access Systems",December 2001.
    [2]IEEE Std 802.16a~(TM)- 2003."IEEE Standard for Local and metropolitan area networks—Part 16:Air Interface for Fixed Broadband Wireless Access Systems — Amendment 2:Medium Access Control Modifications and Additional Physical Layer Specifications for 2—11GHz",April 2003.
    [3]IEEE Std 802.16c~(TM)-2002."IEEE Standard for Local and metropolitan area networks—Part 16:Air Interface for Fixed Broadband Wireless Access Systems—Amendment 1:Detailed System Profiles for 10~66GHz",January 2003.
    [4]IEEE Std 802.16~(TM)-2004."IEEE Standard for Local and metropolitan area networks—Part 16:Air Interface for Fixed Broadband Wireless Access Systems",October 2004.
    [5]IEEE Std 802.16e~(TM)-2005."IEEE Standard for Local and metropolitan area networks—Part 16:Air Interface for Fixed and Mobile Broadband Wireless Access Systems—Amendment 2:Physical and Medium Access Control Layers for Combined Fixed and Mobile Operation in Licensed Bands",February 2006.
    [6]IEEE Std 802.16f~(TM)-2005."IEEE Standard for Local and metropolitan area networks—Part 16:Air Interface for Fixed Broadband Wireless Access Systems—Amendment 1:Management Information Base",December 2005.
    [7]IEEE Std 802.16g~(TM)- 2007."IEEE Standard for Local and metropolitan area networks—Part 16:Air Interface for Fixed and Mobile Broadband Wireless Access Systems—Amendment 3:Management Plane Procedures and Services",December 2007.
    [8]Proakis J.."Digital Communications",4th Edition,Englewood Cliffs,N J:Prentice-Hall,2002.
    [9]赵亚红,李伟华,吴伟陵.“正交多载波调制(OFDM)技术及其应用”,电讯技术,第1期,pp.92-95,2001.
    [10]张峻峰.“止交频分复用(OFDM)调制技术”,天津通信技术,第2期,pp.1-5,1998.
    [11]Parsace G,Yarali A.."OFDMA for the 4th generation cellular networks",Canadian Confer.On Electrical and Computer Engineering,Vol.4,pp.2325-2330,May 2004.
    [12]Yaghoobi H.."Scalable OFDMA Physical Layer in IEEE 802.16 WirelessMAN",Intel Technology Journal,Vol.8,Iss.3,pp.201-212,August 2004.
    [13]吴伟陵,牛凯.移动通信原理,北京:电子工业出版社,2005.
    [14]吴伟陵.信息处理与编码,北京:人民邮电出版社,2005.
    [15]程佩青.数字信号处理教程,北京:清华大学出版社,2001
    [16]张贤达,保铮.通信信号处理,国防工业出版社,2000.
    [17]全子一,周利清,门爱东.数字信号处理基础,北京邮电大学出版社,2002.
    [18]C.Berrou,A.Glavieux,EThitimahshima."Near Shannon Limit Error correcting Coding Turbo-Codes(1)",Proc.1993 IEEE International Conference on Comm.,Geneva,Switzerland,May 1993,pp.1064-1070.
    [19]R.M.Pyndiah."Near-Optimum Decoding of Product Codes:Block Turbo Codes",IEEE Transactions on Communications,vol.46.No.8,August 1998,pp.1003-1010.
    [20]Branka Vucetic,Jinhong Yuan."Turbo Codes Principles and Applications",Kluwer Academic Publishers,2000.
    [21]Gallager R.."Low-Density Parity-Check Codes",Cambridge,MA:MIT Press,1963.
    [22]Classon B.,Blankenship Y.."LDPC coding for OFDMA PHY",IEEE C802.16e-05/066r3,January 2005.
    [23]Howard H.MA,Jack K.Wolf."On Tail Biting Convolutional Codes",IEEE Transactions on communications,February 1986,Vol.com-34,No.2.
    [24]Thomas J.Richardson,Rudiger L.Urbanke."Efficient Encoding of Low-Density Parity-Check Codes",IEEE Trans.Inform.Theory,Vol.47,No.2,February 2001.
    [25]John B.Anderson,Stephen M.Hladik."Tailbiting MAP decoders",IEEE Journal on Selected Areas in Communications,Vol.16,No.2,February 1998.
    [26]王新梅,肖国镇.纠错码原理与方法[M].两安电子科技大学出版社,1996.
    [27]Jiao Wang,Yongquan Qiang,Bin Zhang."Comparison of Statistical Properies between an Improved Jakes' Model and the Classical One",The 14th IEEE 2003 international Symposium on Personal,Indoor and Mobile Radio Communication Proceedings.2003,pp.380-384.
    [28]J.D.Parsons.The Mobile Radio Propagation Channel.John Wiley&Sons Ltd.2000,pp.164-189.
    [29]张敏.移动无线信道模型的研究,华中科技大学,2005
    [30]Branka Vucetic,Jinhong Yuan.Spacing-time Coding,John Wiley&Sons Ltd.,2003
    [31]S.M.Alamouti."A Simple Transmit Diversity Technique for Wireless Communications",IEEE Journal Select.Area Commun.,Vol.16,No.8,October 1998,pp.1451-1458
    [32]EunHee Lee."A Study on performance in Space-Time Code",CIC2002 Vol.580.Nov 2002.
    [33]G.D Golden,G.J Foshini,T.A Valenzuenla,P.W.Wolniansdy."Detection Algorithm and Initial laboratory Results using V-BLAST Spacing-Time Communication Architecture",IEEE Electronics Letters,Vol 35 No.1,January 1999,.pp.14-16.
    [34]G J.Fo schini."Layered Space-time Architecture for Wireless Communication in Fading Environment When Using Multiple Antennas",Bell Labs Technical Journal,1996,pp.41-59.
    [35]王晓海等泽.空时编码技术,机械工业出版社,2004.
    [36]李光森,胡延平等.无线通信中的空时编码,通信技术,2004年4月.
    [37]谢显中,王新梅等.分层空时码的模型、译码接收及其性能仿真,通信学报,2001年8月.
    [38]任光亮,常义林,张辉等.无线OFDM系统时频同步方法研究,西安电子科技大学学报(自然科学版),2005,32(5),pp.758-761.
    [39]梁治国.无线信道下OFDM系统中的定时和载频同步算法研究,哈尔滨工程大学,2007

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700