胞外多聚物对好氧颗粒污泥形成与结构稳定化的影响研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
好氧颗粒污泥是一种特殊的生物聚集体,因具有沉降性能优异、多功能微生物分区定殖、抗污染负荷能力强等特点,在高浓度有机废处理,脱及有毒物质降解等方面具有极大的应用潜力。然而,目前好氧颗粒污泥的形成机制尚不清楚,且在长期运行过程中结构易失稳,一定程度上限制了该技术的工程化应用。本论文鉴于胞外多聚物(EPS)在生物聚集体的形成与结构维持中的重要作用,重点研究好氧颗粒污泥形成过程EPS的变化规律,并在此基础上解析不同力剪切条件下EPS对好氧颗粒污泥结构稳定性的影响,主要结果如下:
     1、通过综合比较6种不同的物理、化学提取方法的EPS提取效率及对细胞的破坏程度发现,甲酰胺、甲醛等化学提取方法对EPS组分及TOC含量测定干扰较大;热碱提取法可获得较高的EPS提取量,但其对细胞的破坏程度最大,相应EPS定量及定性分析误差大;相比60℃浴30min,80℃浴60min可提取较多的EPS,然而其造成的细胞破坏程度显著增加。为此,最终优选60℃浴30min污泥EPS提取方法。此外,比较不同提取方法下获得的两种污泥样品EPS主要成分胞外蛋白(PN)和胞外多糖(PS)发现,好氧颗粒污泥的EPS含量高于活性污泥,且PN是其EPS中的优势组分。
     2、低力剪切条件下启动序批式气提生物反应器(SABR),有机污染物得到完全去除,但SABR运行半个月后发生污泥膨胀;通过有机负荷及力剪切条件的联合调控,污泥膨胀得以有效控制,最终反应器实现完全颗粒化,污泥浓度明显增加、沉降性能有效改善。
     在好氧颗粒污泥增殖阶段(阶段Ⅲ),EPS各组分含量均显著增加,尤其是PN由61.8 mg·gVSS~(-1)增至147.7 mg·gVSS~(-1),同时SDS-PAGE结果表明污泥EPS的PN条带明显增多;在之后的阶段Ⅳ,EPS中PS含量相对增加,PN/PS比值最终稳定在1.0~1.4。推测污泥EPS中PN含量与种类的增加可能对好氧颗粒污泥初期形成具有重要作用,而合适的PN/PS比通过影响微生物表面电荷与疏性,调控微生物的聚集状态,促进好氧污泥颗粒化进程与维持其聚集性结构。
     3、力剪切力对好氧颗粒污泥结构稳定性与EPS产生的影响研究表明,低力剪切条件(表面气速为0.5 cm·s~(-1))下启动的R1反应器在运行期间污泥PS含量下降,而PN含量与PN/PS(最高达3.01)比明显增加,随之颗粒污泥迅速瓦解;而在较高力剪切条件(1.5 cm·s~(-1)和3.5 cm·s~(-1))下启动的R2、R3反应器,运行过程污泥PN、PS均有所增加,但PN/PS比相对稳定在1.39~1.81和1.15~1.39,其颗粒污泥的结构也较为稳定;相比而言,更高力剪切条件下获得的低PN/PS比值更有利于好氧颗粒污泥的结构稳定性。周期内EPS监测结果表明,高力剪切条件下基质消耗较快,产生的PS在相对较长的饥饿期内被微生物代谢利用,最终获得的适当PN/PS比有利于维持颗粒污泥的结构稳定性。颗粒污泥原位荧光染色结果进一步揭示,PS主要分布在颗粒污泥的菌胶团之间,而PN在整个颗粒污泥中均有分布,推测污泥EPS中PN、PS共同构建了好氧颗粒污泥框架结构,控制合适的PN/PS比有利于颗粒污泥结构的维持。
     对3组反应器内污泥进行PCR-DGGE分析发现,不同力剪切运行条件下微生物群落演替显著,微生物分属Betaproteobacteria,Alphaproteobacteria、Flavobacteriales等类群,其中低力剪切条件与高力剪切条件下污泥优势菌分别与Chryseobacteriumsp.和Balneimonas sp.具有较高的同源性,分析认为不同菌株直接影响EPS组分含量,进而影响污泥的絮凝性能与好氧颗粒污泥的结构特性。
Aerobic granulation, a novel environmental biotechnological process, was increasingly drawing interest in the area of biological wastewater treatment, it was exciting research work that explored beyond the limits of aerobic wastewater treatment such as treatment of high strength organic wastewaters, removal of nitrogen, phosphate, and bioremediation of toxic aromatic pollutants. But the formation mechanism of aerobic granule is unclear, and accordant viewpoint is that the formation of granule is related to extracellular polymeric substances (EPS). The effect of EPS on formation and stabilization of aerobic granule were discussed in the paper. Results are as follows:
     1. Six different physical and chemical methods were chosen for extracting EPS from activated sludge and granular sludge. Through comprehensive comparing extraction efficiency and destruction of cells about different extraction methods, 60℃water-bathing was finally chosen for quantitative analysis of EPS. Analysis for EPS extraction by different methods showed that quantity of EPS in aerobic granules was higher than that of activated sludge, and proteins were more dominant than polysaccharides in all sludge samples.
