高效高功率密度行波管电源核心变换器的研究与实现
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
高效率、高功率密度行波管电源作为小型化微波发射机的集中供电和控制系统,其技术水平直接影响和制约着小型化微波发射机的发展。
     本课题主要研究低电压输入条件下小型化行波管集成电源系统的关键技术,针对该电源系统高电压、多输出、高效率、高功率密度的特点,提出了一种高升压比、高变换效率、小体积的开关电源核心变换器方案——有源箝位推挽倍压变换器。该变换器利用其自身的寄生参数产生边缘谐振,实现了开关管的软开关,从而避免了因添加谐振元件而增加电源的体积和重量;而且变换器自身升压倍数较高,加之输出端采用多级对称式倍压整流技术,解决了传统高压电源方案中升压变压器升压倍数大、体积笨重、制作难度大等问题,因此,该变换器更适于低压输入场合下的小型化高压直流电源。
     本文首先分析了有源箝位推挽倍压变换器的两种不同的工作模式,并分别对其稳态工作过程进行了详细的分析与推导,重点研究了主工作模式(升压模式)下开关管实现软开关的条件、变换器的增益特性和负载特性;在此基础上,给出了变换器主要参数的设计方法,并以效率最高为目标对参数进行了优化设计;然后,对变换器的动态建模方法进行了研究,提出了一种基于仿真分析的阶跃响应拟合建模方法,建立了该变换器的小信号动态模型,并对电源系统进行了闭环设计,使电源系统具有很好的稳态和动态性能。最后,针对变换器的特殊控制要求,利用可编程逻辑器件和现有电源控制芯片相结合的方法,设计并实现了变换器的控制电路模块,并根据提出的参数设计方法对行波管电源的主回路进行了硬件实验,实现了2000V/100mA的稳定、高效输出,实验结果验证了本文所提出的方法和所得结论的正确性,电源实测效率可达92.3%。
As the centralized power supply and control system of the mini microwave transmitter, the technical level of Traveling Wave Tube (TWT) power supply with high efficiency, high power density restricts and impacts on the development of the transmitter directly.
     The thesis is primarily focuses on the integrated power supply system for miniaturization Travelling Waves Tube(TWT), which is used in the condition of low input voltage. On the basis of analyzing its characteristics and technical difficulties, a new switching power supply converter called Active Clamping Push-pull dual-voltage Converter(ACPDC) is proposed. This converter has two important advantages, the first one is that it realized the soft-commutation by utilizing the fringe resonance between its own parasitic parameters, which is very useful for reducing the volume and weight of the power supply. Secondly, the own boost multiple of the converter is high, and together with the utilization of multiple symmetrical dual voltage commutate technology in the output port solves the problems of the transform such as large boost multiples, big volume and difficult to execution, which is common in tradition high-voltage power supply. So ACPDC is more suitable for mini high-voltage DC/DC switch power supply with low input voltage.
     Firstly, the paper analyses the two different working modalities modes of the ACPDC, and discusses the principle of the converter under each mode in detail. And mainly talks about the soft-commutation condition of the switch tubes, gain characteristic and load characteristic of the converter, when working under the main working mode (boost mode). Then the design method of the converter's major parameters is presented, and the optimum design and improved method of the parameters which based on efficiency is also given. Secondly, the dynamic modeling approach of the converter is researched as well, and a new approach which called step-response fitting algorithm is proposed. Then the control strategy and the closed-loop emendation for this converter was discussed on this small signal model. Finally, the control circuit is designed for the converter by using CPLD and the existing power supply control chip, and a hardware experiment of the main circuit for the power supply of the TWT is done, the converter realized firm and high-efficiency(92.3%) output of 2000V/100mA. And the results of the experiment verifies that the given conclusion and methods of the proposed converter are correct.
引文
[1]曾庆虹,索思亮.零电压转换PWM变换器的设计[J].仪表技术,2006,71(2):71-72.
    [2]阮新波,严仰光.直流开关电源的软开关技术[M].北京:科学出版社,2000:118-135.
    [3]G.Hua,C.S.Leu,Y.M.Jiang and F.C.Lee,Novel zero-voltage-transition pwm converters[A].In:Universidad Politecnica de Madrid.PESC'92 Record 23rd Annual IEEE Power[C].New York:Institute of Electrical and Electronics Engineers,1992:55-61.
    [4]G.Hua,E.X.Yang,Y.M.Jiang and F.C.Lee,Novel zero-current-transition pwm converters[A].In:University of Washington,College of Engineering.PESC'93 Record 24th Annual IEEE Power[C].New York:Institute of Electrical and Electronics Engineers,1993:538-544.
    [5]张占松,蔡宣三.开关电源的原理与设计[M].北京:电子工业出版社,2005:344-348.
    [6]徐德高,金刚.脉宽调制变换器型稳压电源[M].北京:科学出版社,1983:13.
    [7]F.C.Lee.High-frequency quasi-resonant and multi-resonant converter technologies[A].In:PES.Proceeding of ICIE'98[C].New York:Institute of Electrical and Electronics Engineers,1998:509-521.
    [8]K.H.Liu,R.Oruganti and F.C.Lee.Resonant switches—topologies and characteristics[A].In:University de Toulouse Ⅲ.PESC'85 Record 16th Annual IEEE[C].New York:Institute of Electrical and Electronics Engineers,.1985:62-67.
