水电站水库群调度优化及其效益评价方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
能源是人类生存和发展的重要物质基础,攸关国计民生和国家安全。水电作为目前开发规模庞大、开发技术最为成熟的可再生能源,以其良好的调节性能、低廉的运行成本和快速的负荷响应能力,在世界电力能源格局中发挥着重要作用。我国水力资源丰富,为经济社会发展提供了能源保障。加快开发水能资源是我国增加清洁能源供应、优化能源结构、应对世界气候变化、实现可持续发展的重要措施。“十二五”时期是我国全面建设小康社会的关键时期,从我国的能源特点和自然资源结构来看,加快水电发展也是实现2020年非化石能源目标的必经之路,也是有效降低单位GDP二氧化碳排放量的重要措施。
     水库调度是水库运行管理的重要环节,调度水平直接影响着水库水电站综合效益的发挥。合理优化的水库调度方式能够在不增加硬件投入的情况下,获得可观的社会效益和经济效益,也是优化能源结构、促进节能减排的有效措施。本论文在对水库水电站群隐随机优化理论回顾归纳的基础上,分别从确定性优化调度模型建立与求解、调度规则的制定与优化、基于调度规则的水库水电站群系统仿真、效益评价及隐随机优化调度因素影响分析等方面对径流不确定条件下的水电站群优化调度进行研究。主要研究工作包括:
     (1)水库水电站群隐随机优化调度理论研究及归纳。介绍了水库确定性优化调度和随机调度的概念和特征,从径流过程角度分析二者之间的区别和关系。在分析显随机优化调度和隐随机优化调度原理的基础上,重点综述隐随机优化理论方法的国内外研究进展及其在水电站水库调度规则制定中的应用,并总结各种调度规则制定方法的适用条件和优缺点。
     (2)基于网格搜索和交叉验证的改进支持向量机模型研究。基于支持向量机方法的原理分析其在回归预测领域的优势,针对支持向量机对参数敏感和小样本回归易受训练样本随机性影响的特点,建立基于网格搜索的参数寻优机制和基于交叉验证的样本随机性规避机制,对支持向量机性能进行改进。通过实例研究,验证改进机制对支持向量机在小样本训练拟合能力和预测能力方面的效果。
     (3)基于C++和MATLAB的水库水电站群混合编程仿真平台的建立。针对隐随机优化调度在实际运行中的实现难度,考虑隐随机优化调度模型复杂、计算机实现环境多样化的特点,以支持向量机理论为例,将基于MATLAB的调度决策生成算法预测编译为动态库文件,使其在基于C++的水库水电站群系统仿真程序中被调用,实现实时滚动模拟。通过案例应用,对仿真平台的结构及系统稳定性和可扩展性进行评价。
     (4)金沙江中下游12级梯级水电系统隐随机优化调度研究及其效益评价。以我国十三大水电梯级中规模最大的金沙江中下游梯级水电站系统为例,以系统发电量和保证出力为优化目标,建立并求解梯级中长期确定性优化调度模型,作为隐随机模型的训练样本。运用改进支持向量机方法对系统调度规则制定,并模拟系统1989-2000年运行过程。另基于多元逐步回归法制定调度规则并仿真,将同期确定性优化调度结果及两种仿真结果进行对比。对仿真结果的发电量、发电过程、保证出力等方面进行对比,分析仿真结果的效益和可靠性。
     (5)隐随机优化调度模型因素影响研究。定量研究梯级规模、径流预报误差、模型参数、输出决策等因素对梯级水电站群隐随机优化调度仿真结果的影响。基于金沙江下游——长江中游大型梯级水电系统,以其宗单库、其宗——向家坝12级和其宗——葛洲坝14级三种电站组合为研究对象,控制各影响因素变化范围,并分别进行仿真运行和效益评价。评价结果所揭示的各因素所带来的影响方式对于支持向量机理论的改进以及隐随机优化调度的下一步发展有着重要的参考价值。
As one of the most important basis for human survival and development, energy is at stake of national economy and security. Hydropower, which is currently the most massive and technique mature renewable energy, has its unique advantage for its good regulating performance, low running costs and fast load response capability, thus plays an important role in the world of electrical energy pattern. Hydropower potential is abundant in China, which provides vital energy security for economic and social development. Accelerating hydropower development is important measure to increase our supply of clean energy, optimize energy structure, respond to climate change and achieve sustainable development. For the twelfth five year plan period is a critical stage of building our moderately prosperous society, from the characteristics of China's natural resources and energy structure, accelerating hydropower development is not only the only way to achieve the2020non-fossil energy consumption goals, but also important measure to effectively reduce the carbon dioxide emissions per unit of GDP.