     2. The SABR reactor was started under low hydraulic shear stress (StageⅠ). Under the combined regulation of hydraulic and loading selection pressures, the control of Filamentous Sludge Bulking (StageⅡ) and multiplication of aerobic granules (StageⅢ) were effectively realized. Eventually, the tiny and homogeneous aerobic granules were formed when the C/N ratio was adjusted from 16 to 28 (StageⅣ). Aerobic granulation process was accompanied by the improvement of settling ability, increases of biomass concentration, and decrease of sludge loading rate.
     More aerobic granules were found in stageⅢ, and the EPS content increased significantly, especially PN content which was raised from 61.8 mg·gVSS~(-1) to 147.7 mg·gVSS~(-1). The process was accompanied with the increasing lanes in the SDS-PAGE. In stageⅣ, the relative content of PS was increased, and complete granulation was obtained in the reactor, with PN/PS decreased. The granular reactor operated very well with the PN/PS ration controlled between 1.0 and 1.4. Thus, it was expected that the increase of PN content and proteins varieties played an important role in the initial formation of the granule, the PN/PS ratio had an great influence on the surface charge and hydrophobicity of aerobic granule, and could effectively regulate aggregation morphology of the microorganism, appropriate PN/PS could enhance structural performance of the granules.
     3. The hydraulic shear stress had a great influence on the structural stability of aerobic granules and production of EPS. When R1 was operated under lower hydraulic shear stress (surficial gas velocity was 0.5cm/s), the PS content was decreased, however, the PN content was increased, with the ratio of PN/PS significantly improved reaching as high as 3.01, which was accompanied by rapid disintegration of the granules. When R2 and R3 were operated under higher hydraulic shear stress (surficial gas velocity in R2 and R3 were 1.5cm/s and 3.5cm/s, respectively), PN and PS were both increased to some degree, a relatively stable ratio of PN/PS was obtained in the two reactors, achieved 1.39~1.81 and 1.15~1.39 respectively, at the same time the granule structure was maintained in the two reactors. Moreover, compared R2 with R3, it was found that relative higher content of PS , then lower PN/PS ratio in EPS could improve the strength of aerobic granules to ensure that more granules were obtained. Thus, appropriate ratio of PN/PS was important for the maintenance of granule structure, while lower PN/PS ratio was beneficial to the stability and reinforcement of aerobic granules. In a single operation period, PS was significantly consumed under higher hydraulic shear stress. When there was a longer starvation time, the production and consumption of PS might be resulted by microbes' resistance to hostile environmental through controlling their energy metabolism. The production and consumption of PS kept the PN/PS ratio within a particular range during the operation period to realize the stability of granule structure. The in-situ fluorescence staining results showed that PN was distributed in the whole zoogloea, and PS was mainly distributed among the zoogloea. So PN and PS were expected to build the granule structure by jointing together, and formed the backbone of the whole granule with embedded cells to support the mechanical stability of granules.
     PCR-DGGE analysis indicated that microbial population differed obviously in all three reactors, which operated under different hydraulic shear stress. Phylogenetic analysis indicated that Betaproteobacteria, Alphaproteobacteria, Flavobacteriales were the dominant classes in the three reactors, and the predominant bacterias in low and high hydraulic shear stress conditions were closely related to Chryseobacterium sp. and Balneimonas sp. respectively. It was expected that flocculability of the sludge was closely related to the EPS, which finally determined the maintenance of the granule structure.
引文
[1] Adav SS, Lee DJ, Tay JH. Activity and structure of stored aerobic granules[J]. Environ Technol, 2007, 28:1227-1235.
