半导体硒化物纳米材料的调控合成及光电转换应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
半导体荧光纳米材料因其具有良好的光、电性能在发光器件,生物标记,太阳电池等领域有着广泛的应用前景。发展这些材料的合成方法,探寻其生长机理,从而制备具有特定尺寸大小、形貌、表面结构及单分散性的纳米材料,构建组装功能纳米材料体系,将对纳米材料最终进入实际应用具有重要的作用。本论文就II-IV族半导体荧光纳米材料的形貌及大小调控合成进行研究,并且对半导体材料在光电转换的应用进行了有益的探索。
     发展了一种利用溶液的酸碱性来制备单分散Se球的合成方法。利用前驱物Na_2SeSO_3对环境酸碱度的敏感性,通过调节溶液的pH值来制备具有不同尺寸大小的非晶态的Se球,并将所获得的单分散的Se球为模板,制备了具有核壳结构的Se@Ag_2Se球。利用非晶态Se球的不稳定性,将所获得的Se球置于乙醇溶液中,通过“固态-液态-固态”的生长过程制备稳定的六方相的单晶Se线。
     发展了一种室温注入法制备尺寸可调的CdSe纳米晶的方法。利用正相微乳体系在室温下制备得到CdSe纳米晶核,然后将其置于不同温度下进行晶化生长以及氧化刻蚀,得到荧光在红光到蓝紫光区域可调的CdSe纳米晶。
     在十八烯体系中,通过控制反应条件制备具有不同形貌的立方相结构的CdSe纳米颗粒。利用立方相CdSe材料其各个晶面不同的表面能以及各个晶面与表面活性剂分子吸附能的不同,控制反应温度,制备出单分散性良好的立方块状、球状、正四面体状以及分枝状结构的CdSe纳米颗粒。
     将制备的CdSe纳米颗粒与TiO_2纳米颗粒组装成胶体球结构,制成薄膜应用于PEC电池中。在半导体量子点敏化的TiO_2光电极薄膜中,一般是使用含有巯基的双亲分子将量子点与TiO_2连接起来,而这类双亲分子会在一定程度上降低电子在量子点与TiO_2之间的传输,因此在实验中,通过使用组装的方法将CdSe与TiO_2纳米颗粒连在起来,使CdSe镶嵌在TiO_2纳米颗粒中,不需要使用双亲分子进行连接。PEC结果显示,这类使用CdSe与TiO_2纳米颗粒组装起来的介孔材料,其PEC性能明显比用双亲分子连接的用CdSe敏化的TiO_2薄膜要好,展示出这类CdSe/ TiO_2复合介孔材料在光电转换应用中良好的应用前景。
Fluorescent semiconductor materials have attracted much attention due to their unique optical and electrical properties which makes them have potential application in light-emitting diodes (LED), biological labeling and solar cells. Preparation of nanomaterials with special-defined size, morphology, surface construction and diversity through simple and environmental friendly synthetic methods and the investigation of their growth mechanisms should be a crucial step to understand the relations between their structures and physical and chemical properties. In this dissertation, some explorations have been carried out on new simple and chemical green manipulated synthetic strategies for the II-VI group fluorescent semiconductor nanostructures, and their growth mechanisms and unique properties. And also, some research in solar cell field has been done for these prepared semiconductor nanomaterials.
     By utilizing the stability diversity of the Na_2SeSO_3 in different PH environment, Se power has been transformed to monodisperse amorphous Se (a-Se) spheres through the synthesis and dismutation of the Na_2SeSO_3. And the size of the a-Se can be adjusted by changing the pH value of the solution. Meanwhile, selenium nanowires are obtained through a“solid-solution-solid”process by dispersing the prepared Se spheres in ethanol solvent.
     A room temperature injection technique has been developed to synthesize the CdSe nanocrystal. The CdSe seed clusters are prepared at room temperature, and the CdSe nanocrystals with different sizes are obtained by a subsequent crystal growth process at different temperature after the injection. CdSe nanocrystals with fluorescent from green to red region can be adjusted by changing the growth temperature. The activity of the surfactant is found to be the crucial factor to control the growth rate of the nanocrystals. An effective oxidation route has been developed to etch the small size CdSe nanocrystals. By etching the CdSe nanocrystals, the fluorescent of the CdSe nanocrystals can be adjusted in blue-violet region.
     Zinc blende CdSe nanocrystals with different shape have been synthesized in octadecene solution by reacting Se powder and Cd(Ac)_2, the reaction temperature is found to be the key factor to control the final shape of the CdSe nanocrystal products as the temperature will affect the activity of the surfactant, and the thermodynamic property of the CdSe crystal is also one of the reason to affect the shape of the final products. By controlling the reaction temperature, CdSe nanocrystals with cube, sphere, tetrahedron and branched shape have been obtained. The shape controlled process here can give useful information to guide the control synthesis of other zinc blende structure nanocrystals.