     Reservoir operation plays an important role in reservoir operation and management, which directly affects the overall efficiency of hydropower systems. Reasonable and optimal reservoir operation is able to gain considerable social and economic benefits without increasing any hardware investment, which is a key manner to optimize energy structure and energy conservation. This paper takes implicit stochastic optimization theory as basis, comprehensively researches on the deterministic reservoirs operation model and solution, derivation and optimization of operating rules, hydropower system operation based on operating rules, benefit evaluation and factors assessment. The major achievements are as following:
     (1) Implicit stochastic optimization theory analysis for hydropower operation. The concept and characteristics of deterministic optimal operation and stochastic optimal operation as well as their differences and relationships. Based on analysis of explicit stochastic optimization and implicit stochastic optimization, this paper reviewed research progress of implicit stochastic optimization theory and its application operating rules derivation. summarized applicable conditions, advantages and disadvantages of various ISO methods.
     (2) Support Vector Machine research based on grid search and cross validation. The advantages of Support Vector Machine are analyzed with its principle. Considering the parameter sensitivity feature and the model vulnerability caused by small-size training samples, grid search and cross validation mechanisms are established to improve the SVM performance. The effect of improved Support Vector Machine en regression and prediction precision is validated by case study.
     (3) Hybrid programming simulation platform for reservoirs and hydropower stations based on C++and MATLAB. Considering the difficulties of implicit stochastic optimization implementation in actual operation,and the simulation model complexity of implicit stochastic optimization and diversity in computer implementation languages, this paper takes SVM for example, compiled the operating rules derivation algorithm into dynamic library files, which are then called by reservoir simulation platform to implement real time rolling simulation. Based on case study, the stability and scalability of simulation system of system structure is evaluated.
     (4) Implicit stochastic optimization of Jinsha mid-downstream twelve cascaded hydropower system and benefit evaluation. Based on the largest hydropower system of China's thirteen hydropower bases, deterministic optimization model with maximum electric production and maximum firm output is established and solved as training samples for ISO. System operating rules is established using improved SVM and simulated during the year1989-2000. Additionally, the system is simulated independently using multiple progressive linear regression and simulated. Three operation results are compared and discussed. According to comparisons on electric production, output process and firm output, the benefit and reliability is assessed comprehensively of simulation results.
     (5) Factors analysis of ISO model. The influence of cascade scale, inflow forecast error, mdel parameters and decision output of operating rules are analyzed. Based on Jinsha River-middle Yangtze hydropower system, three cases are formed Qi Zong single reservoir, cascade system with twelve reservoirs from Qi Zong to Xiang Jiaba and cascade system with fourteen reservoirs from Qi Zong to Ge Zhouba. By controlling the range of each factor, different scenarios are simulated and evaluated. The effect of each factor revealed by simulation results provides vital reference value for SVM theory improvement and future ISO research.
