光纤环腔激光腔内吸收光谱气体传感技术的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
激光腔内吸收光谱自被提出以来因其高灵敏度特性一直为各国学者所关注,被广泛应用于气体、液体和等离子体等介质中粒子弱吸收的探测。光纤技术的发展使分布式腔内吸收光谱检测成为可能,但目前还没有成熟的商品仪器出现。本文基于光纤环腔激光器构建腔内吸收传感系统研究痕量气体的全光纤、准分布式测量。
     在对系统器件进行分析和简化传输函数的基础上,阐述了腔内吸收光谱的形成条件,理论推导了光纤环腔腔内吸收传感系统工作的稳态模型和瞬态模型,据此计算模拟了光纤环腔激光器的放大自发辐射谱和气体腔内吸收光谱,验证了本系统光谱波长扫描测量的可行性。
     针对放大自发辐射噪声和标准具噪声等对腔内吸收光谱检测的干扰问题,将低频波长扫描和波长调制技术相结合应用于腔内吸收气体传感系统,通过理论分析和实验确定调制参数。对1%浓度的乙炔气体进行传感,在1526.5~1537 nm波长区间检测到17条吸收谱线,证明该方法可有效提高系统气体传感的灵敏度。为增强传感性能,对波长扫描方式加以优化并再次实验乙炔传感,未采用波长调制技术便在1525~1545 nm波长区间获得27条吸收谱线,传感灵敏度明显提高,证实了系统改进的有效性。制作不同长度的气室研究了本系统中气体传感的最佳吸收光程长问题。
     对腔内吸收光谱谱线提取方法进行了研究,选取小波零交叉法、小波变换迭代法和小波变换形态学结合法等三种方法对不同实验方法获取的扫描谱进行谱线提取;对腔内吸收调制光谱,通过相关分析推出当调制频率较低时,各阶次的谐波谱与调制光谱的各阶傅里叶变换成正比,应用虚拟仪器技术由离散傅里叶法直接计算谐波谱,并提出将二次谐波谱作为反演目标气体浓度的依据,标定谱线吸收波长则采用三次谐波谱。分别采用单谱线法和多谱线平均法计算浓度反演的误差,分析了本传感系统的定量能力。
     为解决可调滤波器驱动电压与对应波长值漂移导致难以精确定位谱线波长问题,提出引入布拉格光栅作为参考的谱线波长标定方法:采用高斯拟合定位谱峰峰值,寻找对应的F-P滤波器驱动电压,以经过温度补偿的布拉格光栅中心波长的精确值作为标准,由多项式拟合得到驱动电压与波长的关系曲线,对吸收谱线波长进行标定。在此工作基础上评价了传感系统用于多气体传感的定性能力,实验表明传感系统采用该方法后波长标定误差降至0.1 nm,达到多气体组分谱线分析的要求。
Laser intra-cavity absorption spectroscopy has been of concern to scholars from various countries since it was proposed. Because of its high sensitivity, it is widely applied to the detection of weak absorption in gas, liquid and plasma. With the development of optical fiber technology, it is possible to measure intra-cavity absorption spectroscopic signal using a distributed structure, but there are no mature commercial instruments available yet. In this paper, an all-fiber, quasi-distributed intra-cavity absorption spectroscopic gas sensing system based on the fiber ring laser is presented, tested and applied to trace gas analysis.
     Based on the analysis of the components and simplification of the transfer functions, the generation conditions of intra-cavity absorption spectroscopic signal are discussed, and the work models of sensing system including steady-state model and transient model are derived. According to the models, the amplified spontaneous emission spectrum of fiber ring laser and intra-cavity absorption spectrum of gas are calculated and simulated. It is confirmed that using wavelength sweep to acquire intra-cavity absorption spectroscopic signal with the sensing system is feasible.
