基于PGC的光纤传感技术在加速与弯曲测量中的应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
自物联网被正式列为国家五大新兴战略性产业之一写入政府工作报告之后,传感器在国内的研究再次掀起了一股热潮。光纤传感器由于具有灵敏度高、抗电磁干扰能力强、动态范围大、防水防潮、耐腐蚀、质量轻、体积小、损耗小等优点,成为了研究的热点之一。
     本文提出了两种类型的光纤传感器:一种是基于光纤法布里-珀罗(Fabry-Perot, F-P)干涉的加速度计;另一种是基于光纤迈克尔逊干涉的弯曲传感器。基于光纤法布里-珀罗干涉的加速度计用固定于圆网状弹性膜片上的硅微反射镜与处理过的光纤端面构成F-P干涉腔,产生了相位差随外界加速度改变的光干涉信号。该传感器采用相位生成载波技术(Phase Generated Carrier, PGC)通过对干涉信号的调制和解调实现了对相位差的精确测定。对该加速度计样机的测试结果表明,该光纤加速度计拥有63.2 rad/g的灵敏度,160 Hz的共振频率,4μg的分辨率及接近108的动态范围。同时,本课题利用已设计好的PGC程序对由光纤带产生的迈克尔逊干涉信号进行调制解调,获得了灵敏度为43.96 rad/m-1且分辨率达0.004 m-1的新型光纤弯曲传感器。
     本论文从研究光纤传感器的基本理论出发,主要完成了以下几部分的内容:
     1.深入了解了光纤传感器的相关基础知识,包括光纤的结构、光纤传输光波的原理、光纤传感的基本原理及常用于光纤传感系统中的各种器件。研究了传感器的主要性能指标,为本论文展开光纤传感器的设计方案以及对传感器样机的测试评估奠定了理论基础。
     2.从加速度计的定义出发,对现有的加速度计设计原理及优缺点作了分析,总结归纳了加速度计的发展方向及趋势。
     3.详细阐述了各种干涉型光纤加速度计的结构设计和工作原理,提出了一种基于光纤F-P干涉的加速度计。设计了该加速度计的惯性传感结构,用工程软件CosmosWorks分析了惯性传感结构中弹性膜片在不同加速度情况下的应变情况。研究了适用于该加速度计的光干涉信号的PGC技术的实现方法。
     4.介绍了利用CNC(Computer Numerical Control)精密雕刻技术制作不锈钢圆网状弹性膜片的方法,并测试了惯性传感结构中微反射的位移与加速度的关系。研究了相位生成载波技术的程序算法,实现了对干涉信号精确的调制解调。实验测试了加速度计样机的各种性能,结果表面该加速度计达到了高分辨率、大动态范围的设计目标。
     5.阐述了几种典型的光纤弯曲传感器的基本原理和应用,提出了一种基于光纤迈克尔逊干涉的弯曲传感器。介绍了光纤带和光纤折射率匹配液动态腔的制作方法和过程,而这两个部件是光纤弯曲传感器的关键结构,是保证光纤弯曲传感器性能的前提。
     6.实验测试了该光纤弯曲传感器,结果表面其相对于现有的光纤弯曲传感器在分辨率上有较大的提高。
Since Internet of Things was listed as one of the five emerging strategic industries written into the government work report, the researches of sensors set off a boom in the country. Because of high sensitivity, anti-electromagnetic interference capability, dynamic range, waterproof, corrosion resistance, light weight, small size and low loss, fiber sensors become one of hot researches.
     In this thesis, a novel fiber optic accelerometer based on Fabry-Perot interfemetetry and an optical fiber bending sensor based on Michelson interferometry are proposed.