引文
[I]International Energy Agency. Renewable Energy Essentials:Hydropower. [2010]. http://www. iea. org/publications/freepublications/publi cation/name,3930. en. html
    [2]国家能源局.国家能源科技“十二五”规划(2011-2015). [2011-12]. http://www. nea. gov. cn
    [3]裴哲义.大型流域水电站水库群联合优化调度及风险分析[D].华北电力大学,2012
    [4]万俊,高仕春,艾学山.水资源开发利用[M].武汉:武汉大学出版社,2008
    [5]Bellman, Richard, Ernest dynamic programming[M]. Princeton University Press, N.J.,1957
    [6]Howard, R. A. Dynamc programming and Markov processes[M]. Cambridge: Technology Press of Massachusetts Institute of Technology,1960
    [7]S. J. Mousavi, K. Ponnambalam, F. Karray, Inferring Operating Rules for Reservoir Operations using Fuzzy Regression and ANFIS[J]. Fuzzy Sets and Systems,2007, 158:1064-1082
    [8]Xiao-Lin Wang, Zheng-Jie Yin, Yi-Bing Lv, Si-Fu Li, Operating Rules Classification System of Water Supply Reservoir based on Learning Classifier System[J]. Expert Systems with Applications,2009,36:5654-5659
    [9]陈洋波.水电站水库隐性随机优化调度研究[J].水利学报,1998,02:27-30
    [10]Gilest, J. Weekly Multipurpose Planning Model for TVA Reservoir System[J]. Journal of Water Resources Planning and Management,1981,107:495-511
    [11]Masse P. B. P., Les Rserves. Regulation de L'Avenir dans L'a Vic Economique[J]. Hermann and Cie Paris,1946
    [12]Little J. D. C. The Use of Storage Water in a Hydroelectric System[J]. Operational Research,1955,3:187-197
    [13]Hall W, D. Howell. The Optimization of Single Purpose Reservoir Design with the Application of Dynamic Programming to Synthetic Hydrology Sample[J]. Journal of Hydrology,1964,02:141-149
    [14]Young, G. K. Finding Reservoir Operating Rules[J]. Journal of Hydrology,1967, 93(HY6):197-321
    [15]Becker L., Yeh W. W-G. Optimization of Real Time Operation of A Multiple Reservoir System[J]. Water Resources Research,1974,10(6):1107-1112
    [16]Becker L., Yeh W. W-G., D. Fults. Operations Models for Central Valley Project[J]. Journal of Water Resources Planning and Management.1976,102(WR1):101-115
    [17]Trott William J., Yeh William W. G. Optimization of Multiple Reservoir Systems[J]. Journal of Hydrology,1973,99:1865-1884
    [18]Yeh W., Trott W. Optimization of Water Resources Development:Optimization of Capacity Specification for Components of Regional, Complex, Integrated, Multi-purpose Water Resources Systems[M]. Los Angeles:University of California Press,1972
    [19]Sutton, R., A. Barto. Reinforcement Learning:An Introduction, MIT Press, 2000,Cambridge, Mass.
    [20]J. Piantadosi, A. V. Metcalfe, P. G. Howlett. Stochastic Dynamic Programming (SDP) with a Conditional Value-at-risk(CVaR) Criterion for Management of Storm-water[J]. Journal of Hydrology,2008,348:320-329
    [21]El-war F., Labadie J., Ouarda T. Stochastic Differential Dynamic Programming for Multi-reservoir System Control[J]. Stochastic Hydrology and Hydraulics.1998, 12(4):247-266
    [22]Larson, R. E. State Increment Dynamic Programming[M]. Elsevier, New York, 1968
    [23]Hedari M., V. T. Chow. Discrete Differential Dynamic Programming Approach to Water Resources Systems Optimization[J]. Water Resources Research,1971,7(2): 273-282
    [24]Howson H. R. A New Algorithm for the Solution of Multistage Dynamic Programming Problems[J]. Mathematical Programming,1975,8(1):104-116
    [25]Mesarovic M.D., Maeko D., TakaharaY. Theory of Hierarchical Multilevel Systems[M], New York:Academic Press,1970
    [26]伍永刚,王定一.基于ANN的梯级水电站实时优化运行[J].系统工程,2000,(3):78-80
    [27]钟平安,徐斌,张金花.水电站发电优化调度遗传算法的改进[J].水力发电学报,2011,(5):55-60
    [28]舒隽,韩冰,张粒子.基于信息诱导遗传算法的梯级水电站自调度优化[J].水力发电学报,2011,(2):32-37
    [29]施展武,罗云霞,邱家驹.基于Matlab遗传算法工具箱的梯级水电站优化调度[J].电力自动化设备,2005,(11):34-37
    [30]Kennedy J., Eberhart R. C. Particle Swarm Optimization[C]. Proceeding of the 1995 IEEE International Conference on Neural Network. Perth, Australia,1995, (4):1942-1948
    [31]P. K. Hota, A. K. Barisal, R. Chakrabarti. An Improved PSO Technique for Short-term Optimal Hydrothermal Scheduling[J]. Electric Power Systems Research, 2009, (79):1047-1053
    [32]Dorigo M., Gambardella L. M. Ant algorithms for Discrete Optimization[J]. Artificial Life,1999,5(2):137-172
    [33]Metroplis N, Rosenbluth A., Rosenbluth Metal. Equation of State Calculations by Fast Computing Machines[J]. Journal of Cherimal Physics,1953,21:1087-1092.