    [2] Adav SS, Chang CH, Lee DJ. Hydraulic characteristics of aerobic granules using size exclusion chromatography[J]. Biotechnol Bioeng, 2008a, 99(4):791-799.
    [3] Adav SS, Lee DJ, Show KY, et al. Aerobic granular sludge: Recent advances[J]. Biotechnol Adv, 2008b, 26:411-423.
    [4] Adav SS, Lee DJ, Tay JH. Extracellular polymeric substances and structural stability of aerobic granule[J]. Water Res, 2008c, 42 (6-7): 1644-1650.
    [5] Adav SS, Lee DJ. Extraction of extracellular polymeric substances from aerobic granule with compact interior structure[J]. J Hazard Mater, 2008d, 154:1120-1126.
    [6] Adav SS, Lee DJ, Lai JY. Functional consortium from aerobic granules under high organic loading rates[J]. Bioresource Technol, 2009a, 100:3465-3470.
    [7] Adav SS, Lee DJ, Lai JY. Proteolytic activity in stored aerobic granular sludge and structural integrity[J]. Bioresource Technol, 2009b, 100:68-73.
    [8] Adav SS, Lee DJ, Lai JY. Treating chemical industries influent using aerobic granular sludge: Recent development[J]. Journal of the Taiwan Institute of Chemical Engineers, 2009c, 40:333-336.
    [9] Adav SS, Lee DJ, Lai JY. Aerobic granulation in sequencing batch reactors at different settling times[J]. Bioresource Technol, 2009d, 100:5359-5361.
    
    [10] Adav SS, Lin JCT, Yang Z, et al. Stereological assessment of extracellular polymeric substances, exo-enzymes, and specific bacterial strains in bioaggregates using fluorescence experiments[J]. Biotechnol Adv, 2010, 28: 255-280.
    [11] Alphenaar PA, Perez MC, van Berkel WJH, et al. Determination of the permeability and porosity of anaerobic sludge granules by size exclusion chromatography. Appl Microbiol Biotechnol, 1992, 36: 795-799.
    [12] American Public Health Association (APHA). Standard methods for the examination of water and wastewater[M]. 1998, Washington D.C.
    
    [13] Bae HS, Im WT, Suwa Y, et al. Characterization of diverse heterocyclic amine-degrading denitrifying bacteria from various environments[J]. Arch Microbiol, 2009,191(4):329~340.
    [14] Balest L, Lopez A, Mascolo G, et al. Removal of endocrine disrupter compounds from municipal wastewater using an aerobic granular biomass reactor[J]. Biochem Eng J, 2008, 41:288-294.
    [15] Batstone DJ, Kwller J. Variation of bulk properties of anaerobic granules with wastewater type[J]. Water Res, 2001, 35:1723-1729.
    [16] Besemer K. Biophysical controls on community succession in stream biofilms[J]. Appl Environ Microb, 2007, 73(15):4966-4974.
    [17] Beun JJ, Hendriks A, van Loosdrecht MCM, et al. Aerobic granulation in a sequencing batch reactor[J]. Water Res, 1999, 33:2283-2290.
    [18] Beun JJ, van Loosdrecht MCM, Heijnen JJ. Aerobic granulation in a sequencing batch airlift reactor[J].Water Res, 2002, 36:702-712.
    [19] Cammarota MC, Sant'Anna GL. Metabolic blocking of exopolysaccharides synthesis: effects on microbial adhesion and biofilm accumulation[J]. Biotechnol Lett, 1998, 20(1): 1-4.
    [20] Chen MJ, Zhang Z, Bott TR. Direct measurement of the adhesive strength of biofilms in pipes by micromanipulation[J]. Biotechnol Tech, 1998, 12(12):875-880.
    [21] Chen MY, Lee DJ, Tay JH. Distribution of extracellular polymeric substances in aerobic granules[J]. Appl Microbiol Biot, 2007, 73(6): 1463-1469.
    [22] Chen Y, Jiang WJ, Liang DT, et al. Aerobic granulation under the combined hydraulic and loading selection pressures[J]. Bioresource Technol, 2008a, 99:7444-7449.
    [23] Chen, Y, Jiang WJ, Liang DT, et al. Biodegradation and Kinetics of Aerobic Granules under High Organic Loading Rates in Sequencing Batch Reactor[J]. Appl Microbiol Biot, 2008b, 79:301-308.
    [24] Chu CP, Chang BV, Liao GS, et al. Observations on changes in ultrasonically treated waste activated sludge[J]. Water Res, 2001, 35(4):1038-1046.