     The fiber optic accelerometer utilizes a silicon micro-mirror mounted on a mesh spring elastic structure and a fiber facet to form a Fabry-Perot cavity which can generate optical interference signals as a function of acceleration. Phase generated carrier technology(PGC) was adopted to modulate the interference signals to obtain a high resolution of phase signals. Performance measurement of prototype shows it has a sensitivity of 63.2 rad/g below a resonance frequency of 160 Hz and a resolution of 4μg with a dynamic range near 108. And an optical fiber bending sensor obtains a sensitivity of 43.96 rad/m-1 and a resolution of 0.004 m-1, by utilizing PGC to modulate the Michelson interference signals generated by a fiber ribbon which is affixed onto an elastic structure,.
     From the study of the basic theory of fiber sensors, this thesis mainly completes contents as followings:
     1. Concentrated on the understanding and study of the basic concept of fiber sensors, including the structure of fiber, the theory of light transmit in fiber and the devices commonly used in fiber sensors. The main parameters ofsensors were also described. All of these provided the theoretical basis of the design of sensors, as well as prototypes testing and evaluation.
     2. Based on the definition of accelerometers, analyzed both the advantages and disadvantages of various accelerometers. Summarized the trends of accelerometers.
     3. Described the design and principle of deferent interference fiber optic accelerometers in detail. Proposed a fiber optic accelerometer based on Faby-Perot interfermetry. Design the inertial sensing system of the fiber optic accelerometer and did Strain analysis of the elastic structure of the inertial sensing system by CosmosWorks. Studied the ways to realize phase generated carrier modulation and demodulation of this accelerometer.
     4. Introduced how to use CNC(Computer Numerical Control) precision engraving technology to fabricate stainless steel mesh and how to implement PGC algorithm. Took tests of the accelerometer, and the results show it achieves both in high accuracy and large dynamic range.
     5. Described the basic theory and application of several kinds optical fiber bending sensor, and proposed an optical fiber bending sensor based on Michelson interferometry. Introduced the fabrication of the fiber ribbon and fiber index matching liquid cavity, which are the critical components in the optical bending sensor.
     6. Took experimental tests of the optical fiber bending sensor, measurement results show it has a resolution of 0.004 m-1 which is higher than most of bending sensors.
引文
[1]K.C. Kao and G.A. HockhamDielectric-fibre surface waveguides for optical frequencies [J]. IEE,1986,133(3):191~198.
    [2]A. B. Tveten, A. Dandridge, C. M. Davis, et al. Fibre optic accelerometer [J]. Electron. Lett.1980, vol.16(22):854~856.
    [3]董永贵.传感技术与系统[M].北京:清华大学出版社,2006.
    [4]P. D. Foote Fiber Bragg grating strain sensors for aerospace smart structure [J]. Proc.SPIE 1994,2361:290~293.
    [5]D. A. Nolan, P. E. Blaszyk and E. Udd Optical Fibers in Fiber Optic Sensors:An Introduction for Engineers and Scientists [M].1991, Eric Udd and Wiley.
    [6]T. G. Giallorenzi, J. A. Bucaro, A. Dandridge, et al. Optical Fiber Sensor Technology [J]. IEEE J. Quant. Elec.1982, QE-18(4):626~665.
    [7]D. A. Krohn Fiber Optic Sensors:Fundamental and Applications [R]. Instrument Society of American,1988, Research Triangle Park, North Carolina.
    [8]J. Dakin and B. Culshaw Optical Fiber Sensors:Principals and Components [R]. 1988, Artech, Boston, Volume 1.
    [9]B. Culshaw and J. Dakin Optical Fiber Sensors:Systems and Applications [R]. 1989, Artech, Norwood, Volume 2.
    [10]Djafar K. Mynbaeb, Lowell L.Sheiner, et al. Fiber-Optic Communications Technology [M]. Beijing:Science Press,2002.
    [11]朱世国,付克祥纤维光学原理及实验研究[M].成都:四川大学出版社,1992.
    [12]姚建永光纤原理与技术[M].北京:科学出版社,2005.
    [13]林学焊光无源器件[M]北京:人民邮电出版社,1998.
    [14]王惠文光纤传感技术与应用[M].北京:清华大学出版社,2001.
    [15]方宏,秦曦等光纤传感器中光源的选用及比较[J].传感器世界,2004,10(11):13-17.