     To decrease the interference caused by amplified spontaneous emission and etalon noise, low-frequency wavelength sweep combined with wavelength modulation technique is applied to the system. The modulation parameters are determined through theoretical analysis and systematic investigations. Seventeen absorption lines for 1% acetylene gas are observed in the wavelengths region from 1526.5 nm to 1537 nm. To enhance the sensor performance, the selection of the tunable F-P filter and the mode of wavelength scanning are optimized. Twenty-seven absorption lines are observed between the wavelengths of 1525 nm to 1545 nm in wavelength sweep sensing experiments with the new system. The obvious improvement of sensitivity indicates that the optimization is efficient. The optimal optical path length of gas absorption for this system is studied using gas cells with different lengths.
     Spectra extraction is studied with four methods including wavelet transform zero-crossing, wavelet transform iteration and wavelet transform combined with morphology to extract absorption spectra from experimental spectral data. The correlation analysis of low-frequency modulation spectrum indicates that the harmonic spectrum is proportional to the Fourier component of modulation spectrum, which can be calculated by the discrete Fourier transform. For intra-cavity absorption modulation spectroscopy, the calibration method is proposed that the calculation of gas concentration and wavelength of absorption line are performed on the basis of the second harmonic and third harmonic, respectively. The quantitative measurement ability of the system is analyzed by using single-line method and multi-line average method to calculate concentration calibration error respectively.
     To avoid the uncertainty of the wavelength values of the absorption lines, the method to calibrate the wavelength value by introducing the Bragg gratings as reference for intra-cavity absorption spectroscopy is investigated. Firstly, introduce the Bragg grating array as wavelength reference. The peaks of gas absorption spectrum and grating reflection spectrum are found through Gaussian fitting. Secondly, use known grating wavelengths to create the calibration curve between driving voltages of F-P optic filter and the wavelengths by polynomial fitting. Finally, calculate the center wavelengths of absorption lines according to the driving voltages corresponding to the peaks. The experimental results show that the error in wavelength calibration is reduced to 0.1 nm, which meets the requirement for multi-component gas analysis.
引文
[1]古丽娜·乌迈尔,王燕凌,ICLAS测定12CO2的谐跃吸收光谱,浙江大学学报(农业与生命科学版),2001,27 (3): 290~292
    [2]林龙森,张性雄,大气环境常见监测方法,福建农机,2006,(3): 34~36
    [3]史晓军,电化学气体传感器在烟气监测中的应用,中国仪器仪表,2009, (6): 90~92
    [4]王昊阳,郭寅龙,张正行,等,顶空-气相色谱法进展,分析测试技术与仪器,2003, 9 (3): 129~135