    [25] Dlamini AM, Peiris PS, Bavor JH, et al. Rheological characteristics of an exopolysaccharide produced by a strain of Klebsiella oxytoca[J]. J Biosci Bioeng, 2009, 107(3): 272-274.
    [26] Dignac MF, Urbain V, Rybacki D, et al. Chemical description of extracellular polymers: implication on activated sludge floc matrix[J]. Water Sci Technol, 1998, 38:45-53.
    [27] Fang F , Liu XW, Xu J, et al. Formation of aerobic granules and their PHB production at various substrate and ammonium concentrations[J]. Bioresource Technol, 2009, 100:59-63.
    [28] Flemming HC, Neu TR, Wozniak DJ. The EPS Matrix: The "House of Biofilm Cells"[J]. J Bacteriol, 2007, 189(22): 7945-7947.
    [29] Fr(?)lund B, Palmgren R, Keiding K, et al. Extraction of extracellular polymers from activatied sludge using a cation exchange resin[J]. Water Res, 1996, 30(8): 1749-1758.
    [30] Gai LH, Wang SG, Gong WX, et al. Influence of pH and Ionic Strength on Cu(II) Biosorption by Aerobic Granular Sludge and Mechanism[J]. J Chem Technol Biot, 2008, 83:806-813.
    [31] Ghangrekar MM, Asolekar SR, Ranganathan KR, et al. Experience with UASB reactor start-up under different operating conditions[J]. Water Sci Technol, 1996, 34(5-6):421-428.
    [32] Goodwin and Forster. A further examination into the composition of activated sludge in relation to their settlement characteristics[J]. Water Res, 1985, 15:527-533.
    [33] Jiang HL, Tay JH, Tay STL. Aggregation of immobilized activated sludge cells into aerobically grown microbial granules for the aerobic biodegradation of phenol[J]. Lett Appl Microbiol, 2002, 35:439-445.
    [34] Jiang HL, Tay JH, Liu Y, et al. Ca~(2+) augmentation for enhancement of aerobically grown microbial granules in sludge blanket reactors[J]. Biotechnol Lett, 2003, 25(2):95-99.
    
    [35] Jiang HL, Tay JH, Maszenan AM, et al. Bacterial diversity and function of aerobicgranules engineered in a sequencing batch reactor for phenol degradation[J]. Appl Environ Microb 2004a, 70:6767-6775.
    [36] Jiang HL, Tay JH, Tay STL. Changes in structure, activity and metabolism of aerobic granules as a microbial response to high phenol loading[J]. Appl Microbiol Biot, 2004b, 63:602-608.
    [37] Karapangiotis NK, Rudd T, Sterritt RM, et al. Extraction and characterization of extracellular polymers in digested sewage sludge[J]. J Chem Tech Biot, 1989, 44:107-120.
    [38] Kim IS, Kim SM, Jang A. Characterization of aerobic granules by microbial density at different COD loading rates[J]. Bioresource Technol, 2008, 99:18-25.
    [39] Kong YH, Liu YQ, Tay JH, et al. Aerobic granulation in sequencing batch reactors with different reactor height/diameter ratios[J]. Enzyme Microb Tech, 2009, 45:379-383.
    [40] Laspidou CS, Rittmann BE. A unified theory for extracellular polymeric substances, soluble microbial products and active and inert biomass[J]. Water Res, 2002, 36(11):2711-2720.
    [41] Lemaire R, Yuan Z, Blackall LL, et al. Microbial distribution of Accumulibacter spp. and Competibacter spp. in aerobic granules from a lab-scale biological nutrient removal system[J]. Environ Micrbiol, 2007, 10(2):354-363.
    [42] Li XF, Li YJ, Liu H, et al. Characteristics of aerobic biogranules from membrane bioreactor system[J]. J Membrane Sci, 2007a, 287:294-299.
    [43] Li XY, Yang SF. Influence of loosely bound extracellular polymeric substances (EPS) on the flocculation, sedimentation and dewaterability of activated sludge[J]. Water Res, 2007b, 41(5):1022-1030.
    [44] Li AJ, Yang SF, Li XY, et al. Microbial population dynamics during aerobic sludge granulation at different organic loading rates[J]. Water Res, 2008a, 42:3552-3560.
    [45] Li XF, Li YJ, Liu H, et al. Correlation between extracellular polymeric substances and aerobic biogranulation in membrane bioreactor[J]. Sep Purif Technol, 2008b, 59:26-33.