    [16]张国顺,何家祥,肖杜香光纤传感技术[M].北京:水利电力出版社,1988.
    [17]廖延彪光纤光学[M].北京:清华大学出版社,2000.
    [18]周继明,江世明,传感技术与应用[M].长沙:中南大学出版社,2005.
    [19]曾光宇,杨湖,李博等现代传感器技术与应用基础[M].北京:北京理工大学出版社,兵器工业出版社,2006.
    [20]J John, I Saha, R Islam, J Joseph, et, al. Planar Silicon Accelerometer with Fiber-Optic Sensing — A system level study [J]. Proceedings of SPIE,2003, 5062:445~449.
    [21]Meng Pang, Zhou, H.P., Zhang, M., et al. Analysis and Amelioration About the Cross-Sensitivity of a Fiber-Optic Accelerometer Based on Compliant Cylinder [J]. Journal of Lightwave Technology,2008,26(3):365~372.
    [22]Meng Pang, Liwei Wang, Min Zhang, Xianhui Mao, et al. A 3-Component Fiber-Optic Accelerometer Array for Well Logging [C]. Optical Fiber Sensors (OFS), Cancun, Mexico,2006.
    [23]Dong-lin TANG, Xiao-dong ZHANG, Guang-hui ZHAO, et al. A novel three-component hybrid-integrated optical accelerometer based on a Mach-Zehnder interferometer with a LiNbO3 photoelastic waveguide [J]. Journal of Zhejiang University SCIENCE A,2009,10 (4):595~600.
    [24]Timothy T-Y Lam, Gianluca Gagliardi, Mario Salza, et al. Optical fiber three-axis accelerometer based on lasers locked to π phase-shifted Bragg gratings [J]. Measurement Science and Technology,2010,21(094010):1-8.
    [25]R. D. Pechstedt and D.A. Jackson Performance analysis of a fiber optic accelerometer based on a compliant cylinder design [J]. Review of Scientific Instruments,1995,66(1):207~214.
    [26]G Gagliardi, M Salza, P Ferraro, et al. Design and test of a laser-based optical-fiber Bragg-grating accelerometer for seismic applications [J]. Measurement Science and Technology,2008,19(085306):1-8.
    [27]David A. Brown and Steven L. Garret An interferometric fiber optic accelerometer [J].1990, SPIE 1367:282~288.
    [28]Timo Veijola, Heikki Kuismab, Juha Lahdenpera, et al. Equivalent-circuit model of the squeezed gas film in a silicon accelerometer [J]. Sensors and Actuators A: Physical,1995,48(3):239~248.
    [29]Patrick S,Jens O G,Lars M K. A Piezoelectric Triaxial Accelerometer [J]. J.Micromech.Microeng,1996,6(1):131~133.
    [30]Ruth Houlihan, Alena Kukharenka, Mircea Gindila, et al. Analysis and Design of a Capacitive Accelerometer Based on a Electrostatically Levitated Micro-disk [J]. Proceedings of SPIE,2001,4558:277~286.
    [31]贾玉斌,董海峰,郝一龙,体硅隧道加速度计[J].纳米技术与精密工程,2004,2(1):29-31.
    [32]王守明,汪祖民一种新型三轴电容式加速度计的设计分析[J].电子&电路,2010,23(3):86-89.
    [33]Dong Haifeng, Hao Yilong, Jia Yubin, et al Fabrication and Characterization of Tunneling Current of Anodic Bonded Dry- Etched MEMS Tunneling Accelerometer [J]. Chinese Journal of Semiconductors,2004,25(12): 1606~1611.
    [34]1吕志清,侯正君线加速度计的现状和发展动向[J].压电和声光,1998,20(5):315-321.
    [35]DAE H. K., MARIA Q. F. A Novel Optical Fiber Accelerometer System for Monitoring Civil Infrastructure [C]. In Proceedings of the 2005 IEEE Sensors Conference,2005,1107~1111.