    [5]韩文念,徐国宾,高艳艳,等,现场便携质谱技术研究进展,质谱学报,2007,28 (4):242-252
    [6]郑龙江,李鹏秦,瑞峰,气体浓度检测光学技术的研究现状和发展趋势,激光与光电子学进展,2008, 45 (8): 24~32
    [7]刘国珍,谭春华,金泽祥,近年来原子发射光谱法的进展,国外分析仪器,1999, (1): 1~8
    [8]汪雨,陈舜琮,杨啸涛,连续光源原子吸收光谱法的研究进展及应用,冶金分析,2011, 31 (2): 38~47
    [9]舒永红,何华焜,原子吸收和原子荧光光谱分析,分析试验室,2007, 26 (8): 106~122
    [10]孙俊永,黄克靖,刘彦明,分子荧光探针在一氧化氮分析中的应用进展,2008, 21 (1): 155~160
    [11] http://www.free-press-release.com/news-fiber-optic-circulator-global-market-forecast-2010-2015-1303792996.html
    [12]齐洁,董小鹏,郑俊达,等,波长扫描及多次平均法提高气体传感信号信噪比的理论与实验研究,江苏现代计量,2011, (1): 32~35
    [13]丁晖,梁建奇,熊志辉,基于差分光谱吸收技术的双光纤光栅乙炔测量系统,光学学报,2009, 29 (2): 548~551
    [14] Merten A, Tschritter J, Platt U, Design of differential optical absorption spectroscopy long-path telescopes based on fiber optics, Applied Optics, 2011, 50 (5): 1220~1226
    [15]刘瑾,杨海马,王玉田,新型光纤乙炔气体传感器的研究,传感技术学报,2006, 19 (3): 614~616
    [16] Tunable diode laser wavelength modulation spectroscopy (TDL-WMS) using a fiber-amplified source, Conference on lasers and electro-optics (CLEO), 2007, CThII7
    [17]吕振,董璞,相关光谱法检测甲烷浓度的研究,光谱实验室,2011, 28 (2): 606~609
    [18] Shang Y, Symons TB, Durduran T, Effects of muscle fiber motion on diffuse correlation spectroscopy blood flow measurements during exercise, Biomedical Optics Express, 2010, 1 (2): 500~511
    [19]魏冬明,基于光纤环形衰荡腔的甲烷传感研究,仪表技术与传感器,2008, (9): 9~10
    [20] Ye F, Qi B, Qian L, et al., Sensitivity enhancement of fiber loop cavity ring-down pressure sensor, Applied Optics, 2009, 48 (32): 6082-6087
    [21]张敏,匡武,廖延彪,基于光纤激光器的有源腔气体吸收测量网络,中国激光,2005, 32 (7): 982~986
    [22] Stewart G, Shields P, Culshaw B, Development of fibre laser systems for ring-down and intracavity gas spectroscopy in the near-IR, Meas. Sci. Technol., 2004, 15 (8): 1621~1628
    [23]浦辰雨,LECO气体分析仪红外检测池非线性补偿研究,冶金自动化,2011, S1: 391~393
    [24] Baev VM, Latz T, Toschek PE, Laser intracavity absorption spectroscopy, Applied Physics B: Lasers and Optics, 1999, 69 (3): 171~202
    [25] Medhi G, Muravjov AV, Saxenab H, Intracavity laser absorption spectroscopy using mid-IR quantum cascade laser, Proceedings of SPIE, 2011, 8032: 80320E
    [26] Kato N, Ueda T, Okazaki T, et al., Intracavity absorption spectroscopy using a multimode unidirectional traveling-wave ring dye laser with a high sensitivity of 5×10-11 cm-1, Japanese Journal of Applied Physics, 50 (4 PART 1): 040205
    [27] Handler KG, Harris RA, O'Brien LC, Intracavity laser absorption spectroscopy of platinum fluoride, PtF, Journal of Molecular Spectroscopy, 2011, 265 (1): 39~46
    [28] Naumenko OV, Béguier S, Leshchishina OM, et al., ICLAS of HDO between 13,020 and 14,115 cm-1, Journal of Quantitative Spectroscopy and Radiative Transfer, 2010, 111 (1): 36~44
    [29] BobrinetskiǐII, Kolerov AN, Nevolin VK, Intracavity laser spectroscopy for the identification of nanomedia, Technical Physics Letters, 2009, 35 (9): 800~803