     By using an emulsion-based bottom-up self-assembly method, CdSe/TiO_2 hybrid colloidal spheres have been synthesized and use as photoanode for photoelectrochemical (PEC) application. The PEC results show that the photoanode made from CdSe/TiO_2 hybrid colloidal spheres perform more active in PEC cells than the narmal CdSe-link-TiO_2 photoanode as the CdSe/TiO_2 hybrid colloidal spheres provide a better connection between the CdSe and TiO_2. This study illustrates the importance of fundamental structural control in influencing PEC properties of hybrid assembled nanostructures.
引文
[1]张立德,牟季美.纳米材料和纳米结构.科学出版社. 2001.
    [2] Henglein A. Small-particle research: physicochemical properties of extremely small colloidal metal and semiconductor particles. Chem. Rev. 1989, 89(8):1861-1873.
    [3] Louie S G. Thermodynamics - Nanoparticles behaving oddly. Nature 1996, 384 (6610):612-613.
    [4] Bethell D, Schiffrin D J. Supramolecular chemistry - Nanotechnology and nucleotides. Nature 1996, 382 (6592):581-581.
    [5] El-Sayed M A. Some interesting properties of metals confined in time and nanometer space of different shapes. Acc. Chem. Res. 2001, 34 (4):257-264.
    [6] Sun S H, Zeng H, Robinson D B, et al. Monodisperse MFe2O4 (M = Fe, Co, Mn) nanoparticles. J. Am. Chem. Soc. 2004, 126 (1):273-279.
    [7] Jun Y W, Seo J W, Oh S J, et al. Recent advances in the shape control of inorganic nano-building blocks. Coord. Chem. Rev. 2005, 249 (17-18):1766-1775.
    [8] Kassner M E, Nemat-Nasser S, Suo Z G, et al. New directions in mechanics. Mech. Mater. 2005, 37(2-3):231-259.
    [9] Tak Y, Yong K J. Controlled growth of well-aligned ZnO nanorod array using a novel solution method. J. Phys. Chem. B 2005, 109(41):19263-19269.
    [10] Wang Y W, Schmidt V, Senz S, et al. Epitaxial growth of silicon nanowires using an aluminium catalyst. Nat. Nanotechnol. 2006, 1(3):186-189.
    [11] Lieber C M, Wang Z L. Functional nanowires. MRS Bull. 2007, 32(2):99-108.
    [12] Cui Y, Wei Q Q, Park H K, et al. Nanowire nanosensors for highly sensitive and selective detection of biological and chemical species. Science 2001, 293(5533):1289-1292.
    [13] Cui Y, Lieber C M. Functional nanoscale electronic devices assembled using silicon nanowire building blocks. Science 2001, 291(5505):851-853.
    [14] Somorjai G A. The surface science of heterogeneous catalysis. Surface science 1993, 299-300:849-866.
    [15] Wu Y Y, Yang P D. Direct observation of vapor-liquid-solid nanowire growth. J. Am. Chem. Soc. 2001, 123(13):3165-3166.
    [16] Greytak A B, Lauhon L J, Gudiksen M S, et al. Growth and transport properties of complementary germanium nanowire field-effect transistors. Appl. Phys. Lett. 2004,84(21):4176-4178.
    [17] Wang F D, Dong A G, Sun J W, et al. Solution-liquid-solid growth of semiconductor nanowires. Inorg. Chem. 2006, 45(19)7511-7521.
    [18] Murray C B, Norris D J, Bawendi M G. Synthesis and characterization of nearly monodisperse CdE (E = sulfur, selenium, tellurium) semiconductor nanocrystallites. J. Am. Chem. Soc. 1993, 115(19):8706-8715.
    [19] Somers R C, Bawendi M G, Nocera D G, CdSe nanocrystal based chem-/bio-sensors. Chem. Soc. Rev. 2007, 36(4)579-591.
    [20] Peng Z A, Peng X G. Mechanisms of the shape evolution of CdSe nanocrystals. J. Am. Chem. Soc. 2001, 123(7):1389-1395.
    [21] Li Y D, Li X L, Deng Z X, et al. From surfactant-inorganic mesostructures to tungsten nanowires. Angew. Chem.Int. Ed. 2002, 41(2):333-335.
    [22] Wang X, Li Y D. Synthesis and characterization of lanthanide hydroxide single-crystal nanowires. Angew. Chem. Int. Edit. 2002, 41(24):4790-4793.
