锌在稻体内运输、分配及积累的生理机制及基因型差异
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
稻是人类的主要粮食作物之一,稻米中的锌含量、分布及其生物活性,对以稻米为主食的人口的锌营养至关重要,然而锌在稻米中的分配与积累机制尚不明确。本试验选用籽粒锌含量有差异的不同基因型稻,研究了不同供锌平对稻生长发育及产量和品质的影响,研究了不同时期不同基因型稻对锌吸收、分配和积累的动态变化规律,得到以下结论:
     1、在缺锌pZn~(2+)11.4条件下,相对于锌敏感基因型IR26,耐低锌基因型IR8192能够更有效地增加干物质在地下部的分配来增加根长、扩大吸收面积,从而更有效地应对低锌胁迫。
     2、稻叶片叶绿素含量、胞间CO_2浓度、光合速率均随着锌离子活度升高而升高。严重缺锌使稻蒸腾速率下降显著,当锌离子活度大于pZn~(2+)11.0时,锌离子活度再升高,蒸腾速率的变化不显著。各基因型的气孔导度均在pZn~(2+) 9.7时达到最大。
     3、苗期和分蘖期,稻叶片中的锌,主要以活性较低的醋酸提取态(重金属酸盐)存在;拔节至抽穗期,锌主要以乙醇提取态(醇溶性蛋白、氨基酸等)存在。
     4、锌离子活度通过对稻有效穗数、每穗颖花数、结实率和千粒重的影响而显著影响稻单株产量,其中影响最大的是单株有效穗数,其次是每穗颖花数,而对结实率的影响相对较小,但均存在明显的基因型差异。
     5、碧玉早糯(BY)和浙农921(Z921)各器官的锌含量都随着锌离子活度的升高而增加,但不同基因型间,同一基因型不同器官间均存在差异。较高锌离子活度pZn~(2+)10.3和pZn~(2+) 9.7下,锌首先向茎、叶等营养器官分配;缺锌pZn~(2+) 11.0和pZn~(2+) 11.4条件下,锌首先满足籽粒的需要。从籽粒锌分配看,当锌离子活度小于pZn~(2+)10.3时,糙米锌含量最高,当pZn~(2+) 9.7时,颖壳锌含量则超过糙米的锌含量。糙米和精米锌含量的比值在0.79-0.90之间变化,并以pZn~(2+) 9.7时为最小。各种锌离子活度下,BY籽粒锌含量均大于Z921。
     6、稻种子本身的锌含量增加,能显著提高种子发芽率、发芽指数和活力指数。种子锌含量增加,对第8 d幼苗生长起促进作用,对第14 d幼苗生长的促进作用不明显。种子锌含量增加使幼苗叶绿素含量明显增加。
     7、种子锌含量与幼苗脯氨酸、MDA含量呈线性负相关,与可溶性糖和可溶性蛋白含量呈线性正相关。种子本身锌含量的增加有助于幼苗POD、CAT和APX酶活性的增强,以此来抵制活性氧、清除自由基等有害物质,更好的起到保护细胞不受伤害的作用。说明稻种子本身锌含量的增加有利于增强幼苗的渗透调节能力,从而提高其应对逆境胁迫的能力。
Rice is one of the major food crops for human,Zn content,distribution and biological activity of rice is essential for rice-eating humans zinc nutrition.However, the systems of Zn partitioning and accumulation is not perfect.In this study,different rice genotypes with different Zn contents were used.This research focus on rice agronomic characteristics,yield,quilty,zinc partitioning and accumulation to different Zn2+ activities.The results were as follows:
     1.The study showed that under deficiency condition pZn~(2+) 11.4,zinc-efficient genotype IR8192 could more effectively increase dry matter of root,to increase root length and root absorbing area,so as to more effectively deal with the low zinc stress than zinc-inefficient genotype IR26.
     2.Chlorophyll content,intercellular CO_2 concentration,photosynthetic rate were increased with the increasing Zn~(2+) activities.Extremely zinc deficiency made transpiration rate of seedling rice significantly decreased,when Zn~(2+) activities higher than pZn~(2+) 11.0,the further increase of Zn~(2+) activities could not make transpiration rate change significantly.Stomatal conductance of all genotypes were maximum at pZn~(2+) 9.7.
     3.In the seedling and tillering stages,acetic acid-extractable(heavy metal phosphates) zinc predominated in the leaves;jointing to heading stages, ethanol-extractable(alcohol-soluble proteins,amino acids,et al) zinc predominated in the leaves.