    [30] Scherer B, Salzmann W, W?llenstein J, et al., Injection seeded single mode intra-cavity absorption spectroscopy, Applied Physics B: Lasers and Optics, 2009, 96 (2-3): 281~286
    [31]靳伟,阮双琛,光纤传感技术新进展,北京:科学出版社,2005. 124~133
    [32] Pakhomycheva LA, Sviridenkov EA, Suchkov AF, et al., Line structure of generation spectra of lasers with inhomogeneous broadening of the amplification line, JETP Lett., 1970, 12 (2): 60~63
    [33] Peterson NC, Kurylo MJ, Braun W, et al., Enhancement of absorption spectra by dye-laser quenching, J. Opt. Soc. Am., 1971, 61 (6): 746~750
    [34] Keller RA, Zalewski EF, Peterson NC, Enhancement of absorption spectra by dye-laser quenching, II, J. Opt. Soc. Am., 1972, 62 (3): 319~326
    [35] Thrash RJ, Weyssenhoff HV, Shirk JS, Dye laser amplified absorption spectroscopy of flames, J. Chem. Phys., 1971, 55 (9): 4659~4660
    [36] Hansch TW, Schawlow AL, Toschek PE, Ultrasensitive response of a CW dye laser to selective extinction, IEEE J. Quantum Electron., 1972, 8 (10): 802~804
    [37] Hill III WT, Abreu RA, Hansch TW, et al., Sensitive intracavity absorption at reduced pressures, Opt. Commun., 1980, 32 (1): 96~100
    [38] Antonov EN, Koloshnikov VG, Mironenko VR, Quantitative measurement of small absorption coefficients in intracavity absorption spectroscopy using a CW dye laser, Optics Commun., 1975, 15 (1): 99~103
    [39] Mironenko VR, Yudson VI, Quantum noise in intracavity laser spectroscopy, Optics Commun., 1980, 34 (3): 397~403
    [40] Mironenko VR, Theoretical limits of the sensitivity thresholds of intracavity laser absorption spectroscopy, Sov. J. Quantum Electron., 1985, 15 (8): 1103~1108
    [41] Kachanov AA, Plakhotnik TV, Intracavity spectrometer with a ring travelling-wave dye laser: reduction of detection limit, Optics Commun., 1983, 47 (4): 257~261
    [42] Kachanov AA, Mironenko VR, Pashkovich I K, Quantum threshold of the sensitivity of an intracavity traveling-wave laser spectrometer, Sov. J. Quantum Electron., 1989, 19 (1): 95~98
    [43] Brunner W, Paul H, On the theory of selective intracavity absorption, Optics Commun., 1974, 12 (3): 252~255
    [44] Brunner W, Paul H, Theory of intracavity absorption spectroscopy, Opt. Quantum Electron., 1978, 10 (2): 139~151
    [45] Baev VM, Werncke W, Sviridenkov E A, Detection of Raman amplification lines by intraresonator laser spectroscopy, Sov. J. Quantum Electron., 1975, 5 (4): 477~478
    [46] Baev VM, Belikova TP, Sviridenkov EA, et al., Intracavity laser spectroscopy with continuously and quasicontinuously operating laser, Sov. Phys. JETP, 1978, 47 (1): 21~29
    [47] Baev VM, Belikova TP, Kovalenko SA, et al., Transient processes manifested in the emission spectra of cw wide-band dye lasers used for intracavity laser spectroscopy, Sov. J. Quantum Electron., 1980, 10 (4): 517~519