    [34]Kirkpatrick S., GelattJr C.D., Vecchi M.P. Optimization by Simulated Annealing[J]. Science,1983,220:671-680
    [35]Ramesh S., Teegavarapu V., Slobodan P. Simonovic. Optimal Operation of Reservoir Systems using Simulated Annealing[J]. Water Resources Management. 2002,16(5):401-428
    [36]邵琳,王丽萍,黄海涛,杨子俊,喻杉.梯级水电站调度图优化的混合模拟退火遗传算法[J].人民长江,2010,(3):34-37
    [37]杨俊杰.基于MOPSO和集对分析决策方法的流域梯级联合优化调度[D].华中科技大学,2007
    [38]张杨.二滩水电站中长期径流预报及隐随机优化调度模型研究[D].大连理工大学,2009
    [39]王昱倩.基于随机动态规划的梯级水电站水库群机会约束优化调度规则[D].大连理工大学,2013
    [40]John W. Labadie. Optimal Operation of Multi-reservoi Systems:State-of-the-art Review[J]. Journal of Water Resources Planning and Management,2004,30(2): 93-111
    [41]Andrea Sulis. GRID Computing Approach for Multireservoir Operating Rules with Uncertainty[J]. Environmental Modelling & Software,2009,24:859-864
    [42]周晓阳,马寅午,张勇传.梯级水库的参数辨识型优化调度方法(Ⅱ)——最优调度函数的确定[J].水利学报,1999,09:10-19
    [43]裘杏莲,汪同庆,戴国瑞,彭先传,沈新平,谭子玉,王力平.调度函数与分区控制规则相结合的优化调度模式研究[J].武汉水利电力大学学报,1994,04:382-387
    [44]雷晓云,陈惠源,荣航仪,袁怀冰.水库群多级保证率优化调度函数的研究及应用[J].灌溉排水,1996,02:14-18
    [45]Young G. K. Finding Reservoir Operating Rules[J]. Journal of the Hydraulics Division,1967,93(6):297-322
    [46]Revelle, C., E. Joeres, W. Kirby. The Linear Decision Rule in Reservoir Management and Design:1, Development of the Stochastic Model[J]. Water Resources Research,1969,5(4):767-777
    [47]Karamouz M., M. H. Houck. Annual and Monthly Reservoir Operating Rules Generated by Deterministic Optimization[J]. Water Resources Research,1982, 18(5):1337-1344
    [48]张勇传,刘鑫卿,王麦力,等.水库群优化调度函数[J].水电能源科学,1988,6(1):69-79
    [49]陈洋波,陈惠源.水电站库群隐随机优化调度函数初探[J].水电能源科学,1990,8(3):216-223
    [50]王丽萍,周婷.水电站月度调度函数的模型制定与模拟结果评价[J].华北电力大学学报(自然科学版),2009,01:80-83+90
    [51]Chang-ming JI, Ting ZHOU, Hai-taoHUANG. Establishment and Evaluation of Operation Function Model for Cascade Hydropower Station[J]. Water Science and Engineering,2010,04:443-453
    [52]田峰巍,解建仓.梯级水电站群隐随机优化调度函数的统计分析[J].水力发电学报,1992,37(2):52-58
    [53]纪昌明,苏学灵,周婷,等.梯级水电站群调度函数的模拟与评价[J].电力系统自动化,2010,34(3):33-37
    [54]胡铁松,万永华,冯尚友.水库群优化调度函数的人工神经网络方法研究[J].水科学进展,1995,6(1):53-60
    [55]刘攀,郭生练,庞博,等.三峡水库运行初期蓄水调度函数的神经网络模型研究及改进[J].水力发电学报,2006,25(2):83-89
    [56]缪益平,纪昌明.运用改进神经网络算法建立水库调度函数[J].武汉大学学报(工学版),2003,36(1):42-44,58
    [57]陈建康,马光文.水库最优调度规则的神经网络模型[J].四川水力发电,2001,(02):94-95,102
    [58]Oliveira, R., D. P. Loucks. Operating rules for multireservoir systems[J]. Water Resources Research,1997,33(4):839-852
    [59]王东泉,李承军,张铭.基于遗传算法的水库中长期调度函数研究[J].水力发电,2006,32(10):92-94
    [60]Li Chen, James McPhee, William W.-G. Yeh. Adiversified multiobjective GA for Optimizing Reservoir Rule Curves[J]. Advances in Water Resources,2007,30(5): 1082-1093
    [61]Mehrdad Hakimi-Asiabara, Seyyed Hassan Ghodsypoura, Reza Kerachian. Deriving Operating policies for Multiobjective Reservoir Systems Application of Self Learning Genetic Algorithm[J]. Applied Soft Computing,2010,10(4): 1151-1163
