密闭培养条件对小鼠早期胚胎发育及胚胎Igf2/H19印迹调控区甲基化影响的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
空间胚胎发育研究已成为空间生命科学研究的重要内容之一,而胚胎密闭培养是空间胚胎发育研究的基本条件。由于气密和液密的限制,使密闭培养必须选择最适的哺乳动物早期胚胎长期体外培养的密度条件、气相条件、培养液成分等。因此能够满足胚胎发育的营养物质和代谢废物平衡的适宜的胚胎培养密度(培养胚胎数和培养液体积之比)成为首要研究内容之一。其次由于小鼠早期胚胎对环境的敏感性以及胚胎中与发育相关基因的表观遗传模式易受发育环境影响而改变,特别是Igf2/H19印迹调控区(Imprinting Control Region,ICR)的甲基化印迹容易受到体外操作和体外培养条件的影响而发生变化。因此本研究主要围绕密闭培养条件对小鼠2-细胞胚胎发育和Igf2/H19 ICR甲基化水平的影响进行初步探讨,并对密闭培养体系的优化进行进一步的深入研究和探索,从而为哺乳动物胚胎空间生物学研究提供新的研究手段和地基数据资料。
     1.在本研究设立的充有5%O2,5%CO2,90%N2高纯标准气于200μL的CZB培养液的密闭培养条件下,分析在培养胚胎数:培养液体积为1:4、1:2、1:1的3个密度条件下小鼠2-细胞胚胎分别进行4个时间点(24 h, 48 h, 72 h, 96 h)培养的胚胎发育率,以相应培养密度的常规体外培养各期胚胎发育率作为评定密闭培养条件的标准。本研究证实密闭培养和常规体外培养条件下,1:2的培养密度都比1:1和1:4更适合小鼠2-细胞胚胎培养;而且虽然密闭培养的胚胎发育率和发育速度都低于常规体外培养,但是培养96 h的孵化胚发育率几乎相同(75.1%,78.1%),可见该密闭培养条件可以用于小鼠2-细胞胚胎体外培养。
     2.应用亚硫酸氢盐PCR测序法(BSP)分析密闭培养条件下小鼠2-细胞胚胎分别培养24 h、48 h、72 h时相对应的8-细胞胚胎、桑葚胚、囊胚中Igf2/H19印记调控区(ICR)的甲基化水平,以常规体外培养条件下相应胚胎的甲基化水平作为对照,以体内发育的相应胚胎的甲基化水平作为标准。本研究证实密闭培养条件下各胚胎期Igf2/H19 ICR的甲基化水平都低于常规体外培养的结果,更低于体内发育的结果,可见密闭培养会引起小鼠早期胚胎Igf2/H19 ICR的甲基化水平降低。同时证实Igf2/H19 ICR的甲基化水平可以作为监测哺乳动物早期胚胎发育状况的一个分子指标。
The development study of embryos in space has become an important part in the research of life in space. Embryo cultured in sealed is the basic condition for the embryo development studies in space. As the gas-tight and liquid-tight restrictions, the sealed-culture should choose the most suitable density conditions, gas phase, medium composition et al, which could maintain long-term cultured for mammalian early embryos. Therefore the appropriate density of embryos cultured (embryo number/ culture medium volume), which will meet the balance between the nutritional and metabolic waste in the development of embryos, is the primary research topic. Second, because the sensitivity of mouse early embryos to the environment and the epigenetics model of genes related to development are easily changed with the development environment, especially the methylation imprinting of Igf2/H19 imprinting control region are easy to change for the impaction of manipulation in vitro and the culture condition in vitro. So this main study focus to approach initially the influence of the development of 2-cell mouse embryos and the methylation levels of Igf2/H19 imprinting control region under sealed culture condition, and to study and explorate the optimal condition of sealed culture system for further in-depth, so as to supply the new research tools and the mew data on earth for the space biology study of mammalian.