    [48] Baev VM, Gamalij VF, Lobanov BD, et al., Application of lasers utilizing color centers in alkali halide crystals to intracavity laser spectroscopy, Sov. J. Quantum Electron., 1979, 9 (1): 51~54
    [49] Baev VM, Schroder H, Toschek PE, LiF:F+2-centre laser for intracavity spectroscopy, Optics Commun., 1981, 36 (1): 57~62
    [50] Baev VM, Dubov VP, Kireev AN, et al., Application of lasers with FA (II) color centers in KCl:Li crystals in intracavity laser spectroscopy, Sov. J. Quantum Electron., 1986, 16 (8): 1121~1123
    [51] Baev VM, Belikova TP, Gamali VF, et al., Direct determination of the two-photon absorption cross section by the intracavity laser spectroscopy method, Sov. J. Quantum Electron., 1984, 14 (12): 1596~1599
    [52] Baev VM, Dubov VP, Sviridenkov EA, Enhancement of the sensitivity of intracavity laser spectroscopy by the use of neodymium glass lasers, Sov. J. Quantum Electron., 1985, 15 (12): 1648~1649
    [53] Stahlberg B, Baev VM, Gaida G, et al., Laser intracavity absorption spectroscopy of He2(a3Σ+u), J. Chem. Soc., Faraday Trans. 2, 1985, 81: 207~216
    [54] Aivazyan YM, Baev VM, Belikova TP, Kinetics of emission of individual modes by a multimode cw dye laser and its influence on the sensitivity of intracavity laser spectroscopy, Sov. J. Quantum Electron., 1987, 16 (3): 397~400
    [55] Aivazyan YM, Baev VM, Ivanov VV, et al., Kinetics of emission spectra of multimode lasers and its influence on the sensitivity of intracavity laser spectroscopy, Sov. J. Quantum Electron., 1987, 17 (2): 168~173
    [56] Baev VM, Boller KJ, Weiler A, et al., Detection of spectrally narrow light emission by laser intra-cavity spectroscopy, Optics Commun., 1987, 62 (6): 380~384
    [57] Baev VM, Eschner J, Weiler A, Intracavity spectroscopy with modulated multimode lasers, Appl. Phys. B, 1989, 49 (4): 315~322
    [58] Baev VM, Eschner J, Paeth E, et al., Intra-cavity spectroscopy with diode lasers, Appl. Phys. B, 1992, 55 (6): 463~477
    [59] Baev VM, Toschek PE, Sensitivity limits of laser intracavity spectroscopy, Proc. SPIE 1775, 1993, 381
    [60] Sierks J, Baev VM, Toschek P E, Enhancement of the sensitivity of a multimode dye laser to intracavity absorption, Optics Commun., 1993, 96 (1-3): 81~86
    [61] Sierks J, Eschner J, Baev VM, et al., Sensitivity of intracavity absorption measurements with Ti: sapphire laser, Optics Commun., 1993, 102 (3-4): 265~270
    [62] Bhihm R, Stephani A, Baev VM, et al., Intracavity absorption spectroscopy with a Nd3+-doped fiber laser, Opt. Lett., 1993, 18 (22): 1955~1957
    [63] Gurlit W, Burrows JP, Burkhard H, et al., Intracavity diode laser for atmospheric field measurements, Infrared Phys. Technol., 1996, 37 (1): 95~98