    [23] Wang X, Zhuang J, Peng Q, et al. A general strategy for nanocrystal synthesis. Nature 2005, 437 (7055):121-124.
    [24]薛宽宏,包建春.纳米化学.化学工业出版社. 2006.
    [25] Bruchez M, Moronne M, Gin P, et al. Semiconductor nanocrystals as fluorescent biological labels. Science 1998, 281(5385):2013-2016.
    [26] Thessing J, Qian J H, Chen H Y, et al. Interparticle influence on size/size distribution evolution of nanocrystals. J. Am. Chem. Soc. 2007, 129(10):2736-2737.
    [27] Liu F K, Huang P W, Chang Y C, et al. Combining optical lithography with rapid microwave heating for the selective growth of Au/Ag bimetallic core/shell structures on patterned silicon wafers. Langmuir 2005, 21(6):2519-2525.
    [28] Bhuvana T, Kulkarni G U. Highly conducting patterned Pd nanowires by direct-write electron beam lithography. ACS Nano. 2008, 2(3):457-462.
    [29]姚凤仪,郭德威,桂明德.无机化学丛书,第五卷:氧硫硒分族.北京:科学出版社,1990. 333.
    [30] Ge J P, Li Y D. Controllable CVD route to CoS and MnS single-crystal nanowires. Chem. Commun. 2003, (19):2498-2499.
    [31] Ge J P, Li Y D. Selective atmospheric pressure chemical vapor deposition route to CdS arrays, nanowires, and nanocombs. Adv. Funct. Mater. 2004, 14(2):157-162.
    [32] Ge J P, Wang J, Zhang H X, et al. Orthogonal PbS nanowire arrays and networks and their Raman scattering behavior. Chem. Eur. J. 2005, 11(6): 1889-1894.
    [33] Peng X G, Manna L, Yang W D, et al. Shape control of CdSe nanocrystals. Nature 2000,404(6773):59-61.
    [34] Sun S H, Murray C B, Weller D, et al. Monodisperse FePt nanoparticles and ferromagnetic FePt nanocrystal superlattices. Science 2000, 287 (5460):1989-1992.
    [35] Park J, Lee E, Hwang N M, et al. One-nanometer-scale size-controlled synthesis of monodisperse magnetic iron oxide nanoparticles. Angew. Chem. Int. Ed. 2005 44 (19):2872-2877.
    [36] Hyeon T, Lee S S, Park J, et al. Synthesis of highly crystalline and monodisperse maghemite nanocrystallites without a size-selection process. J. Am. Chem. Soc. 2001, 123 (51):12798-12801.
    [37] Cizeron J and Pileni M P. Solid-solution of CdyZn1-yS nanosize particles made in reverse micelles. J. Phys. Chem. 1995, 99:17410-17416.
    [38] Pileni M P. Nanosized particles made in colloidal assemblies. Langmuir 1997, 13(13):3266-3276.
    [39] Stupp S, Braun P V. Molecular manipulation of microstructures: Biomaterials, ceramics, and semiconductors. Science 1997, 277(5330):1242-1248.
    [40] Estroff L A, Hamilton A D. At the interface of organic and inorganic chemistry: Bioinspired synthesis of composite materials. Chem. Mater. 2001, 13(10):3227-3235.
    [41] Walsh D, Lebeau B, Mann S. Morphosynthesis of calcium carbonate (vaterite) microsponges. Adv. Mater. 1999, 11(4):324-328.
    [42] Meyer M, Wallberg K, Kurihara K, et al. Photosensitized charge separation and hydrogen production in reversed micelle entrapped platinized colloidal cadmium sulphide. J. Chem. Soc. Chem. Commun. 1984, 2:90-91.
    [43] Sun S H, Murray C B. Synthesis of monodisperse cobalt nanocrystals and their assembly into magnetic superlattices. J. Appl. Phys. 1999, 85(8):4325-4330.
    [44] Schneider J J, Czap N, Hagen J, et al. Metallorganic routes to nanoscale iron and titanium oxide particles encapsulated in mesoporous alumina: formation, physical properties, and chemical reactivity. Chem. Eur. J. 2000, 6(23):4305-4321.
    [45] Naravanaswamy A, Xu H F, Pradhan N, et al. Crystalline nanoflowers with different chemical compositions and physical properties grown by limited ligand protection. Angew. Chem. Int. Ed. 2006, 45(32):5361-5364.
    [46] Niederberger M, Garnweitner G. Organic reaction pathways in the nanaqueous synthesis of metal oxide nanoparticles. Chem. Eur. J. 2006, 12(28):7282-7302.