     1. On the condition of sealed culture set in the study which is composed by 200μL CZB culture medium filled the high pure reference gas of 5%O2, 5%CO2, 90%N2, analysis the development rates of 2-cell mouse embryos respectively cultured for the four time point (24 h, 48 h, 72 h, 96 h), under the 3 different densities that embryo numbers : culture medium volumes is respective 1:4, 1:2, 1:1, and using the development rates of the corresponding stages embryos by general culture in vitro as a standard. The study confirm that the culture destiny of 1:2 is much fitter for 2-cell mouse embryos, comparing 1:1 and 1:4; meanwhile, the development rates and speeds of embryos in sealed culture are lower than the results of embryos in general culture, but the development rates of hatching embryos are almost same(75.1%,78.1%), so this sealed culture condition could be used to culture 2-cell mouse embryos in vitro.
     2. Using the bisulfite sequencing PCR (BSP) to analysis the methylation levels of Igf2/H19 ICR in 8-cell embryos, morula and blastocyst, these embryos are respectively come from 2-cell mouse embryos after cultured 24 h, 48 h and 72 h in sealed culture, using the methylation levels of the corresponding stages embryos after general culture in vitro as control and the methylation levels of the corresponding stages embryos in vivo as a standard. The study confirmed that the methylation levels of Igf2/H19 ICR of all stages embeyos in sealed culture condition all were lower than the results of general cultured in vitro, and significantly lower than the results of development in vivo, so the sealed culture could make the methylation levels of Igf2/H19 imprinting control region of mouse preimplantation embryos decreased. And the study confirmed that the methylation level of Igf2/H19 imprinting control region could be as a molecular target to detect the development status of the mammal early embryos.
引文
贾青,高娟,杨博,刘丽均,郁丽丽,徐平,芮荣. 2008.小鼠体外受精及其胚胎体外培养的比较研究.实验动物与比较医学, 28(5): 305-308
    雷晓华. 2008.小鼠2, 4细胞期胚胎冷冻及冻后发育的研究[硕士学位论文].杨凌:西北农林科技大学
    李辉,田文儒,张志宏,张启耀,高善颂. 2009.热应激对小鼠卵母细胞和附植前胚胎及其生长内环境氧化损伤的影响.中国农业科学, 42(6): 2244-2249
    彭恩兰,涂洪谊,陈卫民. 2006.表遗传学与肿瘤.生命科学研究, 10(2): 52-55
    邵伟娟,赵茹茜,陶凌云,高诚,胡建华. 2007.胰岛素对小鼠胚胎印迹基因Igf2/H19甲基化水平和表达的影响.中国生物化学与分子生物学报, 23(12): 1059-1064
    Alexandre T D de O, Rui F F L, Jose′L R. 2005. Gene expression and developmental competence of bovine embryos produced in vitro under varying embryo density conditions. Theriogenology, 64(7): 1559–1572
    Allegrucci C, Denning C, Priddle H, Young D. 2004. Stem-cell consequences of embryo epigenetic defects. The Lancet, 364(9429): 206–208
    Baqir S, Smith LC. 2003. Growth restricted in vitro culture conditions alter the imprinted gene expression patterns of mouse embryonic stem cells. Cloning and Stem Cells, 5(3): 199-212
    Bavister B. 2004. Oxygen concentration and preimplantation development. Reproductive BioMedicine Online, 9(2): 484-486
    Biggers J D, McGinnis L K, Lawitts J A. 2005. One-step versus two-step culture of mouse preimplantation embryos: is there a difference? Human Reproduction, 20(12): 3376–3384
    Biggers J D, Summers M C. 2008. Choosing a culture medium: making informed choices. Fertility Sterility, 90(3): 473–483