    [46] Li XM, Liu QQ, Yang Q, et al. Enhanced aerobic sludge granulation in sequencing batch reactor by Mg~(2+) augmentation[J]. Bioresource Technol, 2009, 100:64-67.
    [47] Liu H, Fang HHP. Extraction of extracellular polymeric substances (EPS) of sludges[J]. J Biotechnol, 2002, 95:249-256.
    [48] Liu QS, Tay JH, Liu Y. Substrate concentration-independent aerobic granulation in sequential aerobic sludge blanket reactor[J]. Environ Technol, 2003, 24:1235-1242.
    [49] Liu Y, Tay JH. The essential role of hydrodynamic shear force in the formation of biofilm and granular sludge[J]. Water Res, 2002, 36:1653-1665.
    [50] Liu Y, Yang SF, Tay JH, et al. Cell hydrophobicity is a triggering force of biogranulation[J]. Enzyme Microb Tech, 2004a, 34:371-379.
    [51] Liu Y, Yang SF, Qin L, et al. A thermodynamic interpretation of cell hydrophobicity in aerobic granulation[J]. Appl Microbiol Biot, 2004b, 64:410-415.
    [52] Liu Y, Yang S F, Tay J H. Improved stability of aerobic granulesby selecting slow-growing nitrifying bacteria[J]. J Biotechnol, 2004c, 108:161-169.
    [53] Liu YQ, Liu Y, Tay JH. The effects of extracellular polymeric substances on the formation and stability of biogranules[J]. Appl Microbiol Biot, 2004d, 65:143-148.
    [54] Liu Y, Tay JH. State of the art of biogranulation technology for wastewater treatment[J]. Biotechnol Adv, 2004e, 22:533-563.
    [55] Liu Y, Wang ZW, Liu YQ, et al. A generalized model for settling velocity of aerobic granular sludge[J]. Biotechnol Progr, 2005, 21:621-626.
    [56] Liu Y, Tay JH. Influence of cycle time on kinetic behaviors of steady-state aerobic granules in sequencing batch reactors[J]. Enzyme Microb Tech, 2007, 41:516-522.
    [57] Liu XW, Sheng GP, Yu HQ. Physicochemical characteristics of microbial granules[J]. Biotechnol Adv, 2009, 27(6): 1061-1070.
    [58] Lu H, Keller J, Yuan Z. Endogenous metabolism of Candidatus Accumulibacter phosphatis under various starvation conditions[J]. Water Res, 2007, 41:4646-4656.
    [59] Martinez FO, Mendez R, Cuervo-Lopez F, et al. Role of exopolymeric protein on the settleability of nitrifying sludges[J]. Bioresource Technol, 2004, 94:43-48.
    [60] McSwain BS, Irvine RL, Hausner M, et al. Composition and distribution of extracellular polymeric substances in aerobic flocs and granular sludge[J]. Appl Environ Microb, 2005, 71(2):1051-1057.
    [61] Mishima K, Nakamura M. Self-immobilization of aerobic activated sludge-a pilot study of the aerobic upflow sludge blanket process in municipal sewage treatment[J]. Water Sci Technol, 1991,23:981-990.
    [62] Morgan JW, Forster CF, Evison L. A comparative study of the nature of biopolymers extracted from anaerobic and activated sludges[J]. Water Res, 1990, 24(6):743-750.
    [63] Morgenroth E, Sherden T, van Loosdrecht MCM, et al. Aerobic granular sludge in a sequencing batch reactor[J]. Water Res, 1997, 31:3191 -3194.
    [64] Mosquera-Corral A, de Kreuk MK, Heijnen JJ, et al. Effects of oxygen concentration on N-removal in an aerobic granular sludge reactor[J]. Water Res, 2005, 39:2676-2686.
    [65] Moy BYP, Tay JH, Toh SK, et al. High organic loading influences the physical characteristics of aerobic sludge granules[J]. Lett Appl Microbiol, 2002, 34:407-412.
    [66] Mu Y, Yu HQ, Wang G. Permeabilities of anaerobic CH_4 producing granules[J]. Water Res, 2006a, 40:1811-1815.
    [67] Mu Y, Yu HQ. Biological hydrogen production in a UASB reactor with granules. I: physicochemical characteristics of hydrogen-producing granules[J]. Biotechnol Bioeng, 2006b, 94:980-987.
    [68] Mu Y, Chen XH, Yu HQ. Rheological properties of anaerobic hydrogen-producing flocs[J].Biochem Eng J, 2007, 34:87-91.