    [47] Park J, Joo J, Kwon S G, et al. Synthesis of monodisperse spherical nanocrystals. Angew. Chem. Int. Ed. 2007, 46(25):4630-4660.
    [48] Zhang Y W, Sun X, Si R, et al. Single-crystalline and monodisperse LaF3 triangular nanoplates from a single-source precursor. J. Am. Chem. Soc. 2005, 127(10):3260-3261.
    [49] Manna L, Scher E C, Alivisatos A P. Synthesis of Soluble and Processable Rod-, Arrow-, Teardrop-, and Tetrapod-Shaped CdSe Nanocrystals. J. Am. Chem. Soc. 2000, 122(51):12700-12706.
    [50] Yu W W, Peng X G. Formation of High-Quality CdS and Other II±VI Semiconductor Nanocrystals in Noncoordinating Solvents: Tunable Reactivityof Monomers. Angew. Chem. Int. Ed. 2002, 41(13): 2368-2371.
    [51] Peng X G. Greenchemical approaches toward high-quality semiconductor nanocrystals. Chem. Eur. J. 2002, 8(2):335-339.
    [52] Battaglia D, Peng X G. Formation of high quality InP and InAs nanocrystals in a noncoordinating solvent. Nano Lett. 2002, 2(9):1027-1030.
    [53] Jana N R, Peng X G. Single-phase and gram-scale routes toward nearly monodisperse Au and other noble metal nanocrystals. J. Am. Chem. Soc. 2003, 125(47)14280-14281.
    [54] Jana N R, Chen Y F, Peng X G. Size- and shape-controlled magnetic (Cr, Mn, Fe, Co, Ni) oxide nanocrystals via a simple and general approach. Chem. Mater. 2004, 16(20):3931-3935.
    [55] Park J, Lee E. Hwang N M, et al. One-nanometer-scale size-controlled synthesis of monodisperse magnetic iron oxide nanoparticles. Angew. Chem. Int. Ed. 2005, 44(19):2872-2877.
    [56]罗蕾.加工原子的技术:纳米技术.江西科学技术出版社. 2002.
    [57] Li Y D, Wang J W, Deng Z X, et al. Bismuth nanotubes: A rational low-temperature synthetic route. J. Am. Chem. Soc. 2001, 123(40):9904-9905.
    [58] Li Y D, Li X L, Deng Z X, et al. From surfactant-inorganic mesostructures to tungsten nanowires. Angew. Chem. Int. Ed. 2001, 41(2):333-335.
    [59] Li X L, Liu J F, Li Y D. Large-scale synthesis of tungsten oxide nanowires with high aspect ratio. Inorg. Chem. 2003, 42 (3):921-924.
    [60] Wang X, Li Y D. Selected-control hydrothermal synthesis of alpha- and beta-MnO2 single crystal nanowires. J. Am. Chem. Soc. 2002, 124(12):2880-2881.
    [61] Wang X, Sun X M, Yu D P, et al. Rare earth compound nanotubes. Adv. Mater. 2003, 15(17):1442-1445.
    [62] Sun X M, Li Y D. Synthesis and characterization of ion-exchangeable titanate nanotubes. Chem. J. Eur. 2003, 9(10):2229-2238.
    [63] Wang C, Deng Z X, Li Y D. The synthesis of nanocrystalline anatase and rutile titania in mixed organic media. Inorg. Chem. 2001, 40(20):5210-5214.
    [64] Peng Q, Dong Y J, Li Y D. ZnSe semiconductor hollow microspheres. Angew. Chem. Int. Ed. 2003, 42(26):3027-3030.
    [65] Sun X M, Li Y D. Ga2O3 and GaN semiconductor hollow spheres. Angew. Chem. Int. Ed.2004, 43(29):3827-3831.
    [66] Wang X, Li Y D. Fullerene-like rare-earth nanoparticles. Angew. Chem. Int. Ed. 2003, 42(30):3497-3500.
    [67] Ge J P, Xu S, Liu L P, et al. A positive-microemulsion method for preparing nearly uniform Ag2Se nanoparticles at low temperature. Chem. Eur. J. 2006, 12(13):3672-3677.
    [68] Ge J P, Chen W, Liu L P, et al. Formation of disperse nanoparticles at the oil/water interface in normal microemulsions. Chem. Eur. J. 2006, 12(25):6552-6558.
    [69] Mullin J W. Crystallization. 3rd ed., Oxford University Press, Oxford, 1997.
    [70] LaMer V K, Dinegar R H. Theory, production and mechanism of formation of monodispersed hydrosols. J. Am. Chem. Soc. 1950, 72(11):4847-4854.