    Bird A. 2002. DNA methylation patterns and epigenetic memory. Genes Development, 16(2): 6–21
    Bjornsson H T, Sigurdsson M I, Fallin M D, Irizarry R A, Aspelund T, Cui H M, Yu W Q, Rongione M A, Ekstr?m T J, Harris T B, Launer L J, Eiriksdottir G, Leppert M F, Sapienza C, Gudnason V, Feinberg A P. 2008. Intra-individual change over time in DNA methylation with familial clustering. The Journal of the American Medical Association, 299(24): 2877-2883
    Bollati V, Schwartz J, Wright R, Litonjua A, Tarantini L, Suh H, Sparrow D, Vokonas P, Baccarelli A. 2009. Decline in genomic DNA methylation through aging in a cohort of elderly subjects. Mechanisms of Ageing and Development, 130(4): 234-239
    Booth P J, Holm P, Callesen H. 2004. The effect of oxygen tension on porcine embryonic development is dependent on embryo type. Theriogenology, 63(7): 2040-2052
    Brandeis M, Kafri T, Ariel M, Chaillet J R, McCarrey J, Razin A, Cedar H. 1993. The ontogeny of allele-specific methylation associated with imprinted genes in the mouse. The European Molecular Biology Organization Journal, 12(9): 3669-3677
    Catt J W, Henman M. 2000. Toxic effects of oxygen on human embryo development. Human Reproduction, 15 (2): 199-206
    Charalambous M, Menheniott T R, Bennett W R, Kelly S M, Dell G, Dandolo L, Ward A. 2004. Anenhancer element at the Igf2/H19 locus drives gene expression in both imprinted and non-imprinted tissues. Developmental Biology, 271(2): 488-497
    Chatot C L, Ziomek C A, Bavister B D, Lewis J L, Torres I. 1998. An improved culture medium supports development of random-bred 1-cell mouse embryos in vitro. Journal of Reproduction and Fertility, 86: 679–688
    Ciray H N, Aksoy T, Yaramanci K, Karayaka I, Bahceci M. 2009. In vitro culture under physiologic oxygen concentration improves blastocyst yield and quality: a prospective randomized surv ey on sibling oocytes[J]. Fertility and Sterility, 91(4): 1459-1461
    Contramaestre A P, Sifontes F, Marin R, Camejo M I. 2008. Secretion of stem cell factor and granulocyte- macrophage colony-stimulating factor by mouse embryos in culture: influence of group culture. Zygote, 16: 297–301
    Dean W, Bowden L, Aitchison A, Klose J, Moore T, Meneses J J, Reik W, Feil R. 1998. Altered imprinted gene methylation and expression in completely ES cell-derived mouse fetuses: association with aberrant phenotypes. Development, 125: 2273-2282
    Dumoulin J C, Meijers C J J, Bras M, Coonen E. 1999. Effect of oxygen concentration on human in-vitro fertilization and embryo culture. Human Reproduction, 14(2): 465-469
    Dumoulin J C, Vanvuchelen R C, Land J A, Pieters M H, Geraedts J P, Evers J L. 1995. Effect of oxygen concentration on in vitro fertilization and embryo culture in the human and the mouse. Fertility and Sterility, 63(1): 115-119
    Fauque P, Jouannet P, Lesaffre C, Ripoche M A, Dandolo L, Vaiman D, Jammes H. 2007. Assisted reproductive technology affects development kinetics, H19 imprinting control region methylation and H19 gene expression in individual mouse embryos. Biology Medicine Central Developmental Biology, 7:116-235.
    Feinberg A P. 2007. Phenotypic plasticity and the epigenetics of human disease. Nature, 447: 433-440.