     4.Different Zn~(2+) activities had a significant effect on rice yield per plant through effective panicles per plant,spikelet numbers per panicles,seed setting rate, 1000-grain weight.Effective panicles per plant was mostly affected,spikelet numbers per panicles less,the effect on seed setting rate was relatively little, but it was differed between BY and Z921.
     5.The zinc content was increased in every organs with the decreasing of Zn~(2+) activity,and there were differences between genotypes,also organs.Zn first accumulated to vegetative organs under sufficient Zn supply;Zn first accumulated to grains under deficient Zn supply.Judging form the distribution of grain zinc,when Zn~(2+) activity lower than pZn~(2+) 10.3,the zinc content in brown rice was higher than that in grain hull,but with the Zn~(2+) activity increasing,the zinc content in grain hull became higher.The zinc ratio of brown rice to milled rice was always between 0.79 to 0.90,the ratio was the smallest when pZn~(2+) 9.7.The grain zinc content in BY was much higher than that in Z921 at any Zn2+ activity.
     6.The seeds germination rate,germination index and vigor index increased with the Zn content of rice seeds increasing.The seedling height and root length of the 8th rice seedling increased with the Zn content of rice seeds increasing. The seedling chlorophyll content increased significantly with the Zn content of rice seeds increasing.
     7.Seedling protein and MDA content was negatively correlated with Zn content of rice seeds;soluble sugar and soluble protein was positively correlated with Zn content of rice seeds.APX,POD,CAT activity increased certainly with the Zn content of rice seeds increasing,in order to resist the reactive oxygen species,scavenging free radicals and other harmful substances,and better to protect cells from damage.So,increasing Zn content of rice seeds was conducive to enhancing the seedling osmotic adjustment ability in order to improve their ability to cope with stress.
引文
1.陈文荣,冯英,杨肖娥.真核生物外转运子研究进展.浙江师范大学学报(自然科学版),2005,28(3):319-324.
    2.陈晓远,凌木生,高志红.分胁迫对稻叶片可溶性糖和游离脯氨酸含量的影响.河南农业科学,2006,(12):26-30.
    3.葛娟,齐丽杰.Ar离子注入对紫花苜蓿发芽、生长及幼苗脂质过氧化的影响。种子,2005,2:38-41.
    4.董爱平.施锌对玉米产量和品质的影响.土壤肥料,1995,(5):1-3.
    5.姜雯,赵明,樊堂群,金灵娜.粮食作物锌的吸收运转分配和改善子粒锌含量的理论与技术途径.中国土壤与肥料,2006,(4):10-15.
    6.姜雯.早稻锌吸收分配与积累及其模型的构建.北京:中国农业大学,2005.
    7.杜新民,张永清.施锌对石灰性褐土上小白菜光合作用及保护酶活性的影响.西北植物学报,2008,28(6):1203-1207.
    8.丁文军.植酸与微量元素.国外医学地理分册,2001,22(2):58-60.
    9.韩金玲,李雁鸣,马春英.锌对作物生长发育及产量的影响.河北科技师范学院学报,2004,18(4):72-75.
    10.胡学玉,李学垣,谢振翅.富锌植物---植物营养遗传资源研究的新视点.湖北农业科学,1999,(6):31-34.
    11.李春俭.高等植物的矿质营养.北京:中国农业大学,2001.