    [71] Lee S M, Cho S N, Cheon J. Anisotropic shape control of colloidal inorganic nanocrystals. 2003, 15(5):441-444.
    [72] Jun Y W, Jung Y Y, Cheon J. Architectural control of magnetic semiconductor nanocrystals. J. Am. Chem. Soc. 2002, 124(4):615-619.
    [73] Jun Y W, Lee S M, Kang N J, et al. Controlled synthesis of multi-armed CdS nanorod architectures using monosurfactant system. J. Am. Chem. Soc. 2001, 123(21):5150-5151.
    [74] Yin Y D, Alivisatos A P. Colloidal nanocrystal synthesis and the organic–inorganic interface. Nature 2005, 437(29):664-670.
    [75] Pradhan N, Reifsnyder D, Xie R G, et al. Surface ligand dynamics in growth of nanocrystals. J. Am. Chem. Soc. 2007, 129(30):9500-9509.
    [76] Lee S M, Jun Y W, Cho S N, et al. Single-Crystalline Star-Shaped Nanocrystals and Their Evolution: Programming the Geometry of Nano-Building Blocks. J. Am. Chem. Soc. 2002, 124(38):11244-11245.
    [77] Reiss H. The growth of uniform colloidal dispersions. J. Chem. Phys., 1951, 19(4):482-487.
    [78] Peng X G, Wickham J, Alivisatos A P. Kinetics of II-VI and III-V colloidal semiconductor nanocrystal growth: "Focusing" of size distributions. J. Am. Chem. Soc. 1998, 120 (21):5343-5344.
    [79] Murray C B, Kagan C R, Bawendi M G. Synthesis and characterization of monodisperse nanocrystals and close-packed nanocrystal assemblies. Annu. Rev. Mater. Sci. 2000, 30: 545-610.
    [80] Rogach A L, Talapin D V, Shevchenko E V, et al. Organization of matter on different size scales: Monodisperse nanocrystals and their superstructures. Adv. Funct. Mater. 2002, 12(10):653-664.
    [81] Peng Z A, Peng X G. Nearly monodisperse and shape-controlled CdSe nanocrystals viaalternative routes: nucleation and growth. J. Am. Chem. Soc. 2002, 124(13):3343-3353.
    [82] Peng X G. Mechanisms for the shape-control and shape-evolution of colloidal semiconductor nanocrystals. Adv. Mater. 2003, 15(5):459-463.
    [83] Gratzel M. Photoelectrochemical cells. Nature 2001, 414(6861):338-344.
    [84] Chapin D M, Fuller C S and Pearson G L. A New Silicon p-n Junction Photocell for Converting Solar Radiation into Electrical Power. J. Appl. Phys. 1954, 25:676-677.
    [85] Desilvestro M G, Kavan L, Moser L, et al. Highly Efficient Sensitization of Titanium Dioxide. J. Am. Chem. Soc. 1985, 107(10):2988-2990.
    [86] O'regan B and Gratzel M. A Low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films. Nature 1991, 353(6346):737-740.
    [87] Nazeeruddin M K, De Angelis F, Fantacci S, et al. Combined experimental and DFT-TDDFT computational study of photoelectrochemical cell ruthenium sensitizers. J. Am. Chem. Soc. 2005, 127(48):16835-16847.
    [88] Nazeeruddin M K, Zakeeruddin S M, Lagref J, et al. Stepwise assembly of amphiphilic ruthenium sensitizers and their applications in dye-sensitized solar cell. Coord. Chem. Rev. 2004, 248(13-14):1317-1328.
    [89] Nazeeruddin M K, Muller E, Humphry-Baker R, et al. Redox regulation in ruthenium(II) polypyridyl complexes and their application in solar energy conversion. J. Chem. Soc., Dalton Trans. 1997, 23:4571-4578.
    [90] Hagfeldt A, Gratzel M. Molecular photovoltaics. Acc. Chem. Res. 2000, 33(5):269-277.
    [91] Gratzel M. Perspectives for dye-sensitized nanocrystalline solar cells. Progress in Photovoltaics 2000, 8(1):171-185.
    [92] Gratzel M. Conversion of sunlight to electric power by nanocrystalline dye-sensitized solar cells. Journal of Photochemistry and Photobiology a-Chemistry 2004, 164(1-3):3-14.
    [93] Nazeeruddin M K, Kay A, Rodicio I, et al. Conversion of light to electricity by cis-X2Bis(2,2’-bipyridyl-4,4’dicarboxylate)ruthenium charge-transfer sensitizers (X = Cl-, Br-, I-, CN- and SCN-) on nanocrystallineTiO2 electrodes. J. Am. Chem. Soc. 1993, 115(14):6382-6390.