    [64] Latz TJ, Weirauch G, Baev VM, et al., External photoacoustic detection of a trace vapor inside a multimode laser", Appl. Opt., 1999, 38 (12): 2625~2629
    [65] Stark A, Correia L, Salewski S, et al., Intracavity absorption spectroscopy from 1.7 to 2μm with thulium-doped fibre laser, Conference on Lasers and Electro-Optics Europe - Technical Digest, 2000, 240
    [66] Hunkemeier J, Bohm R, Baev VM, et al., Spectral dynamics of multimode Nd3+- and Yb3+-doped fibre lasers with intracavity absorption, Optics Commun., 2000, 176 (4): 417~428
    [67] Stark A, Correia L, Teichmann M, et al., Intracavity absorption spectroscopy with thulium-doped fibre laser, Optics Commun., 2002, 215 (1-3): 113~123
    [68] Goldman A, Rahinov I, Cheskis S, et al., Fiber laser intracavity absorption spectroscopy of ammonia and hydrogen cyanide in low pressure hydrocarbon flames, Chemical Physics Letters, 2006, 423 (1-3): 147~151
    [69] Lohden B, Kuznetsova S, Sengstock K, et al., Fiber laser intracavity absorption spectroscopy for in situ multicomponent gas analysis in the atmosphere and combustion environments, Appl. Phys. B, 2011, 102 (2): 331~344
    [70] Stewart G, Atherton K, Culshaw B. Intra-cavity and ring-down cavity absorption with fibre amplifiers for trace gas detection, Proceedings of SPIE, 2000, 4185: 448~451
    [71] Atherton K, Stewart G, Yu HB,et al., Fibre optic intra cavity spectroscopy - combined ring down and ICLAS architectures using fibre lasers, Proceedings of SPIE, 2001, 4204: 124~130
    [72] Stewart G, Atherton K, Yu HB, et al., An investigation of an optical fibre amplifier loop for intra-cavity and ring-down cavity loss measurements, Measurement science and technology,2001, 12 (7): 843~849
    [73] Whitenett G, Stewart G, Atherton K. Optical fibre instrumentation for environmental monitoring applications, J. Opt. A: Pure Appl. Opt., 2003, 5 (5): S140~S145
    [74] Zhang M, Wang DN, Jin W, Intracavity absorption measurements based on a wavelength-tunable fiber laser, Proceedings of SPIE, 2001, 4596: 169
    [75] Zhang Y, Zhang M, Jin W, Sensitivity enhancement in erbium-doped fiber laser intra-cavity absorption sensor, Sensors and actuators A, 2003, 104 (2): 183~187
    [76] Zhang Y, Zhang M, Jin W, Multi-point, fiber-optic gas detection with intra-cavity spectroscopy, Optics communications, 2003, 220 (4-6): 361~364
    [77] Zhang Y, Jin W, Yu HB, et al., Novel intracavity sensing network based on mode-locked fiber laser, IEEE Photonics technology letters, 2002, 14 (9): 1336-1338
    [78] Zhang M, Wang DN, Jin W, Wavelength modulation technique for intra-cavity absorption gas sensor, IEEE transactions on instrumentation and measurement, 2004, 53 (1): 136~139
    [79] Zhang Y, Zhang M, Jin W, Investigation of erbium-doped fiber laser intra-cavity absorption sensor for gas detection, Optics communications, 2004, 232 (1-6): 295~301