    Feil D, Lane M, Roberts C T, Kelley R, Edwards L J, Thompson J G, Kind K L. 2006. Effect of culturing mouse embryos under different oxygen concentrations on subsequent fetal and placental development. The Journal of Physiology, 572(4): 87-96
    Ferry L, Mermillod P, Massip A, Dessy F. 1994. Bovine embryos cultured in serum-poor oviduct-conditioned medium need cooperation to reach the blastocyst stage. Theriogenology, 42(3): 445-453
    Fortier A L, Lopes F L, Darricarrere N, Martel J, Trasler J M. 2008. Superovulation alters the expression of imprinted genes in the midgestation mouse placenta. Human Molecular Genetics, 17(11): 1653-1665
    Fouladi-Nashta A A, Alberio R and Kafi M. 2005. Differential staining combined with TUNEL labelling to detect apoptosis in preimplantation bovine embryos. Reproductive Biomedicine Online, 10(4): 497-502
    Fujita T, Umeki H, Shimura H, Kugumiya K, Shiga K. 2006. Effect of group culture and embryo-culture conditioned medium on development of bovine embryos. The Journal of Reproduction and Development, 52(1): 137-142
    Fukui Y, Lee E S, Araki N. 1996. Effect of medium renewal during culture in two different culture systems on development to blastocysts from in vitro produced early bovine embryos. Journal of AnimalScience, 74(11): 2752-2758
    Gardner D K, Lane M. 1996. Alleviation of the‘2-cell block’and development to the blastocyst of CF1 mouse embryos: role of amino acids, EDTA and physical parameters. Humman Reprodution, 11(12): 2703-2712
    Gardner D K, Lane M. 1993. Amino-acids and ammonium regulate mouse embryo development in culture. Biology of Reproduction, 48(2): 377-385
    Gardner D K, Lane M. 2005. Ex vivo early embryo development and effects on gene expression and imprinting. Reproduction, Fertility and Development, 17(3): 361-370
    Gardner D K, Schoolcraft W B. 1999. Culture and transfer of human blastocysts. Current Opinion in Obstetrics and Gynecology, 11(3): 307-311
    Gardner D K, Lane M W, Lane M. 2000. EDTA stimulates cleavage stage bovine embryo development in culture but inhibits blastocyst development and differentiation. Molecular Reproduction and Development, 57(3): 256-261
    Geuns E, Rycke M D, Steirteghem A V, Liebaers I. 2003. Methylation imprints of the imprint control region of the SNRPN-gene in human gametes and preimplantation embryos. Human Molecular Genetics, 12(22): 2873-2879
    Gopichandran N, Leese H J. 2006. The effect of paracrine/autocrine interactions on the in vitro culture of bovine preimplantation embryos. Reproduction, 131(2): 269-277
    Haaf T. 2006. Methylation dynamics in the early mammalian embryo: implications of genome reprogramming defects for development. Current Topics in Microbioly and Immunology, 310(3): 13-22
    Hamatani T, Carter M G, Sharov A A, Ko M S H. 2003. Dynamics of global gene expression changes during mouse preimplantation development. Developmental Cell, 6(1): 117-131
    Hamatani T, Ko M, Yamada M, Kuji N, Mizusama Y, Shoji M, Hada T, Asada H, Maruyama T, Yoshimura Y. 2006. Global gene expression profiling of preimplantation embryos. Human Cell, 19(3): 98-117
    Harvey A J, Kind K L, Pantaleon M, Armstrong D T, Thompson J G. 2004. Oxygen- regulated gene expression in bovine blastocysts. Biology of Reproduction, 71(4): 1108-1119
    Hatchwell E, Greally J M. 2007. The potential role of epigenomic dysregulation in complex human disease. Trends in Genetics, 23(11): 588-595
    Haycock P C, Ramsay M. 2009. Exposure of Mouse Embryos to Ethanol During Preimplantation Development: Effect on DNA Methylation in the H19 Imprinting Control Region. Biology of Reproduction, 81(4): 618-627