    [94] Zubavichus Y V, Slovokhotov Y L, Nazeeruddin M K, et al. Structural characterization of solar cell prototypes based on nanocrystalline TiO2 anatase sensitized with Ru complexes. X-ray diffraction, XPS, and XAFS spectroscopy study. Chem. Mater. 2002, 14(8):3556-3563.
    [95] Nazeeruddin M K, Pechy P, Gratzel M. Efficient panchromatic sensitization of nanocrystalline TiO2 films by a black dye based on a trithiocyanato-rutheniumcomplex. Chem. Commun. 1997, 18:1705-1706.
    [96] Alivisatos A P. Perspectives on the physical chemistry of semiconductor nanocrystals. J. Phys. Chem. 1996, 100(31):13226-13239.
    [97] Alivisatos A P. Semiconductor clusters, nanocrystals, and quantum dots. Science 1996, 271(5251):933-937.
    [98] Hoyer, P. Konenkamp, R. Photoconduction in porous TiO2 sensitized by PbS quantum dots. Appl. Phys. Lett. 1995, 66(3):349-351.
    [99] Vogel R, Hoyer P, Weller H. Quantum-sized PbS, CdS, Ag2S, Sb2S3, and Bi2S3 particles as sensitizers for various nanoporous wide-bandgap semiconductors. J. Phys. Chem. 1994, 98(12):3183-3188.
    [100] Kamat P V. Photochemistry on nonreactive and reactive (semiconductor) surfaces. Chem. Rev. 1993, 93(1):267-300.
    [101] Plass R, Pelet S, Krueger J, et al. Quantum dot sensitization of organic-inorganic hybrid solar cells. J. Phys. Chem. B 2002, 106(31):7578-7580.
    [102] Lin S C, Lee Y L, Chang C H, et al. Quantum-dot-sensitized solar cells: assembly of CdS-quantum-dots coupling techniques of self-assembled monolayer and chemical bath deposition. Appl. Phys. Lett. 2007, 90(14):143517.
    [103] Sun W T, Yu Y, Pan H Y, et al. CdS quantum dots sensitized TiO2 nanotube-array photoelectrodes. J. Am. Chem. Soc. 2008, 130(4):1124-1125.
    [104] Shen Q, Sato T, Hashimoto M, et al. Photoacoustic and photo electrochemical characterization of CdSe-sensitized TiO2 electrodes composed of nanotubes and nanowires. Thin Solid Films 2006, 499(1-2):299-305.
    [105] Robel I, Subramanian V, Kuno M, et al. Quantum dots solar cells. harvesting light energy with CdSe nanocrystals molecularly linked to mesoscopic TiO2 films. J. Am. Chem. Soc. 2006, 128(7):2385-2393.
    [106] Saurez R, Nair P K, Kamat P V. Photoelectrochemical behavior of Bi2S3 nanoclusters and nanostructured thin films. Langmuir 1998, 14(12):3236-3241.
    [107] Bang J H, Kamat P V. Quantum dot sensitized solar cells. A tale of two semiconductor nanocrystals: CdSe and CdTe. ACS Nano 2009, 3(6):1467-1476.
    [108] Gao X F, Li H B, Sun W T, et al. CdTe quantum dots-sensitized TiO2 nanotube array photoelectrodes. J. Phys. Chem. C 2009, 113(18):7531-7535.
    [109] Peter L M, Wijayantha K G U, Riley D J, et al. Band-edge tuning in self-assembled layers of Bi2S3 nanoparticles used to photosensitize nanocrystalline TiO2. J. Phys. Chem. B 2003, 107(33):8378-8381.
    [110] Zaban A, Micic O I, Gregg B A, et al. Photosensitization of nanoporous TiO2 Electrodes with InP Quantum Dots. Langmuir 1998, 14(12):3153-3156.
    [111] Lee H J, Yum J H, Leventis H C, et al. CdSe quantum dot-sensitized solar cells exceeding efficiency 1% at full-sun intensity. J. Phys. Chem. C 2008, 112(30):11600-11608.
    [112] Robel I, Kuno M, Kamat P V. Size-dependent electron injection from excited CdSe quantum dots into TiO2 nanoparticles. J. Am. Chem. Soc. 2007, 129(14):4136-4137.
    [113] Zingaro R A, Cooper W C,(Eds.), Selenium. Van Nostrand-Reinhold, New York, 1974.
    [114] Lide D V. Handbook of chemistry and physics. 83rd ed., CRC Press, Cleveland, 2002 (Chapter 12).