    [69] Mu Y, Ren TT, Yu HQ. Drag coefficient of porous and permeable microbial granules[J]. Environ Sci Technol, 2008, 42:1718-1723.
    [70] Nancharaiah YV, Joshi HM, Mohan TVK, el al. Formation of aerobic granules in the presence of a synthetic chelating agent[J]. Environ Pollut, 2008, 153, 37-43.
    [71] Neu TR , Kuhlicke U, Lawrence JR. Assessment of fiuorochromes for two-photon laser scanning microscopy of biofilms microscopy of biofilms[J]. Appl Environ Microb, 2002, 68(2):901-909.
    [72] Ni BJ, Yu HQ, Sun YJ. Modeling simultaneous autotrophic and heterotrophic growth in aerobic granules[J]. Water Res, 2008, 42, (6-7): 1583-1594.
    [73] Ni BJ, Xie WM, Liu SG, et al.Granulation of activated sludge in a pilot-scale sequencing batch reactor for the treatment of low-strength municipal wastewater[J].Water Res, 2009,43(3):751-761.
    [74] Nielsen PH, Jahn A, Palmgren R. Conceptual model for production and composition of exopolymers in biofilms. Water Sci Technol, 1997, 36:11-19.
    [75] Park C, Novakb JT, Helmc RF, et al.Evaluation of the extracellular proteins in full-scale activated sludges[J]. Water Res, 2008, 42:3879-3889.
    [76] Peng DC , Nicolas B, Jean-Philippe D, et al. Rapid communication : Aerobic granular sludge-a case report[J]. Water Res ,1999 , 33 (3):890-893.
    [77] Pevere A, Guibaud G, van Hullebusch E, et al. Identification of rheological parameters describing the physic-chemical properties of anaerobic sulphidogenic sludge suspensions[J]. Enzyme Microb Tech, 2007, 40:547-554.
    [78] Pijuan M, Wemer U, Yuan ZG. Effect of long term anaerobic and intermittent anaerobic/aerobic starvation on aerobic granules[J]. Water Res, 2009, 43:3622-3632.
    [79] Punal A, Brauchi S, Rdyes JG, et al. Dynamics of extracelluar polymeric substrances in UASB and EGSB reactors treating medium and low concentrated wastewaters[J]. Water Sci Technol, 2003, 48:41-49.
    [80] Quarmby J, Forster CF. An examination of the structure of UASB granules[J].Water Res , 1995,29:2449-2454.
    [81] Qin L, Liu QS, Yang SF, et al. Stressful conditions-induced production of extracellular polysaccharides in aerobic granulation process[J]. Civil Eng Res, 2004a, 17:49-51.
    [82] Qin L, Tay JH, Liu Y. Selection pressure is a driving force of aerobic granulation in sequencing batch reactors[J]. Process Biochem, 2004b, 39:579-584.
    [83] Qin L, Liu Y, Tay JH. Effect of settling time on aerobic granulation in sequencing batch reactor[J]. Biochem Eng J, 2004c, 21:47~52.
    [84] Ren TT, Liu L, Sheng GP, et al. Calcium spatial distribution in aerobic granules and its effects on granule structure, strength and bioactivity[J]. Water Res, 2008, 42:3343-3352.
    [85] Ren TT, Mu Y, Liu L, et al. Quantification of the shear stress in a microbial granular sludge reactor[J]. Water Res, 2009, 43(18) :4643-4651.
    [86] Schwarzenbeck N, Erley R, McSwain BS, et al. Treatment of malting wastewater in a granular sludge sequencing batch reactor (SBR) [J]. Acta hydroch hydrob, 2004, 32(1): 16-24.
    [87] Seviour T, Pijuan M, Nicholson T, et al. Understanding the properties of aerobic sludge granules as hydrogels[J]. Biotechnol Bioeng, 2009a, 102(5):1483-1495
    [88] Seviour T, Pijuan M, Nicholson T, et al. Gel-forming exopolysaccharides explain basic differences between structures of aerobic sludge granules and floccular sludges[J]. Water Res, 2009b, 43(18): 4469-4478.
    [89] Shinoda Y, Sakai Y, Uenishi H, et al. Aerobic and anaerobic toluene degradation by a newly isolated denitrifying bacterium, Thauera sp. Strain DNT-1[J]. Appl Environ Microb, 2004, 70:1385-1392.