    [36]Clay K Kirkendall and Anthony Dandridge Overview of high performance fiber-optic sensing[J]. Journal of Physics D:Applied Physics,2004,37: R197~R216.
    [37]Cao Jia nian, LU Shan, YANG Ge wen, et al. Detection by interferometric fiber-optic accelerometer [J].Journal of Harbin Engineering University 2004, 24(2):217~220.
    [38]王金海,陈才和,唐东林,等.基于光弹效应的三分量光纤地震加速度计[J].传感技术学报,2006,19(3):804-806.
    [39]曹家年,卢山,杨革文,等.基于DSP的干涉型光纤加速度计检测方案的研究[J].哈尔滨工程大学学报,2005,24(2):217-220.
    [40]严志刚,丁桂兰,陈才和,等.三分量全光纤加速度检波器及数字处理系统.光学学报[J].2003,(312):1413-1417
    [41]曾楠,施纯峥,张敏,等.一种可用于油藏监测的3分量光纤加速度传感器[J].光电子·激光,2005,16(8):901-905
    [42]付敬奇,刘俊,董新平强度调制光纤加速度传感器[J].传感器技术,2001,20(11):20-23.
    [43]Fanlin Zeng, Shao Long zhong, Jing Xu, et al Optical fiber accelerometer based on MEMS torsional micromirror [J]. SPIE,2007,68360Q:1~8.
    [44]Wang Y J, Xiao H, Zhang S W, et al. Design of a fibre-optic disc accelerometer: theory and experiment [J]. Measurement Science and technology,2007,18: 1763~1767.
    [45]Maria Q. Feng and Dae-Hyun Kim Novel fiber optic accelerometer system using geometric moire fringe [J]. Sensors and Actuators A,2006,128:37~42.
    [46]Dae-Hyun Kim and Maria Q. Feng Real-time monitoring of structural vibration using a novel fiber optic accelerometer system [J]. SPIE,2006,617801:1-14.
    [47]Jia Nian Cao, Wei Xin Wang, Ya Bin Zhang, et al. Design of a practical intensity modulated dynamic optical fiber accelerometer [J].Proc. of SPIE,2005, 5634:548~552.
    [48]Tveten, A. B. Dandridge, A. Davis, et al. Fibre optic accelerometer [J]. Electronics Letters,1980,16(23):854~856.
    [49]C Chen, D Zhang, G Ding, Y Cui Broadband Michelson fiber-optic accelerometer [J]. Applied Optics,1999,38(4):628~630.
    [50]Yongjie Wang, Hao Xiao, Songwei Zhang, Fang Li and Yuliang Liu Design of a fibre-optic disc accelerometer:theory and experiment [J]. Measurement Science and Technology,2007,18:1763~1767.
    [51]Da Costa Antunes, P.F., Lima, H.F.T., Alberto, N.J., et al. Optical Fiber Accelerometer System for Structural Dynamic Monitoring [J]. IEEE,2009, 9(11):1347~1354.
    [52]郁道银,谈恒英工程光学[M].北京:机械工业出版社,1999.
    [53]Woo-HuT sai and Chun-Jung Lin A Novel Structure for the Intrinsic Fabry-Perot Fiber-Optic Temperature Sensor [J]. Journal of Lightwave Technology,2001,19(5):682~686.
    [54]Paula A. R. Tafulo, O.Frazao, P. A. S. Jorge, et al. Intrinsic Fabry-Perot cavity sensor based on chemical etching of a multimode gtaded index fiber spliced to a single mode fiber [J]. Proc. of SPIE,2010,765311:1~4.
    [55]Chen Ma and Anbo Wang Multimode excitation-induced phase shifts in intrinsic Fabry-Perot interferometric fiber sensor spectra [J]. Applied Optics,2010, 49(45):4836-4845.
    [56]Tao Lu and Suping Yang Extrinsic Fabry-Perot cavity optical fiber liquid-level sensor [J]. Applied Optics,2007,46(18):3682~3687.