    12.李芳贤,王金林,李玉兰.锌对夏玉米生长发育及产量影响的研究.玉米科学,1999,(7):72-77.
    13.李合生.植物生理生化试验原理和技术.北京:高等教育出版社,2000,53-156.
    14.李兴国,卢健鸣,李萍.锌与人体健康.山西食品工业,2000,(2):45-46.
    15.李志刚,叶正钱,方云英,杨肖娥.供锌平对稻生长和锌积累和分配的影响.中国稻科学,2003,17(1):61-66.
    16.刘建新.锌对玉米幼苗生长及细胞保护酶活性的影响.甘肃科学学报,2002,16(4):42-45.
    17.梁世胡,李传国,伍应运.杂交稻产量构成因素的通径分析.广东农业科学,1999(6):4-6.
    18.龙新宪,麦少芝,林初夏.Zn在两种生态型东南景天体内的分布和对亚显微 结构的影响.应用与环境生物学报,2005,11(5):536-541.
    19.龙新宪,杨肖娥.植物育种途径改善人类的铁、锌营养.广东微量元素科学,1998,5(9):5-10.
    20.陆景陵.植物营养学(第二版).中国农业大学出版社,2003:208.
    21.祁明,章士炎.锌与素代谢的研究.土壤肥料,1982,30:26-28.
    22.施木田,陈如凯.锌硼营养对苦瓜叶片碳代谢的影响.植物营养与肥料学报,2004,10(2):198-201.
    23.施木田,陈如凯.锌对苦瓜叶片碳代谢及相关酶活性的影响研究.中国生态农业学报,2004,12(1):59-62.
    24.石荣丽,邹春琴,张福锁.籽粒铁、锌营养与人体健康研究进展.广东微量元素科学,2006,13(7):1-8.
    25.汪洪,金继运.铁、镁、锌营养胁迫对植物体内活性氧代谢影响机制.植物营养与肥料学报,2006,12(5):738-744.
    26.汪洪,金继运,周卫.不同土壤分供应与施锌对玉米分代谢的影响植物营养与肥料学报,2004,10(4):361-373.
    27.王夔.生命中的微量元素(第二版).北京:中国计量出版社,1996:566-661.
    28.王人民,陈光财,张永鑫.锌离子活度对稻膜透性的影响及基因型差异.中国农业科学,2004,37(8):1114-1118.
    29.王人民,杨肖娥,杨玉爱.稻对不同Zn~(2+)活度反应的基因型差异及其生理特性的研究.浙江农业大学学报,1997,23(4):442-446.
    30.王人民,杨肖娥.不同锌离子活度对稻养分吸收的影响及其基因型差异.作物学报,2001,27(5):566-574.
    31.王人民,杨肖娥,杨玉爱.稻低锌基因型的生长发育和若干重量特性的研究.植物营养与肥料学报,1998,4(3):284-293.
    32.王祥,李鹏,印莉萍.酵母和植物的锌转运系统及其调控.植物学通报,2007,24(6):799-806.
    33.王晓波,宋凤斌.锌对稻萌发的影响.吉林农业大学学报,2005,27:119.
    34.王忠.植物生理学.北京:中国农业出版社,2002.
    35.吴箐,杜锁军,曾晓雯,方晓航,于方明,仇荣亮.锌在长柔毛委陵菜细胞中分布和化学形态研究.生态环境,2006,15(1):40-44.
    36.徐晓燕,杨肖娥,杨玉爱.锌在植物中的形态及生理作用机理研究进展.广东微量元素科学,1999,6(11):1-5.
    37.杨惠杰,李义珍,黄育民.超高产稻的产量构成和库源结构.福建农业学报,1999,14(1):1-5.
    38.杨建肖,杨国航,孙世贤.硫酸锌处理对玉米种子萌发的生理效应.植物营养与肥料学报,2009,15(2):410-415.
    39.杨居荣,贺建群,张国祥,毛显强.农作物对Cd毒害的耐性机理探讨.应用生态学报,1995,6(1):87-91.
    40.杨玉爱.稻低锌基因型的生长发育和若干重量特性的研究.植物营养与肥料学报,1998,4(3):284-293.
    41.姚斌.植酸酶的分子生物学与基因工程.生物工程学报,2000,16(1):1-5.
    42.曾昭华.农业生态与土壤环境中锌元素的关系.吉林地质,2001,20(3):58-63.
    43.张名位,膨仲明,徐运启.黑米品质性状的相关性.广东农业科学,1993,(5):32-35.
    44.张素军.光和NaCl处理对碱蓬叶片中抗坏血酸过氧化物酶(APX)活性的影响.山东:山东师范大学,2003.
    45.张卫红.微量元素锌与人体健康.中华临床医学实践杂志,2007,6(6):446-447.
    46.赵宁春,张其芳,程方民,周伟军.、锌营养对稻籽粒植酸含量的影响及几种矿质元素间的相关性.中国稻科学,2007,21(2):185-190.
    47.赵同科.植物锌营养研究综述与展望.河北农业大学学报,1996,19(1):102-107.
    48.郑小林,彭克勤.稻对~(65)Zn吸收和分配的比较研究.核农学报,2000,14(4):241-245.
    49.周化斌,姜丹,金卫挺,徐根娣,刘鹏.锰对大豆种子萌发的影响.种子,2003,4:22-23.
    50.褚天铎,刘新保,王淑惠.小麦施锌肥效果及使用技术的研究.土壤肥料,1987,(4):24-26.
    51.Brune A,Urbach W,Dietz K J.Compartment and transport of zinc in barley leaves as basic mechanism involved in zinc tolerance.Plant Cell Environ,1994,17:153-162.
    52.Burke JP,Fenton MR.Effect of zinc-deficient diet on liPid peroxidation in liver tumor subcellular membranes. Experimental Biology and Medicine, 1985, 179:187-191.
    