    [9]R.Waston,G.C.Hua and F.C.Lee.Characterization of an active clamp flyback topology for dc/dc conversion and power factor correction applications[A].In:PES.Proceeding of VPEC'93[C].New York:Institute of Electrical and Electronics Engineers,1993:133-143.
    [10]Roger.Gules,Ivo.Barbi.A high efficiency isolated DC-DC converter with High-Output voltage for TWTA telecommunication satellite applications[J].IEEE.Transaction on Power Electronics,2001:1982-1987.
    [11]R.Gules and I.Barbi.Isolated DC-DC converter with High-Output voltage for TWTA telecommunication satellite applications[A].In:IES.APEC'01 Record 16th Annual IEEE[C].New York:Institute of Electrical and Electronics Engineers,2001:312-318.
    [12]L.Ceruti,M.Gambarara and D.Vigano.New Generation EPC for Medium Power TWTs[A].In:A.Wilson.Proceeding of 7th ESPC[C].Stresa:ESA Publications Division,1998:299-316.
    [13]F.J.Nome and I.Barbi.A ZVS Clamping Mode Current-Fed Push-Pull DC-DC Converter[A].In:ESA.Proceeding of 5th ESPC[C].Netherlands:ESA Publications Division,1998:48-53.
    [14]B.Tala-Ighil,J.M.Nyobe-Yome and C.Glaize.High-Voltage Variable-Frequency Double-Resonent DC-DC Converters Utilizing the Transformer Parasitic Elements[A].In:ESA.Proceeding of 4th ESPC[C].Austria:ESA Publications Division,1993:245-250.
    [15]A.H.Weinberg and L.Ghislanzoni.A new zero-voltage zero-current power switching technique[J].IEEE Trans.Power Electron,1992:655-665.
    [16]刘小宝,师宇杰,栾海妍.一种新型高压变换器拓扑的分析与仿真[J].电源技术学报,2006,4(3):201-205.
    [17]蔡宣三.最优化与最优控制[M].北京:清华大学出版社,1983:122-126.
    [18]蔡宣三,龚绍文.高频功率电子学 直流—直流变换部分[M].北京:科学出版社,1993:324-379.
    [19]刘祁.有源箝位/复位技术在现代电源设计中的应用[J].航空电子技术,2001,32(1):43-46.
    [20]飞思科技产品研发中心.MATLAB 6.5辅助优化计算与设计[M].北京:电子工业出版社,2003:80-86.
    [21]张志涌.精通MATLAB 6.5版[M].北京:北京航空航天大学出版社,2004:149-152.
    [22]袁臣虎.并联谐振倍压变换器及其优化设计方法研究[D].郑州:信息工程大学,2005.
    [23]Keith Billings(著),张占松,汪仁煌,谢丽萍(译).开关电源手册[M].北京:人民邮电出版社,2006:102-106.
    [24]北京奥米伽电源技术服务中心.开关电源技术指南下册—磁性材料应用指南[M].北京:北京奥米伽电源技术服务中心,2001:9.
    [25]赵修科.开关电源磁性元件设计[M].南京:南京航空航天大学出版社,2004:38-46.
    [26]张卫平.开关电源的建模与控制[M].北京:中国电力出版社,2005:124-134.
    [27]蔡宣三.开关电源的频域分析与综合(Ⅰ)[J].电源世界,2002,(9):60-65.
    [28]蔡宣三.开关电源的频域分析与综合(Ⅱ)[J].电源世界,2002,(10):60-65.
    [29]张卫平.MH灯用交流无频闪电子电源的研究[D].杭州:浙江大学,1998.
    [30]R.D.Middlebrooke,Slobodan Cuk.A General Unified Approach to Modeling Switchingconverter Power Stage[J].IEEE PESC,1976,36(6):251-256.
    [31]P.R.K.Chetty.Current Injected Equivalent Circuit Approach to Modeling Switching DC-DC Converters[J].IEEE Transaction on Aerospace and Electronic Systems,1981,17(6):134-136.
    [32]蔡尚丰.自动控制理论[M].北京:机械工业出版社,1980:28-35.
    [33]余成波,张莲,胡晓倩,徐霞.自动控制理论[M].北京:清华大学出版社,2006:237-245.
    [34]绪方胜彦.现代控制工程[M].北京:科学出版社,1980:365-396.
    [35]张爱民.自动控制理论[M].北京:清华大学出版社,2006:432-451.
    [36]陈伯时.自动控制系统[M].北京:机械工业出版社,1981:15-19.
    [37]谢克明.自动控制原理[M].北京:电子工业出版社,2004:63-65.
    [38]胡寿松.自动控制原理[M].北京:科学出版社,2004:323-325.
    [39]刘小宝,师宇杰,王广州.有源箝位推挽变换器控制器设计[A].见:中国电工技术学会电力电子学会.第十届学术年会论文集[C].西安:西安交通大学出版社,2006:13.
    [40]李现兵.MPM功率变换器研究[D].郑州:信息工程大学,2006.
    [41]卢毅,赖杰.VHDL与数字电路设计[M].北京:科学出版社,2002:256-261.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700