    [90] Simsek S, Mert B, Campanella OH, et al. Chemical and rheological properties of bacterial succinoglycan with distinct structural characteristics[J]. Carbohyd Polym, 2009, 76: 320-324.
    [91] Su KZ, Yu HQ. Formation and Characterization of aerobic granules in a sequencing batch reactor treating soybean-processing wastewater[J]. Environ Sci Technol, 2005, 39: 2818-2827.
    [92] Sutherland IW. Microbial exopolysaccharides-structural subtleties and their consequen ces[J]. Pure Appl Chem, 1997,69:1911-1917.
    [93] Takeda M, Suzuki I, Koizumi JI. Balneomonas flocculans gen. nov., sp. nov., A New Cellulose-producing Member of the a-2 subclass of Proteobacteria[J]. Syst Appl Microbiol, 2004,27:139-145.
    [94] Tay JH, Liu QS, Liu Y. Microscopic observation of aerobic granulation in sequential aerobic sludge blanket reactor[J]. J Appl Microbiol, 2001a, 91:168-175.
    [95] Tay JH, Liu QS, Liu Y. The effects of shear force on the formation, structure and metabolism of aerobic granules[J]. Appl Microbiol Biot, 2001b, 57:227-233.
    [96] Tay JH, Liu QS, Liu Y. The role of cellular polysaccharides in the formation and stability of aerobic granules[J]. Lett Appl Microbiol, 2001c, 33:222-226.
    [97] Tay JH, Liu QS, Liu Y. Characteristics of aerobic granules grown on glucose and acetate in sequential aerobic sludge blanket reactors[J]. Environ Technol, 2002a, 23:931-936.
    
    [98] Tay JH, Ivanov V, Pan S, et al. Specific layers in aerobically grown microbial granules[J]. Lett Appl Microbiol 2002b, 34:254-257.
    [99] Tay JH, Tay STL, Ivanov V, et al. Biomass and porosity profile in microbial granules sued for aerobic wastewater treatment[J]. Lett Appl Microbiol, 2003, 36:297-301.
    [100] Tay JH, Pan S, He YX, et al. Effect of organic loading rate on aerobic granulation:I. Characteristics of aerobic granules[J]. J Environ Eng, 2004a, 130:1102-1109.
    [101] Tay JH, Pan S, He YX, et al. Effect of organic loading rate on aerobic granulation:ll. Characteristics of aerobic granules[J]. J Environ Eng, 2004b, 130:1102-1109.
    [102] Tay JH, Jiang HL, Tay STL. High-rate biodegradation of phenol by aerobically grown microbial granules[J]. J Environ Eng, 2004c, 130:1415-1423.
    [103] Tavares CRG, Santanna GL, Capdeville B. The effect of air superficial velocity on biofilm acculation in a 3-phase fluidized-bed reactor[J]. Water Res, 1995, 29(10):2293-2298.
    [104] Tsuneda S, Nagano T, Hoshino T, et al. Characterization of nitrifying granules produced in an aerobic upflow fluidized bed reactor[J].Water Res, 2003, 37:4965-4673.
    [105] Tsuneda S , Jung J , Hayashi H. Influence of extracellular polymers on electrokinetic properties of heterothrophic bacterial cells examined by soft particle eletrophoresis theory [J ]. Colloids and Surfaces B , 2003b , 29 :181-188.
    [106] Toh SK, Tay JH, Moy BYP, et al. Size-effect on the physical characteristics of the aerobic granule in a SBR[J]. Appl Microbiol Biot, 2003, 60:687-695.
    [107] Urbain V, Block J, Manem CJ. Bioflocculation in activated sludge: an analytic approach[J]. Water Res, 1993,27:829-838.
    [108] Wang ZW, Liu Y, Tay JH. Distribution of EPS and cell surface hydrophobicity in aerobic granules[J]. Appl Microbiol Biot, 2005, 69(4):469-473.
    [109] Wang ZW,Li Y , Zhou JQ, et al. The influence of short-term starvation on aerobic granules[J]. Process Biochem, 2006, 41:2373-2378.
    [110] Wang SG, LiuXW, Gong WX, et al. Aerobic granulation with brewery wastewater in a sequencing batch reactor[J]. Bioresource Technol, 2007, 98:2142-2147.
    [111] Wang X, Zhang H, Yang F, et al. Long-term storage and subsequent reactivation of aerobic granules[J]. Bioresource Technol, 2008, 99 (13):8304-8309.