    [80] Stewart G, Whitenett G, Vijayraghavan K, et al., Investigation of the dynamic response of erbium fiber lasers with potential application for sensors, Journal of lightwave technology, 2007, 25 (7): 1786~1796
    [81] Arsad N, Stewart G, Intra-cavity spectroscopy using amplified spontaneous emission in erbium fibre lasers, Proceedings of SPIE, 2009, 7503: 750312
    [82]肖剑,物联网应用与发展前景浅析,电信网技术,2011, 9: 45~48
    [83]贾大功,刘琨,井文才,等,基于环腔光纤激光器的气体检测方法,中国激光, 2009, 36 (9): 2384~2387
    [84]陈琳,徐军,邵晓鹏,等,掺铒光纤放大器增益和噪声研究,光通信研究,2006, 133 (1): 52~55
    [85]刘建龙,孙继斌,田久华,掺铒光纤放大器,现代电子技术,2004, 179 (12): 8~9
    [86]童治,魏淮,李唐军,高性能掺铒光纤放大器的优化研究,光电子·激光,2001, 12 (9): 879~882
    [87]蒙红云,武志刚,高伟清,等,1064nm抽运掺铥光纤放大器增益特性的理论研究,中国激光,2003, 30 (9): 783~787
    [88]李保海,吴重庆,付松年,等,半导体光放大器的研究进展与新应用,光通信技术,2004, (4): 18~21
    [89]王肇颖,胡智勇,包焕民,等,基于半导体光放大器的可调谐多波长光纤激光器,光子学报,2006, 35 (3): 321~324
    [90]常建华,陶在红,孙小菡,等,光纤拉曼放大器,真空电子技术,2003, (3): 12~17
    [91]马永红,谢世钟,宽带光纤拉曼放大器的优化设计与分析,光学学报,2004, 24 (1): 42~47
    [92]董永康,吕志伟,吕月兰,等,布里渊光纤环形激光器及其应用,激光技术,2004, 28 (5): 498~502
    [93]贾振安,杨和钱,乔学光,等,掺铒光纤光源的研究现状与应用,光通信技术,2006, (12): 7~9
    [94]赵勇,光纤光栅及其传感技术,北京:国防工业出版社,2007
    [95]蔡海文,黄锐,瞿荣辉,等,基于马赫-曾德尔干涉仪和取样光纤光栅的全光纤梳状滤波器,中国激光,2003, 30 (3): 243~246
    [96]唐多强,张海斌,胡鸿璋,等,集成光学声光可调谐滤波器的温度特性及其精密数字控制,中国激光,2003, 30 (7): 629~632
    [97]邵永红,姜耀亮,郑权,等,法布里-珀罗型光学梳状滤波器的设计,中国激光,2004, 31 (1): 74~76
    [98]申溯,何赛灵,液晶法布里-玻罗滤波器可调谐特性分析,光子学报,2005, 34 (5): 713~717
    [99]张瑞君,阵列波导光栅滤波器,集成电路通讯,2003, 21 (1): 4~6
    [100]林洪椿,迟晓玲,李利军,光滤波器:结构、原理与特性,激光与光电子学进展,2001, 431 (11): 31~37
    [101]冯丹琴,盛秋琴,陈凯,几种常用滤波器的特性,光通信技术,2002, 26 (1): 46~53
    [102]撒继铭,陈幼平,张冈,等,基于自聚焦透镜的吸收型光纤气体传感器气室设计,仪表技术与传感器,2007, (3): 11~12
    [103]张景超,肖长江,管立君,等,渐变折射率传感气室中干涉噪声的数值模拟与分析,光学与光电技术,2007, 5 (6): 66~68
    [104]王素芹,阮玉,殷东亮,等,C-lens准直器回波损耗的理论计算与分析,光电子技术与信息,2003, 16 (1): 24~28
    [105] Jing WC, Jia DG, Tang F, et al, Design and implementation of a broadband optical rotary joint using C-lenses, Optics Express, 2004, 12 (7): 4088-4093
    [106]邢炬岩,新型环形腔掺饵光纤激光器的研究:[硕士学位论文],北京;北京交通大学,2007
    [107]余有龙,谭华耀,王骐,环形腔光纤激光器波长选择技术,中国激光,2002, 29 (1): 1~4
    [108]徐华斌,陈林,掺铒光纤激光器输出特性的研究,光子学报,2004, 33 (7): 777~781
    [109]李登峰,雷芳,林海峰,掺铒光纤环形激光器输出功率与掺铒光纤长度和耦合比之间的定量分析,重庆邮电学院学报,2005, 17 (2): 1~3
    [110]刘琨,基于Fabry-Perot可调谐光滤波器和掺铒光纤放大器的光纤传感技术研究:[博士学位论文],天津;天津大学,2008
    [111] HITRAN Molecular Spectroscopic Database 2008
    [112]涂兴华,刘文清,张玉钧,等,CO和CO2的1.58um波段可调谐二极管激光吸收光谱的二次谐波检测研究,光谱学与光谱分析,2006, 26 (7): 1190~1194
    [113] Liu K, Jing WC, Peng GD, et al., Wavelength sweep of intracavity fiber laser for low concentration gas detection, IEEE Photonics Technology Letters, 2008, 20 (18): 1515-1517
    [114]郭彤,胡春光,陈津平,等,MEMS显微干涉测量系统中相移器性能的研究,传感技术学报,2006, 19 (5): 1500~1502
    [115]范伟,余晓芬,压电陶瓷驱动器蠕变特性的研究,仪器仪表学报,2006, 27 (11): 1383~1386