    [115] Berger L I. Semiconductor materials. CRC Press, Boca Raton, FL, 1997, 86.
    [116] Nagels P, Sleeckx E, Callaerts R, et al. Optical properties of amorphous Se films prepared by PECVD. Solid State Commun. 1997, 102(7):539-541.
    [117] Innami T, Miyazaki T, Adachi S. Optical constants of amorphous Se. J. Appl. Phys. 1999, 86(3):1382-1387.
    [118] Chen Y T, Zhang W, Zhang F B, et al. A novel route to controlled synthesis of selenium nanowires. Mater. Lett. 2004, 58(22-23):2761-2763.
    [119] Smith T W, Cheatham R A. Functional polymers in the generation of colloidal dispersions of amorphous selenium. Macromolecules 1980, 13(5):1203-1207.
    [120] Zhang J S, Gao X Y, Zhang L D, et al. Biological effects of a nano red elemental selenium. Biofactors. 2001, 15(1):27-38.
    [121] Gao X Y, Gao T, Zhang L D. Solution-solid growth ofα-monoclinic selenium nanowires at room temperature. J. Mater. Chem. 2003, 13(1):6-8.
    [122] Mees D R, Pysto W, Tarcha P J J. Formation of selenium colloids using ascorbate as the reducing agent. Colloid Interface Sci. 1995, 170(1):254-260.
    [123] Lin Z H, Wang C R C. Evidence on the size-dependent absorption spectral evolution of selenium nanoparticles. Mater. Chem. Phys. 2005, 92(2-3):591-594.
    [124] Zhu Y J, Qian Y T, Huang H, Zhang M W. Preparation of nanometer-size selenium powders of uniform particle size byγ-irradiation. Mater. Lett. 1996, 28(4-6):119-122.
    [125] Jeong U, Xia Y N. Synthesis and crystallization of monodisperse spherical colloids of amorphous selenium. Adv. Mater. 2005, 17(12):102-106.
    [126] Song J M, Zhu J H, Yu S H. Crystallization and shape evolution of single crystalline selenium nanorods at liquid-liquid interface: From monodisperse amorphous Se nanospheres toward Se nanorods. J. Phys. Chem. B 2006, 110(47):23790-23795.
    [127] Lucovsky G, Mooradian A, Taylor W, et al. Identification of fundamental vibrational modes of trigonalα-monoclinic and amorphous selenium. Solid State Commun. 1967, 5(2):113-117.
    [128] Gates B, Wu Y Y, Yin Y D, et al. Single-crystalline nanowires of Ag2Se can be synthesized
    by templating against nanowires of trigonal Se. J. Am. Chem. Soc. 2001, 123(46): 11500-11501.
    [129] Jiang X C, Mayers B, Herricks T, Xia Y N. Directsynthesis of Se@CdSe nanocables and CdSe nanotubes by reacting cadmium salts with Se nanowires. Adv. Mater. 2003, 15(20):1740-1743.
    [130] Jeong U, Xia Y N. Photonic crystals with thermally switchable stop bands fabricated from Se@Ag2Se spherical colloids. Angew. Chem. Int. Ed. 2005, 44(5):3099-3103.
    [131] Camargo P H C, Lee Y H, Jeong U, et al. Cation exchange: A simple and versatile route to inorganic colloidal spheres with the same size but different compositions and properties. Langmuir 2007, 23(6):2985-2992.
    [132] Peng Q, Xu S, Zhuang Z B, et al. A general chemical conversion method to various semiconductor hollow structures. Small 2005, 1(2):216-221.
    [133] Gates B, Mayers B, Cattle B, et al. Synthesis and characterization of uniform nanowires of trigonal selenium. Adv. Funct. Mater. 2002, 12(3):219-227.
    [134] Mayers B T, Liu K, Sunderland D, et al. Sonochemical synthesis of trigonal selenium nanowires. Chem. Mater. 2003, 15(20):3852-3858.
    [135] Guatam U K, Nath M, Rao C N R. New strategies for the synthesis of t-selenium nanorods and nanowires. J. Mater. Chem. 2003, 13(12):2845-2847.
    [136] Guatam U K, Gundiah G, Kulkarni G U. Scanning tunneling microscopy and spectroscopy of Se and Te nanorods. Solid State Commun. 2005, 136(3):169-172.
    [137] Zhang J, Zhang S Y, Chen H Y. CTAB-controlled synthesis of one-dimensional selenium nanostructures. Chem. Lett. 2004, 33(8):1054-1055.
    [138] Liu X Y, Mo M S, Zeng J H, et al. Large-scale synthesis of ultra-long wire-like single-crystal selenium arrays. J. Cryst. Growth 2003, 259(1-2):144-148.