    [57]Juncheng Xu, Gary R. Pickrell, Kristie L. Cooper, et al Precise Cavity Length Control in Fiber Optic Extrinsic Fabry-Perot Interferometers [C]. Conference on Lasers and Electro-Optics,2005.
    [58]Tianchu Li, Russell G. May, Anbo Wang, et al. Claus Optical scanning extrinsic Fabry-Perot interferometer for absolute microdisplacement measurement [J]. Applied Optics,1997,36(34):8858~8861.
    [59]江毅,唐才杰.光纤Fabry-Perot干涉仪原理及应用[M].北京:国防工业出版社,2009.
    [60]董景新微惯性仪表-微机械加速度计[M].北京:清华大学出版社,2003.
    [61]G.F.Fernando, T.Liu A frequency division multiplexed low-finesse fiber optic Fabry-Perot sensor system for strain and displacement measurements, Rev. Sci. Instru.,2000,71(3):1275~1278.
    [62]Dandridge A., Tveten A.B., Giallorenzi T.G. Homodyne demodulation scheme for fiber optic sensors using phase generated carrier, IEEE Journal of Quantum Electronics,1982,18(10):1647~1653.
    [63]章鹏,朱永,唐晓初,等基于傅里叶变换的光纤法布里珀罗传感器解调研究,光学学报,2005,25(2):186-189.
    [64]Dandridge A., Tveten A.B., Kersey A.D., et al. Multiplexing of interferometric sensors using phase carrier techniques, Journal of Lightwave Technology,1987, LT-5(7):947~952.
    [65]潘建彬用于高分辨率加速度计的PGC纳米位移传感器[D].浙江:浙江大学,2007.
    [66]Qingxu Yu and Xinlei Zhou Pressure sensor based on the fiber-optic extrinsic Fabry-Perot interferometer [J]. Photonics Sensors,2011,1(1):72~83.
    [67]Kuang Wu, Zhang Min, and Yanbiao Liao Signal dependence of the phase-generated carrier method [J]. Optical Engineering,2007,46(10): 105602-1~105602-1.
    [68]Shih-Chu Huang and Hermann Lin Modified phase-generated carrier demodulation compensated for the propagation delay of the fiber [J]. Applied Optics,2007,46(31):7594~7603.
    [69]Qingping Shi, Qian Tian, Liwei Wang, et al. Performance improvement of phase-generated carrier method by eliminating laser-intensity modulation for optical seismometer [J]. Optical Engineering,2010,49(02): 024402-1~024402-6.
    [70]Lan Tian, Zhang Chunxi, Li Lijing, et al. Multirate digital phase generated carrier demodulation [J]. Journal OF Beijing university of aeronautics and aeronautics,2008,34(05):503~506.
    [71]Jun He, Lin Wang, Fang Li, et al. An Ameliorated Phase Generated Carrier Demodulation Algorithm With Low Harmonic Distortion and High Stability [J]. Journal of Lightwave Technology,2010,28(22):3258~3265.
    [72]Liu Kexing, Suzanne M., Ferguson, et al. Fiber-optic interferometric sensor for the detection of acoustic emission within composite materials [J]. Optics Letters, 1990,15(22):1255~1257.
    [73]黄建辉,曹芒,李达成用于干涉型光纤传感器的相位生成载波解调技术[J].光学技术,2000,26(3):228-231.
    [74]Tristan J. Tayag, Edward S. Kolesar, Brandon D. Pitt. Optical fiber interferometer for measuring the in situ deflection characteristics of microelectromechanical structures [J]. Society of Photo-Optical Instrumentation Engineers,2003,42(1):105~111.
    [75]James H. Cole, Bruce A. Danver, Joseph A. Bucaro Synthetic-heterodyne interferometric demodulation, IEEE Journal of Quantum Electronics,1982, QE-18(4):694~697.
    [76]唐晓琪,唐继Mach-Zehnder光纤干涉仪相位载波调制及解调方案的研究[J].计量学报,2002,23(1):10-12.