    [62]杨子俊,王丽萍,邵琳,等.基于粒子群算法的水电站水库发电调度图绘制[J].电力系统保护与控制,2010,38(14):59-62
    [63]纪昌明,喻杉,周婷,等.蚁群算法在水电站调度函数优化中的应用[J].电力系统自动化,2011,35(20):103-107
    [64]Mark E Borsuk, Craig A Stow, Kenneth H Reckhow. A Bayesian Network of Eutrophication Models for Synthesis, Prediction, and Uncertainty Analysis[J]. Ecological Modelling,173(2-3):219-239
    [65]J. Bromley, N. A. Jackson, O. J. Clymer, A. M. Giacomello, F. V. Jensen. The Use of Hugin to Develop Bayesian Network Sasanaid to Integrated Water Resource Planning[J]. Environmental Modelling & Software,2008,20(2):231-242
    [66]L. MEDIERO, L. GARROTEb and F. MARTIN-CARRASCOb. A Probabilistic Model to Support Reservoir Operation Decisions During Flash Floods[J]. Hydrological Sciences Journal,2007,52(3):523-537
    [67]Karamouz M., H. V. Vasiliadis. Bayesian Stochastic Optimization of Reservoir Operation using Uncertain Forecasts[J]. Water Resources Research,1992,28(5): 1221-1232
    [68]Bahram Malekmohammadia, Reza Kerachianb, Banafsheh Zahraie. Developing Monthly Operating Rules for a Cascade System of Reservoirs Application of Bayesian Networks[J]. Environmental Modeling & Software,2009,24(12): 1420-1432
    [69]L.A.Zadeh. Fuzzy Sets[J]. Information and Control,1965,8(3):338-353
    [70]R. Moeini, A. Afshar, M. H. Afshar. Fuzzy Rule Based Model for Hydropower Reservoirs Operation[J]. International Journal of Electrical Power & Energy Systems,2011,33(2):171-178
    [71]廖明潮,高洪波.基于MATLAB模糊系统在水库调度中的应用初探[J].武汉工业学院学报,2004,23(1):22-24
    [72]Paulo Chaves, Toshiharu Kojiri. Deriving Reservoir Operational Strategies Considering Water Quantity and Quality Objectives by Stochastic Fuzzy Neural Networks[J]. Advances in Water Resources,2007,30(5):1329-1341
    [73]Shiwei Yu, Xiufu Guo, Kejun Zhu. A Neuro Fuzzy GA BP Method of seismic reservoir fuzzy rules extraction[J]. Expert Systems with Applications,2010,37(3): 2037-3042
    [74]VapnikV. N. The nature of Statistical Learning Theory[M]. Springer, NewYork, 1999
    [75]Vapnik V., Lcvin E, LcCY. Measuring the VC Dimension of a Learning Machine[J]. Neural Computation,1994, (6):851-876
    [76]Osuna E., Frcund R. Training Support Vector Machines:an Application to Face Detection[C]. Proc. of Computer Vision and Parrtern Recognition,1997:130-136
    [77]马勇,丁晓青.基于层次型支持向量机的人脸检测[J].清华大学学报(自然科学版),2003,43(1):35-38
    [78]叶航军,白雪生,徐光佑.基于支持向量机的人脸姿态判定[J].清华大学学报(自然科学版),2003,43(1):67-70
    [79]忻栋,杨莹春,吴朝晖.基于SVMHMM混合模型的说话人确认[J].计算机辅助设计与图形学学报,2002,14(11):1080-1082
    [80]段立娟,崔国勤,高文,等.多层次特定类型图像过滤方法[J].计算机辅助设计与图形学学报,2002,14(5):1-6
    [81]庄越挺,刘骏伟,吴飞,等.基于支持向量机的视频字幕自动定位与提取[J].计算机辅助设计与图形学学报,2002,14(8):1-4
    [82]吴青.基于优化理论的支持向量机学习算法研究[D].西安电子科技大学,2009
    [83]Labadie, J. Generalized Dynamic Programming Package CSUDP:Documentation and User Guide, Version 3.2a, Dep. of Civ. And Environ. Eng., Colo. State.,2003, Ft. Collins.