    [112] Wagner M, lvleva NP, Haisch C, et al. Combined use of confocal laser scanning microscopy (CLSM) and Raman microscopy (RM): Investigations on EPS-Matrix[J]. Water Res, 2009, 43:63-76.
    
    [113] Watnick P, Kolter R. Biofilm, city of microbes[J]. J Bacteriol, 2000, 182:2675-2679.
    [114] Wingender J, Neu TR, Flemming HC. What are bacterial extracellular polymeric substances Is?[M]. Berlin, Spinger. 1999.
    [115] Weber SD, Ludwig W, Schleifer KH, et al. Microbial composition and structure of aerobic granular sewage biofilms[J]. Appl Environ Microb, 2007, 73:6233-6240.
    [116] Whiteley AS, Bailey MJ. Bacterial community structure and physiological state within an industrial phenol bioremediation system[J]. Appl Environ Microb, 2000, 66:2400-2407.
    [117] Xiao F, Yang SF, Li XY. Physical and hydrodynamic properties of aerobic granules produced in sequencing batch reactors[J]. Sep Purif Technol, 2008, 63:634-641.
    [118] Xu H, Tay JH, Foo SK, et al. Removal of dissolved copper(II) and zinc(II) by aerobic granular sludge[J]. Water Sci Technol, 2004, 50:155-160.
    [119] Xu H, Liu Y. Mechanisms of Cd~(2+), Cu~(2+) and Ni~(2+) Biosorption by Aerobic Granules[J]. Sep Purif Technol, 2008, 58(3):400-411.
    [120]Yang SF,Tay JH,Liu Y.Effect of substrate.N/COD ratio on the formation of aerobic granules[J].J Environ Eng,2003,131(1):86-92.
    [121]Yu GH,Juang YC,Lee DJ,et al.Enhanced aerobic granulation with extracellular polymeric substances(EPS)-free pellets[J].Bioresource Technol,2009,100(20):4611-4615.
    [122]Zhang LL,Jiang LY,Fang F,et al.Role of extracellular protein in the formation and stability of aerobic granules[J].Enzyme Microb Tech,2007,41(5):551-557.
    [123]Zhang LL,Chen JM,Fang F.Biodegradation of Methyl t-Butyl Ether by Aerobic Granules under a Cosubstrate Condition[J].Appl Microbiol Biot,2008,78:543-550.
    [124]Zhang XQ,Paul L,Bishop.Biodegradability of biofilm extracellular polymeric substances[J].Chemosphere,2003,50:63-69.
    [125]Zheng YM,Yu HQ,Liu SJ,et al.Formation and instability of aerobic granules under high organic loading conditions[J].Chemosphere,2006,63:1791-1800.
    [126]Zheng YM,Yu HQ.Determination of the pore size distribution and porosity of aerobic granules using size-exclusion chromatography[J].Water Res,2007,41:39-46.
    [127]Zhu J,Wilderer PA.Effect of extended idle conditions on structure and activity of granular activated sludge[J].Water Res,2003,37:2013-2018.
    [128]Zhu L,Xu X,Luo W,et al.Formation and microbial community analysis of chloroanilines-degrading aerobic granules in the sequential airlift bioreactor[J].J Appl Microbiol,2008,104(1):152-160.
    [129]李媛,沈耀良,孙立柱.采用CSTR反应器培养好氧颗粒污泥的研究[J].中国给,2008,24(5):10-13.
    [130]刘凤阁,王志平,周江亚,等.真菌对好氧颗粒污泥稳定性的影响[J].环境科学与技术,2009,32(5):5-13.
    [131]王超,郑晓英.剪切应力对好氧颗粒污泥形态结构和微生物活性的影响机制研究[J].环境科学,2008,29(8):2235-2241.
    [132]薛向东,金奇庭,朱文芳,等.超声对污泥流变性及絮凝脱性的影响[J].环境科学学报,2006,26(6):897-902.
    [133]姚毅.活性污泥的表面特性与其沉降脱性能的关系[J].中国给,1996,12(1):22-26.
    [134]张新瑜,袁一星,伍悦滨.污处理工艺中活性污泥流变特性的研究[J].西安建筑科技大学学报,2008,40(3):388-392.
    [135]张丽丽,姜理英,方芳,等.好氧颗粒污泥胞外多聚物的提取及成分分析[J].环境工程学报,2007,1(4):127-130.
    [136]郑煜铭.活性颗粒污泥的培养及其特性表征[D].合肥:中国科技大学环境工程系,2006.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700