    [77]罗洪,熊水东,胡永明,等基于相位载波调制解调技术的全保偏光纤水听器[J].半导体光电,2006,27(1):12-15.
    [78]王永杰,李芳,肖浩,等盘片式光纤传感器灵敏度计算方法[J].光学学报,2007,27(8):1387-1392.
    [79]柯涛,朱涛,饶云江,等基于空芯光子晶体光纤的全光纤法布里-珀罗干涉式加速度传感器[J].中国激光,2010,37(1):171-175.
    [80]J. Meyer, S. J. Spammer, P. L. Swart. All fibre Fabry-Perot interferometer using coherence demultiplexing and fibre loop reflectors [J]. Proc.SPIE,1993,2071: 169~179.
    [81]吴永红,屈文俊,邵长江,等光纤光栅传感器光-力转换的理论方程[J].光学学报,2009,29(8):2067-2070.
    [82]Changlun Hou, Yu Wu, Xu Zeng, et al. Novel high sensitivity accelerometer based on a microloop resonator Optical Engineering,2010,49(1):014402.
    [83]柏林厚,廖延彪,张敏,等干涉型光纤传感器相位生成载波解调方法改进与研究[J].光子学报2005,34(9):1324-1327.
    [84]Liwei Wang, Min Zhang, Xianhui Mao, Yanbiao Liao. The Arctangent Approach of Digital PGC Demodulation for Optic Interferometric Sensors [J]. Proc.SPIE,2006,62921E:1~10.
    [85]Tristan J. Tayag, Edward S. Kolesar, Brandon D. Pitt. Optical fiber interferometer for measuring the in situ deflection characteristics of microelectromechanical structures [J]. Society of Photo-Optical Instrumentation Engineers 2003.42(1):105~111.
    [86]P.G. Davis, I.J. Bush, G. S. Maurer. Fiber Optic Displacement Sensor [J]. Proc. SPIE,1998,3489:18~22.
    [87]ALLEN Cekorich. Demodulator for interferometric sensors [J]. SPIE,1999, 3860: 338~347.
    [88]董海峰,贾玉斌,郝一龙.高精度隧道式加速度计及其制备方法[P].中华人民共和国,发明专利,专利号:200310122478.3,公开日期:2005年7月6日.
    [89]李宏男,任亮结构健康监测光纤栅传感技术[M].北京:中国建筑工业出版社,2008.
    [90]Marten J. de Vries, Vivek Arya, C. R. Grinder, et al. Civil infrastructure monitoring for IVHS using optical fiber sensors [J]. Proceedings of SPIE,1995, 2344:297~302.
    [91]Farhad Ansari Fiber optic health monitoring of civil structures using long gage and acoustic sensors [J]. Measurement Science and Technology,2005,14: S1~S7.
    [92]P. Moyoa, J.M.W. Brownjohnb, R. Sureshc, et al. Tjinc Development of fiber Bragg grating sensors for monitoring civil infrastructure [J]. Engineering Structures,27(12):1828~1834.
    [93]J. N. Fields and J. H. Cole Fiber microbend acoustic sensor [J]. Applied Optics, 1980,19(19):3265~3267.
    [94]赵士刚,工雪,苑立波四芯光纤弯曲传感器[J].光学学报,2006,26(7): 1001-1006.
    [95]M. J. Gander, E. A. C. Galliot, R. McBride, et a. Bend measurement using multicore optical fiber [C]. The 12th International Conference on Optical Fiber Sensors, Washington, D.C.,1997.
    [96]Hill K O, Fujii Y, Johns on D C, et al. Photosensitivity in op tical fiber waveguide:application to reflecting filter fabrication [J]. Appl Phys Lett,1978, 32 (10):64~649.
    [97]GavinM, Stuart L, Schreiber Printing Proteins as Microarrays for High-Throughput Function Determination [J]. Science,2000,289:1760~1763.