    [84]申建建.大规模水电站群短期联合优化调度研究与应用[D].大连理工大学,2011
    [85]Draper A, J. Implicit Stochastic Optimization with Limited Foresight for Reservoir Systems[D]. Dissertation in University of California,2001, Davis
    [86]Jacobson, H., Q. Mayne. Differential Dynamic Programming, Elsevier,1970, New York.
    [87]Mohamad I. Hejazi, Ximing Cai, Benjamin L. Ruddell. The Role of Hydrologic Information in Reservoir Operation-Learning from Historical Releases[J]. Advances in Water Resources,2008,31(12):1636-1650
    [88]舒卫民,马光文,黄炜斌,黄鹭,张洪量.基于人工神经网络的梯级水电站群调度规则研究[J].水力发电学报,2011,(02):11-14,25
    [89]Xiao-Lin Wang, Jin-Hua Cheng, Zheng-Jie Yin, Ming-Jing Guo. A New Approach of Obtaining Reservoir Operation Rules:Artificial Immune Recognition System[J]. Expert Systems with Applications,2011, (38):11701-11707
    [90]Paulo Chaves, Fi-John Chang, Intelligent Reservoir Operation System based on Evolving Artificial Neural Networks[J]. Advances in Water Resources,2008, (31): 926-936
    [91]赵基花,付永锋,沈冰,张西乾.建立水库优化调度函数的人工神经网络方法研究[J].水电能源科学,2005,(02):28-30+91
    [92]吴佰杰,李承军,查大伟.基于改进BP神经网络的水库调度函数研究[J].人民长江,2010,(10):59-62+74
    [93]Holland J H. Adaptation in Natural and Artificial Systems[M]. Ann Arbor: University of Michigan press,1975
    [94]Esat V., and Hall M. J. Water Resources System Optimization Using Genetic Algorithms[C]. Proc.,1st Int. Conf. on Hydroinformatics, Balkema, Rotterdam, The Netherlands,1994:225-231
    [95]Li Chen, James McPhee and William W.-G. Yeh. A diversified multi objective GA for Optimizing Reservoir Rule Curves[J]. Advances in Water Resources,2007,30: 1082-1093
    [96]Pearl, J. Probabilistic Reasoning in Intelligent Systems:Networks of Plausible Inference[M]. San Francisco:Morgan Kaufmann Publishers,1988
    [97]郑翠芳.基于贝叶斯网络的软件缺陷预测技术研究与应用[D].中国工程物理研究院,2006
    [98]Barton D.N., Saloranta T., Moe S.J. Bayesian Belief Networks as a Meta-modelling Tool in Integrated River Basin Management-Pros and Cons in Evaluating Nutrient Abatement Decisions under Uncertainty in a Norwegian River Basin[J]. Ecological Economics,2008,66(1):91-104
    [99]V.N.Vapnik.Statistical Leaning Theory[M]. New York, USA:John Wiley and Sons, 1998
    [100]VN.VaPnik.The Nature of Statistical Learning Theory [M]. New York:SPringer-Verlag,2000
    [101]孙德山.支持向量机分类与回归方法研究[D].中南大学,2004
    [102]曹慧.支持向量机方法在风电场风速预测中的应用研究[D].华北电力大学(北京),2010
    [103]李忠伟.支持向量机学习算法研究[D].哈尔滨工程大学,2006
    [104]常甜甜.支持向量机学习算法若干问题的研究[D].西安电子科技大学,2010