    [116]谷怀民,Alan Zhang,多光程吸收的频率调制光谱,光子学报,2003, 32 (8): 1013~1016
    [117]韩文念,马凤,汪曣,等,波长调制技术在掺铒光纤腔内吸收气体传感中的应用,传感技术学报,2009, 22 (8): 1094~1098
    [118]马凤,环腔掺铒光纤激光器应用于气体传感的理论和实验研究:[硕士学位论文],天津;天津大学,2009
    [119]吴志永,激光腔内吸收光谱方法和部分应用:[硕士学位论文],合肥;中国科学技术大学,2004
    [120] Fu ZH, Yang DZ, Ye W, et al., Widely tunable compact erbium-doped fiber ring laser for fiber-optic sensing applications, Optics & Laser Technology, 2009, 41 (4): 392~396
    [121]邵杰,高晓明,袁怿谦,等,信号处理改善波长调制光谱灵敏度的实验研究,物理学报,2005, 54 (10): 4638~4642
    [122]张宇,张关泉,小波变换用于去除高频随机噪声,石油地球物理勘探,1997, 32 (3): 327~337
    [123] Han WN, Wang Y, Liu K, et al., Spectra extraction for wavelength - modulation spectroscopy of intra-cavity absorption gas sensor, Proceedings of SPIE, 2010, 7853: 78532X
    [124]赵瑞珍,胡占义,赵永恒,谱线自动提取的小波变换零交叉点方法,光谱学与光谱分析,2005, 25 (1): 153~156
    [125]刘蓉,刘三阳,赵瑞珍,正常星系光谱的一种谱线自动提取方法,光谱学与光谱分析,2006, 26 (3): 583~586
    [126]刘少颖,卢继来,郝丽,基于数学形态学和小波分解的QRS波群检测算法,清华大学学报(自然科学版),2004, 44 (6): 852~855
    [127]季虎,毛玲,孙即祥,基于小波变换与形态学运算的R波检测算法,计算机应用,2006, 26 (5): 1223~1225
    [128]吴力,赵志华,基于形态学与小波变换的信号自适应去噪算法,自动化技术与应用,2009, 28 (1): 78~81
    [129]韩文念,汪曣,刘琨,等,基于虚拟仪器技术的腔内吸收光谱波长调制与解调,传感技术学报,2011, 24 (10):1431~1434
    [130]孙义,谈图,高晓明,高灵敏度激光吸收光谱中的微弱信号处理,应用光学,2008, 29 (2): 257~261
    [131] Hangauer A,Chen J,Amann M C. Modeling of the n-th harmonic spectra used in wavelength modulation spectrospocy and their properties, Appl. Phys. B, 2008, 90 (2): 249-254
    [132] Dore L, Using Fast Fourier Transform to compute the line shape of frequency-modulated spectral profiles, Journal of Molecular Spectroscopy, 2003, 221: 93~98
    [133]刘姝,数学形态学在信号处理方面的应用研究:[硕士学位论文],大连;大连理工大学,2006
    [134]张光,高霞,ICP-AES法测定高合金钢中主合金元素含量,理化检验-化学分册,2003, 39 (2): 85~87
    [135]张维克,爆炸场温度的多谱线测试方法研究:[硕士学位论文],南京;南京理工大学,2009
    [136] Han WN, Wang Y, Ma F, et al., Application of fiber Bragg grating for determining positions of gas absorption lines, Transactions of Tianjin University, 2010, 16 (5): 373~375
    [137]延凤平,裴丽,宁提纲,光纤通信系统,北京:科学出版社,2006
    [138] Xu MG, Geiger H, Dakin JP, Modeling and performance analysis of a fiber Bragg grating interrogation system using an acousto-optic tunable filter, IEEE Journal of Lightwave Technology, 1996, 14 (1): 391~396
    [139]应祥岳,徐铁峰,高斯拟合提高光纤布喇格光栅波长检测精度,激光技术,2009, 33 (3): 323~325
    [140]马晓明,两段级联掺铒光纤放大器的优化研究,光子学报,2003, 32 (6): 688~692
    [141]郭小东,乔学光,贾振安,等,一种C+L波段高功率掺铒光纤宽带光源,中国激光,2005, 32 (5): 609~612
    [142]于岭,张昊,刘艳格,等,一种超宽带掺铒光纤放大器的实验研究,南开大学学报(自然科学版),2006, 39 (1): 70~73
    [143]柯湘萍,铒镱共掺光纤放大器的共掺杂特性研究,武汉理工大学学报(信息与管理工程版),2008, 28 (7): 109~111
    [144]丁双红,张行愚,常军,等,S波段掺铥光纤放大器的研究进展,光通信研究,2005, 129 (3): 53~57
    [145] Chen JX, Sui Z, Chen FS, et al., Output characteristic of Yb3+-doped fiber laser at different temperatures, Chinese Optics Letters, 2006, 4 (3): 173~174

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700