    Hennessy B T, Garcia M G, Kantarjian H M, Giles F. 2003. DNA methylation in haematological malignancies: the role of decitabine. Expert Opinion on Investigational Drugs, 12 (2): 1985-1993
    Hentemann M, Bertheussen K. 2009. New media for culture to blastocyst. Fertility and Sterility, 91(3): 878-883
    Heo Y S, Shah C T, Bormann C L, Shah C T, Takayama S. 2010. Dynamic microfunnel culture enhances mouse embryo development and pregnancy rates. Human Reproduction, 25(3): 613-622
    Hoelker M, Schmoll F, Schneider H, Rings F, Gilles M, Tesfaye D, Jennen D, Tholen E, Griese J, Schellander K. 2006. Bovine blastocyst diameter as a morphological tool to predict embryo cell counts, embryo sex, hatching ability and developmental characteristics after transfer to recipients. ReproductionFertility and Development, 18(5): 551-557
    Hoelker M, Rings F, Ghanem N, Phatsara C, Griese J, Schellander K, Tesfaye D. 2008. Effect of the microenvironment and embryo density on developmental characteristics and gene expression profile of bovine preimplantative embryos cultured in vitro. The Society for Reproduction and Fertility, 137(3): 415-418
    Ho Y, Wigglesworth K, Eppig J J, Schultz R M. 2005. Preimplantation development of mouse embryos in KSOM: augmentation by amino acids and analysis of gene expression. Molecular Reproduction Development, 41(2): 232-238
    Jelinic P, Shaw P. 2007. Loss of imprinting and cancer. The Journal of Pathology, 211(3): 261-268
    Jones P A, Baylin S B. 2002. The fundamental role of epigenetic events in cancer. Nature Review Genetics, 3(1): 415-428
    Karagenc L, Sertkaya Z, Ciray H N. 2004. t of oxygen concentration on embryonic development of mouse zygotes. Reproductive BioMedicine Online, 9: 409-417
    Kato Y, Tsunoda Y. 1994. Effects of the culture density of mouse zygotes on the development in vitro and in vivo. Theriogenology, 41(6): 1315-1322
    Kawamura K, Fukuda J, Kumagai J, Shimizu Y, Kodama H, Nakamura A, Tanaka T. 2005.
    Gonadotropin-releasing hormone I analog acts as an antiapoptotic factor in mouse blastocysts. Endocrinology, 146(9): 4105-4116
    Khosla S , Dean W, Brown D, Reik W, Feil R. 2001. Culture of preimplantation mouse embryos affects fetal development and the expression of imprinted genes. Biology of Reproduction, 64(3): 918-926
    Kitagawa Y, Suzuki K, Yoneda A, Watanbe T. 2004. Effects of oxygen concentration and antioxidants on the in vitro developmental ability, production of reactive oxygen species (ROS), and DNA fragmentation in porcine embryos. Theriogenology, 62(7): 1186-1197
    Khurana N K, Niemann H. 2000. Effects of oocyte quality, oxygen tension, embryo density, cumulus cells and energy substrates on cleavage and morula/blastocyst formation of bovine embryos. Theriogenology, 54(5): 741-756
    Lane M, Gardner D K. 1992. Effect of incubation volume and embryo density on the development and viability of mouse embryos in vitro. Human Reproduction, 7(4): 558-562
    Lane M, Gardner D K. 2005. Understanding cellular disruptions during early embryo development that perturb viability and fetal development. Reproduction, Fertility and Development, 17(3): 371-378
    Lee S, Cho M, Kim E, Kim T, Lee C, Han J, Lim J. 2004. Renovation of a drop embryo cultures system by using refined mineral oil and the effect of glucose and/or hemoglobin added to a serum-free medium. Journal of Vetigital Medicine Science, 66(1): 63-66
    Lewis A, Mitsuya K, Umlauf D, Smith P, Dean W, Walter J, Higgins M, Feil R, Reik W. 2004.