    53. CakmakI, Maschaner H. Mekanism of phosphorous-induced zinc deficency in cottom. Phsiol Plant, 1987,70: 13-20.
    
    54. Cayton MTC, Reyes E, Neue HU. Effect of zinc fertilization on the mineral nutrition of rice differing in tolerance to zinc deficiency. Plant and Soil, 1985, 87:319-327.
    
    55. Eng BH, Guerinot ML, Eide D. Sequence analyses and phylogenetic characterization of the ZIP family of metal ion transport protein. J Membr Biol,1998,166: 1-7.
    
    56. Evans HJ, Sorger GJ. Role of mineral elements with emphasis on the univalent cations.Ann.Rew.Plant Physiol., 1966,17: 46-47.
    
    57. Frossard E, Bucher M, Machler F. Potential for increasing the content and bioavailability of Fe, Zn and Ca in plants for human nutrition. Journal of the Science of Food and Agriculture, 2000, 80: 861-879.
    
    58. Genc Y, McDonald GK, Graham RD. Differential expression of zinx efficiency during the growing season of barley. Plant and Soil, 2004,263: 273-282.
    
    59. Graham RD, Senadhira S, Beebe S. Breeding for micronutrient density in edible portion of staple food crops: conventional approaches. Field Crops Research, 1999,60: 57-80.
    
    60. Guliev NM, Bairamov SM, Aliev DA. Functional organization of carbonic anhydrase in higher plants. Plant Physiol, 1992,39: 537-544.
    
    61. Hossain MA, Jahiruddin M, Islam MR. The requirement of zinc for improvement of crop yield and mineral nutrition in the maize-mungbean-rice system. Plant Soil,2008, (306): 13-22.
    
    62. Jiang W, Struik PC, Keulen H. Does increased Zn uptake enhance grain Zn mass concentration in rice? Ann. Appl. Biol, 2008,153: 135-147.
    
    63. Jiang W, Struik PC, Keulen H. Uptake and distribution of root-applied or foliar applied ~(65)Zn after flowering in aerobic rice. Ann. Appl. Biol, 2007,150: 383-391.
    
    64. Juliano BO. Rice in human nutrition. FAO Food and Nutrition Series, No.26,Rome. 1993, 163.
    
    65. Juliano BO, Villareal CP. Grain quality evaluation of world rices. International Rice Research Institute, P. O. Box 933 Manila, Philippines, 1993, 205.
    