    [105]唐发明.基于统计学习理论的支持向量机算法研究[D].华中科技大学,2005
    [106]彭兵.基于改进支持向量机和特征信息融合的水电机组故障诊断[D].华中科技大学,2008
    [107]刘靖旭.支持向量回归的模型选择及应用研究[D].国防科学技术大学,2006
    [108]Scholkopf B. Comparing Support Vector Machines with Gaussian Kernals to Radial Basis Function Classifiers[J]. IEEE trans. on Signal Processing,1997,45: 2758-2765
    [109]Smola A. J. Learning with Kernals[M]. Berlin:Technical University of Berlin, 1998
    [110]涂征宇,苏永华,杨明辉,等.基于径向基核函数逼近的河岸山坡失稳概率分析[J].铁道科学与工程学报,2011(5):72-78
    [111]林茂六,陈春雨.基于傅立叶核与径向基核的支持向量机性能之比较[J].重庆邮电学院学报(自然科学版),2005(6):647-650
    [112]王梅.一种改进的核函数参数选择方法[D].西安科技大学,2011
    [113]林涛.网格搜索法优化气相色谱程序升温分离[D].西北大学,2001
    [114]罗瑜.支持向量机在机器学习中的应用研究[D].西南交通大学,2007
    [115]Xianglou Liu, Dongxu Jia, Hui Li. Research on Kernel Parameter Optimization of Support Vector Machine in Speaker Recognition[J]. Science Technology and Engineering,2010,10(7):1669-1673
    [116]王兴玲,李占斌.基于网格搜索的支持向量机核函数参数的确定[J].中国海洋大学学报,2005,35(5):859-862
    [117]徐茹枝,王宇飞.粒子群优化的支持向量回归机计算配电网理论线损方法[J].电力自动化设备,2012,32(05):86-89+93
    [118]刘东平,单甘霖,张岐龙,等.基于改进遗传算法的支持向量机参数优化[J].微计算机应用,2010,(5):11-15
    [119]龙华.基于免疫遗传算法的支持向量机参数优化及其应用[J].计算机与现代化,2012,3:15-18+22
    [120]张培林,钱林方,曹建军,等.基于蚁群算法的支持向量机参数优化[J].南京理工大学学报(自然科学版),2009,4:464-468
    [121]于明,艾月乔.基于人工蜂群算法的支持向量机参数优化及应用[J].光电子激光,2012,2:374-378
    [122]刘群锋.最优化问题的几种网格型算法[D].湖南大学,2011
    [123]王健峰.基于改进网格搜索法SVM参数优化的说话人识别研究[D].哈尔滨工程大学,2012
    [124]史立校.基于交叉验证模型选优方法的中文分词系统的设计与开发[D].山西大学,2012
    [125]Devroye, L, Wagner, T. J. Distribution-Free Performance Bounds for Potential Function Rules[J]. IEEE Transaction in Information Theory,1979,25(5):601-604
    [126]徐红敏.基于支持向量机理论的水环境质量预测与评价方法研究[D].吉林大学,2007
    [127]张彪.基于ANSYS/Fluent混合编程的参与性介质耦合换热研究[D].哈尔滨工业大学,2010
    [128]杨晓静.基于VC++和MATLAB混合编程的风电场风速预测系统的研究[D].华北电力大学,2012
    [129]韩顺杰.基于支持向量机的工程车辆自动变速方法研究[D].吉林大学,2009
    [130]李亚军.基于MATLAB与C/C++的盲处理系统混合编程模式的研究[D].长春理工大学,2011
    [131]杜源.基于VB及MATLAB混合编程的数字实时全息再现系统[D].昆明理工大学,2011
    [132]陈振强.基于混合编程的大坝安全监测评价系统研究[D].郑州大学,2009
    [133]李海奎,郎璞玫.混合编程时应注意的几个问题[J].计算机应用研究.2005,01:167-168
    [134]喻杉.基于改进蚁群算法的梯级水库群优化调度研究[D].华北电力大学,2012
    [135]Howard R.A. Dynamic Programming and Markov Processes[M]. Cambridge: Technology Press of Massachusetts Institute of Technology,1960
    [136]R. U. Jettmar, G. K. Young. Hydrologic Estimation and Economic Regret[J]. Water Resources Research,1975,11(5):648-656
    [137]刘攀,依俊楠,徐小伟,郭倩.水文资料长度对隐随机优化调度规则的影响研究[J].水电能源科学,2011,29(4):46-47+157

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700