    Imprinting on distal chromosome 7 in the placenta involves repressive histone methylation independent of DNA methylation. Nature Genetics, 36: 1291-1295
    Liu J H, Zhu J Q, Liang X H, Ola S L, Hou Y, Chen D Y, Schatten H, Sun Q Y. 2008. Diploid parthenogenetic embryos adopt a maternal-type methylation pattern on both sets of maternal chromosomes. Genomics, 91(2): 121-128
    Lopes A S, Larsen L H, Ramsing N, Levendahl P, Raty M, Peippo J, Greve T, Callesen. 2005. Respiration rates of individual bovine in vitro-produced embryos measured with a novel, non-invasive andhighly sensitive microsensor system. Reproduction, 130(5): 669-679
    Lopes A S, Madsen S E, Ramsing N B, Lovendahl P, Greve T, Callesen H. 2007. Investigation of respiration of individual bovine embryos produced in vivo and in vitro and correlation with viability following transfer. Human Reproduction, 22(2): 558-566
    Lucifero D, Mertineit C, Trasler J M, Bestor T H, Trasler J M. 2002. Methylation dynamics of imprinted genes in mouse germ cells. Genomics, 79(4): 530-538
    Ma B H, Cao Y J, Zheng W B, Lu J R, Kuang H B, Lei X H, Lv Y H, Zhang T, Duan E K. 2008. Real-time micrography of mouse preimplantation embryo in an orbit module on SJ-8 Satellite. Microgravity Sciencea and Technology, 20(2): 127-136
    Mann M R W, Chung Y G, Nolen L D, Verona R I, Latham K E, Bartolomei M S. 2003. Disruption of Imprinted Gene Methylation and Expression in Cloned Preimplantation Stage Mouse Embryos. Biology of Reproduction, 69(3): 902-914
    Manser R C, Leese H J, Houghton F D. 2004. Effect of inhibiting nitric oxide production on mouse preimplantation embryo development and metabolism. Biology of Reproduction, 71(2): 528-533
    Market-Velker B A, Zhang L Y, Magri L S, Bonvissuto A C, Mann M R W. 2010. Dual effects of superovulation: loss of maternal and paternal imprinted methylation in a dose-dependent manner. Human Molecular Genetics, 19(1): 36-51
    Marx J. 2004. Cell biology: How cells endure low oxygen. Science, 303 (5663): 1454-1456
    Matsuura K, Hayashi n, Kuroda Y, Takiue C, Hirata R, Takenami M, Yoshioka N, Habara T, Mukaida T, Naruse K. 2010. Improved development of mouse and human embryos using a tilting embryo culture system.Reproductive Biomedicine, 20(3): 358-364
    Mill J, Tang T, Kaminsky Z, Khare T, Yazdanpandh S, Bouchard L, Jia P X, Assadzadeh A, Flanagan J, Schumacher A, Wang S C, Petronis A. 2008. Epigenomic profiling reveals DNA-methylation changes associated with major psychosis. The American Journal of Human Genetics, 82(3): 696-711
    Mitchell M, Cashman K, Gardner D K, Thompson J G, Lane M. 2009. Disruption of mitochondrial malate-aspartate shuttle activity in mouse blastocysts impairs viability and fetal growth. Biology of Reproduction, 80(2): 295-301
    Murphy S K, Wylie A A, Jirtle R L. 2001. Imprinting of PEG3, the human homologue of a mouse gene involved in nurturing behavior. Genomics, 71(1): 110-117
    Nagao Y, Iijima R, Saeki K. 2008. Interaction between embryos and culture conditions during in vitro development of bovine early embryos. Zygote, 16(2): 127-133
    Ono R, Nakamura K, Inoue K, Naruse M, Usami T, Wakisaka-Saito N, Hino T, Suzuki-Migishima R, Ogonuki N, Miki H, Kohda T, Ogura A, Yokoyama M, Kaneko-Ishino T, Ishino F. 2006. Deletion of Peg10, an imprinted gene acquired from a retrotransposon, causes early embryonic lethality. Nature Genetics, 38(14): 101-106
    Park C H, Kim H S, Lee S G, Lee C K. 2009. Methylation status of differentially methylated regions at Igf2/H19 locus in porcine gametes and preimplantation embryos. Genomics, 93(2): 179–186
    Pauler F M , Barlow D P. 2006. Imprinting mechanisms--it only takes two. Genes Development, 20(1): 1203-1206
    Perin P M, Maluf M, Januario D A, Saidiva N P H. 2008. Comparison of the efficacy of two commercially available media for culturing one-cell embryos in the in vitro fertilization mouse model.Fertility and Sterility, 90(4): 1503–1510
    Pliushch G, Schneider E, Weise D, Hajj N E, Tresch A, Seidamnn L, Coerdt W, Zechner U, Haaf T. 2010. Extreme methylation values of imprinted genes in human abortions and stillbirths. American Society for Investigative. Pathology, 090764.
    Quinn P, Harlow G M. 2005. The effect of oxygen on the development of preimplantation mouse embryos in vitro. Journal of Experimental Zoology, 206(1): 73–80
    Raty S, Walters E M, Davis J, Zeringue H, Beede D J, Rodriguez-Zas S L, Wheeler M B. 2004.