    66. Liao. Copper uptake and translocation in chicory and tomato plants grown in FST system. II. The role of nicotisnamine and histidine in xylem sap copper transport. Plant and Soil, 2000,223: 243-252.
    
    67. Longnecker NE. Distribution and transport of zinc in plants. In: Zinc in Soils and Plants(A. D. Robson, ed.), pp.79-91. Kluwer Academic Publishers, Dondrecht.ISBN 0-7923-2631-8, 1993.
    
    68. Marschner H. Mineral Nutrition of Higher Plants. (2~(nd) edn), Academic Press,endon, 1995: 889.
    
    69. Moroney JV, Bartlett SG, Samuelsson G. Carbonic anhydrases in plantand algae.Plant Cell and Enviroment. 2001,24: 141-153.
    
    70. Ozturk L, Yazici MA, Yucel C. Concentration and localization of zinc during seed development and germination in wheat. Physiol Plant, 2006, 128: 144-152.
    
    71. Palmgren MG, Clemens Stephan, Williams LE. Zinc biofortification of cereals: problems and solutions. Trends Plant Sci, 2008,13: 464-4731.
    
    72. Parker DR, Norvell WA, Chaney RL, GEOCHEM-PC: achemical spection program for IBM and compatible computers[J]. In: Loeppert R H, et al. Chemical Equilibrium and Reaction Models. SSSA Spec Pub.No. 42. Madison, WA:Soil Science Society of America, 1995.
    
    73. Pearson JN, Rengel Z. Uptake and distribution of ~(65)Zn and ~(54)Mn in wheat grown at sufficient and deficient levels of Zn and Mn: II During grain development. J.Exp.Bot. ,1995,46:841-845.
    
    74. Pearson JN, Rengel Z, Jenner CF. Manipulation of xylem transport affect Zn and Mn transport into developing wheat grains of culturde eays. Physiol Plant, 1996,98: 229-234.
    
    75. Pearson JN. Transfer of zinc and manganese to wheat grains. Physiol Plant, 1995,95: 449-55.
    
    76. Rengel Z. Zinc defeciency in wheat genotypes grown in conventional and chelator-buffered nutrient solutions. Plant Science, 1999,143: 221-230.
    
    77. Ross M, Welch, William A. Potential for Improving Bioavailable Zinc in Wheat Grain(Triticum Species) through Plant Breeding. Agric Food Chem, 2005, 53:2176-2180.
    
    78. Sharma PN, Tripathi A, Bisht SS. Zinc requirement for stomatal opening in cauliflower. Plant Physiol, 1995,107: 751-756.
    
    79. Stomph TJ, Jiang W, Struik PC. Zinc biofortification of cereals: rice differs from wheat and barley. Trends Plant Sci, 2009,14: 123-124.
    
    80. Wang H, Jin JY. Photosynthesis rate, chlorophyll fluorescence parameters, and lipid peroxidation of maize (Zea mays) leaves as affected by zinc deficiency. Photosynthetitu, 2005,43 (4): 591-596.
    
    81. Wang X, Hou P. Plant adaptation on physiology under drought stress. Arid Zone Research, 2001,18(2): 42-46.
    
    82. Welch RM. A new paradigm for world agricluture: meeting human needs-productive, sustainable, nutritious. Field Crops Res, 1999,60:1-10.
    
    83. White M. Metal complexation in the xylem fluid, II. Theoretical equilibrium model and compulational computer program. Plant Physiol, 1981,67: 301-310.
    
    84. Yang X, R mheld V, Marschner H. Application of chelator-buffered nutrient solution technique in studies on zinc nutrition in rice plant(Oryza sativa L.) . Plant and Soil, 1994,163:85-94.
    
    85. Yang X, Ye ZQ, Shi H. Genotypic differences in concentrations of iron,manganese, copper, and zinc in polished rice grains. Journal of plant nutrition,1998,21(7): 1453-1462.
    
    86. Yoshida S, Forno DA, Bhadrachelam A. Zinc deficiency of the rice plants on calcareous and neutral soils in Philippines. Soil Sci Plant Nutri J, 1971, 17: 83-87.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700