    [98]Young-Geun Han, Gilhwan Kim, Kwanil Lee, et al. Bending sensitivity of long-period fiber gratings inscribed in holey fibers depending on an axial rotation angle [J]. Optics Express,2007,15(20):12866~12871.
    [99]Chow-Sing Shin, Chun-Pin Lin, Uei-Ming Li Fiber-Optic Sensing System For Measurement Curvature [P]. United States Patent, No. US 2006/0140531A1, 2006.
    [100]Jang, SH, Fox MD Optical Glucose Sensor Using a Single Faraday Rotator [C]. Proceedings of the 23rd Annual Northeast Bioengineering Conference, IEEE EMBS, Durham, NH, May 21-2,1997.
    [101]韦世红,王敏琦基于保偏光纤的光纤应力传感器研究与设计[J].光电技术应用,2006,27(6):784-787.
    [102]孟洲,胡永明,陈哲,等1300 nm波长光纤偏振参量自动测试仪[J].光子学报,1999,28(11):1002-1005.
    [103]A. D. KEYSEA, M. J. MARRONE, M. A. DAVIS. Polarisation-insensitive fibre optic Michelson interferometer [J]. Electronics Letters,1991,27(6): 518~520.
    [104]D. L. Gardner, T. Hofler, S. R. Baker, R. K. Yarber and S. L. Garrett A fibre-optic interferometric seismometer [J]. Journal of Lightwave Technology, 1987,5:953~960.
    [105]C.D.BUTTER and G.B.HOCKER. Fiber optic strain gauge [J]. Applied Optics,1978,17(18):2867~2869.
    [106]GEOFFREY A. CRANCH and PHILIP J. NASH. High-Responsivity Fiber-Optic Flexural Disk Accelerometers [J]. Journal of Lightwave Technology. 2001,18(9):1233~1243.
    [107]Pechstedt, R. D. Jackson, D. A. Performance analysis of a fiber optic accelerometer based on a compliant cylinder design [J]. Review of Scientific Instruments,1995,66(1):207~214.
    [108]原安娟,柴常基于迈克尔逊干涉原理的光纤传感器的研究[J].山西大同大学学报,2008,24(1):29-31.
    [109]董新永,赵春柳,宁鼎,等用光纤光栅的啁啾效应实现温度不敏感的弯曲传感[J].光子学报,2001,30(4):425-428.
    [110]王学珍,卞保民,纪运景,等单模光纤弯曲损耗理论模型的修正[J].光子学报,2006,35(6):819-823.
    [111]孙建虎,马腾云,王晓波,等法拉第旋转镜用于补偿单光子偏振漂移的实验研究[J].光子学报,2009,38(3):528-531.
    [112]Shigeki Sakaguchi and Shin-ichi Todoroki Rayleigh Scattering of Silica Core Optical Fiber After Heat Treatment [J]. Applied Optics,1998,37 (33): 7708~7711.
    [113]Evgenii M Dianov, Aleksandr A Manenkov, A I Ritus Brillouin Rayleigh scattering in fiber waveguides:measurement of the angular distribution of the scattering intensities, scattering losses, and rotation of the plane of polarization [J]. Soviet Journal of Quantum Electronics,1977,7(7):841~845.
    [114]曹满婷Fabry-Perot干涉式光纤温度传感器的研究[J].传感器技术,2001,20(07):22-25.
    [115]陈菽莹 基于软件解调方法的干涉型光纤传感器信号处理研究[D].上海:上海交通大学,2007.
    [116]Jeffrey Dosch and Bill Hynd Analysis of Electrical Noise in Piezoelectric Sensors [C]. MAC PCB Piezotronics, Depew NY,2007.
    [117]Chin-Hsing Cheng, Lung-Hui Lai, Wen-Fung Liu Noise sensor based on a fiber Bragg grating and a Piezo-electric transducer [J]. Microwave and Optical Technology Letters,2011,53(4):958~961.
    [118]C. K. Kirkendall, A Dandridge Overview of high performance fiber-optic sensing. Journal of Physics,2004,393(1):197~216.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700