    Embryonic development in the mouse is enhanced via microchannel culture. The Royal Society of Chemistry, 4(2): 186–190
    Reik W, Dean W, Walter J. Epigenetic reprogramming in mammalian development. Science, 2001, 293(5532): 1089–1093
    Reik W, Walter J. 2004. Genomic imprinting: parental influence on the genome. Nature Reviews Genetics, 2(12): 21–32
    Rinaudo P F, Giritharan G, Talbi S, Dobson A T, Schultz R M. 2006. Effects of oxygen tension on gene expression in preimplantation mouse embryos. Fertility and Sterility, 86(4): 1252-1265
    Rivera R M. Stein P, Weaver J R, Mager J, Schultz R M, Bartolomei M S. 2008. Manipulations of mouse embryos prior to implantation result in aberrant expression of imprinted genes on day 9.5 of development. Human Molecular Genetics, 17(1): 1-14
    Rizos D, Ward F, Boland M P, Lonergan P. 2001. Effect of culture system on the yield and quality of bovine blastocysts as assessed by survival after vitrification. Theriogenology, 56(1):1–16
    Roh S, Choi Y J, Min B M. 2008. A novel microtube culture system that enhances the in vitro development of parthenogenetic murine embryos. Theriogenology, 69(2): 262–267
    Schneider E, Pliushch G, Hajj N E, Galetzka D, Puhl A, Schorsch M, Frauenknecht K, Riepert T. Tresch A, Muller A M, Coerdt W, Zechner U, Haaf H. 2010. Spatial, temporal and interindividual epigenetic variation of functionally important DNA methylation patterns. Nucleic Acids Research, doi:10.1093/nar/gkq126
    Shao W J, Tao L Y, Gao C, Xie J Y, Zhao R Q. 2008. Alterations in Methylation and Expression Levels of Imprinted Genes H19 and Igf2 in the Fetuses of Diabetic Mice. Comparative Medicine, 58(4): 341–346
    Solter D. 2000. Mammalian cloning: advances and limitations. Nature Reviews Genetis, 1(5): 199-207
    Stokes P J, Abeydeera LR, Leese H J. 2005. Development of porcine embryos in vivo and in vitro; evidence for embryo‘cross talk’in vitro. Development Biology, 284(1): 62–71
    Summers M C, Biggers J D. 2003. Chemically defined media and the culture of mammalian preimplantation embryos: historical perspective and current issues. Human Reproduction Update, 9(6): 557–582
    Summers M C, Bhatnagar P R, Lawitts J A, Biggers J D. 1995. Fertilization in vitro of mouse ova from inbred and outbred strains: complete preimplantation embryo development in glucose-supplemented KSOM. Biology of Reproduction, 53(2): 431–437
    Surani M A H, Barton S C, Norris M L. 1984. Development of reconstituted mouse eggs suggests imprinting of the genome during gametogenesis. Nature, 308: 548-550.
    Taft R A. 2008. Virtues and limitations of the preimplantation mouse embryo as a model system. Theriogenology, 69(1): 10–16
    Taka M, Iwayama H, Fukui Y. 2005. Effect of the well of the well (WOW) system on in vitro culture for porcine embryos after intracytoplasmic sperm injection. The Journal of Reproduction and Development, 51(4): 533-537
    Takahashi M, Keicho K, Takahashi H, Ogawa H, Schulte R M, Okano A. 2000. Effect of oxidative stress on development and DNA damage in in-vitro cultured bovine embryos by Comet assay. Theriogenology, 54(1): 137-145
    Takahashi Y, Kanagawa H. 1998. Effect of oxygen concentration in the gas atmosphere during in vitro insemination of bovine oocytes on the subsequent embryonic development in vitro. Journal of Vetigial Medicine Science, 60(3): 365-367
    Thompson J G, Simpson A C, Pugh P A, Donnelly P E, Tervit H R. 1990. Effect of oxygen concentration on in vitro-development of preimplantation sheep and cattle embryos. Reproduction Fertility, 89(3): 573-578
    Thorvaldsen J L, Duran K L, Bartolomei M S. 1998. Deletion of the H19 differentially methylated domain results in loss of imprinted expression of H19 and Igf2. Genes Development, 12(23): 3693-3702
    Thouas G A, Jones G M, Trounson A O. 2003. The‘GO’system—a novel method of microculture for in vitro development of mouse zygotes to the blastocyst stage. Reproduction, 126: 161-169
    Tremblay K D, Duran K L, Bartolomei M S. 1997. A 5’2-kilobase-pair region of the imprinted mouse H19 gene exhibits exclusive paternal methylation throughout development. Molecular and Cellular Biology, 17(8): 4322-4329
    Trimarchi J R, Liu L, Porterfield D M, Smith P J S, Keefe D L. 2000. Oxidative Phosphorylation-dependent and -independent oxygen consumption by individual preimplantation mouse embryos. Biology of Reproduction, 62(6): 1866-1874
    Vaissie` re T, Sawan C, Herceg Z. 2008. Epigenetic interplay between histone modifications and DNA methylation in gene silencing. Mutation Research, 659(1-2): 40-48
    Vajta G, Kor?si T, Du Y, Nakata K. 2008. The Well-of the-Well system: an efficient approach to improve embryo development. Reproductive BioMedicine Online, 17(2): 73-81
    Vajta G, Peura T T, Holm P, Paldi A, Trounson A O, Callesen H. 2000. New method for culture of zona-included or zona-free embryos: the Well of the Well (WOW) system. Molecular Reproduction and Development, 55(3): 256-264
    Van Soom A, Mahmoudzadeh A R, Christophe A, Ysebaert M T, Kruif A. 2001. Silicone oil used in microdrop culture can affect bovine embryonic development and freezability. Reproduction in Domestic Animals, 36(3-4): 169-76
    Veronique D, Andrew J W, Patrick L. 2008. Preimplantation embryo programming: transcription, epigenetics, and culture environment. Society for Reproduction and Fertility, 135(2): 141-150
    Waldenstrom U, Engstrom A B, Hellberg D, Nilsson S N. 2008. Low-oxygen compared with high-oxygen atmosphere in blastocyst culture, a prospective randomized study. Fertility and Sterility, 91(6): 2461-2465
    Warnecke P M, Mann J R, Frommer M, Clark S J. 1998. Bisulfite sequencing in preimplantation embryos: DNA methylation profile of the upstream region of the mouse imprinted H19 gene. Genomics, 51(2): 182-190
    Weber M, Hellmann I, Stadler M B, Ramos L, Paabo S, Rebhan M, Schubeler D. 2007. Distribution,silencing potential and evolutionary impact of promoter DNA methylation in the human genome. Nature Genetic, 39: 457-466
    Wroclawska E, Brant J O, Yang T P, Moore K. 2010. Improving efficiencies of locus-specific dna methylation assessment for bovine in vitro produced embryos. Systems biology in reproductive medicine, 56(1): 96-105
    Wu Q, Ohsako S, Ishimura R, Suzuki J S, Tohyama C. 2004. Exposure of mouse preimplantation embryos to 2, 3, 7, 8-tetrachoro dibenzo-p-dioxin (TCDD) alters the methylation status of imprinted genes H19 and Igf2 . Biology of Reproduction, 70(6): 1790-1797
    Young L E, Fernandes K, McEvoy T G. 2001. Epigenetic change in IGF2R is associated with fetal overgrowth after sheep embryo culture. Natutre Genetics, 27:153-154
    Zander D L, Thompson J G, Lane M. 2006. Perturbations in mouse embryo development and viability caused by ammonium are more severe after exposure at the cleavage stages. Biology of Reproduction, 74(2): 288-294
    Zhu B, Huang X H, Chen J D, Lu Y C, Chen Y , Zhao J Y. 2005. Methylation changes of H19 gene in sperms of X-irradiated mouse and maintenance in offspring. Biochemical and Biophysical Research Communication, 340(1): 83-89

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700