    [139] Gates B, Yin Y D, Xia Y N. A solution-phase approach to the synthesis of uniform nanowires of crystalline selenium with lateral dimensions in the range of 10-30 nm. J. Am. Chem. Soc. 2000, 122(50):12582-12583.
    [140] Gates B, Mayers B, Grossman A, et al. A sonochemical approach to the synthesis of crystalline selenium nanowires in solutions and on solid supports. Adv. Mater. 2002, 14(23):1749-1752.
    [141] Li Q, Yam V W W. High-yield synthesis of selenium nanowires in water at room temperature. Chem. Commun. 2006, 9:1006-1008.
    [142] Xie Q, Dai Z, Huang W W, et al. Large-scale synthesis and growth mechanism of single-crystal Se nanobelts. Cryst. Growth Des. 2006, 6(6):1514-1517.
    [143] Li X M, Li Y, Li S Q, et al. Single crystalline trigonal selenium nanotubes and nanowires synthesized by sonochemical process. Cryst. Growth Des. 2005, 5(3):911-916.
    [144] Abdelouas A, Gong W L, Lutze W, et al. Using cytochrome c3 to make selenium nanowires. Chem. Mater. 2000, 12(6):1510-1512.
    [145] Cheng B, Samulski E T. Rapid, high yield, solutionmediated transformation of polycrystalline selenium powder into single-crystal nanowires. Chem. Commun. 2003, 16:2024-2025.
    [146] Lu J, Xie Y, Xu F, et al. Study of the dissolution behavior of selenium and tellurium in different solvents A novel route to Se, Te tubular bulk single crystals. J. Mater. Chem. 2002, 12(9):2755-2761.
    [147] Lee E P, Xia Y N. Growth and patterning of Pt nanowires on silicon substrates. Nano Res. 2008, 1(2):129-137.
    [148] Liao Z M, Hou C, Liu L P, et al. Gate tunable photoconductivity of p-channel Se nanowire field effect transistors. Appl. Phys. Lett. 2009, 95(9):093104.
    [149] Liao Z M, Hou C, Liu L P, et al. Temperature dependence of photoelectrical properties of single selenium nanowires. Nano Res. ASAP.
    [150] Liu L P, Peng Q, Li Y D. Preparation of monodisperse Se colloid spheres and Se nanowires using Na2SeSO3 as precursor. Nano Res. 2008, 1(5):403-411.
    [151] Weller H. Colloidal semiconductor q-particles-chemistry in the transition region between solid-state and molecules. Angew. Chem., Int. Ed. Engl. 1993, 32(1):41-53.
    [152] Colvin V L, Schlamp M C, Alivisatos A P. Light-emitting-diodes made from cadmium selenide nanocrystals and a semiconductor polymer. Nature 1994, 370(6488):354-357.
    [153] Coe S, Woo W K, Bawendi M G, et al. Electroluminescence from single monolayer of nanocrystals in molecular organic devices. Nature 2002, 420(6917):800-803.
    [154] Sun Q J, Wang Y A, Li L S, et al. Bright, multicoloured light-emitting diodes based on quantum dots. Nature Photonics 2007, 1:717-722.
    [155] Greenham N C, Peng X G, Alivisatos A P. Charge separation and transport in conjugated-polymer/semiconductor-nanocrystal composites studied by photoluminescence quenching and photoconductivity. Phys. Rev. B 1996, 54(24):17628-17637.
    [156] Huynh W U, Peng X G, Alivisatos A P. CdSe nanocrystal rods/poly(3-hexylthiophene) composite photovoltaic devices. Adv. Mater. 1999, 11(11):923-925.
    [157] Chan W C W, Nie S M. Quantum dot bioconjugates for ultrasensitive nonisotopic detection. Science 1998, 281(5385):2016-2018.
    [158] Peng Z A, Peng X G. Formation of high-quality CdTe, CdSe, and CdS nanocrystals using CdO as precursor. J. Am. Chem. Soc. 2001, 123(7):183-184.
    [159] Qu L H, Peng Z A, Peng X. G. Alternative routes toward high quality CdSe nanocrystals. Nano Lett. 2001, 1(6):333-337.
    [160] Cao Y C, Wang J H. One-pot synthesis of high-quality zinc-blende CdS nanocrystals.J .Am. Chem. Soc. 2004, 126(44):14336-14337.
    [161] Yang Y A, Wu H, Williams K R, et al. Thesis of CdSe and CdTe nanocrystals without precursor injection. Angew. Chem. Int. Ed. 2005, 44(41):6712-6715.
    [162] Wuister S F, Van Driel F, Meijerink A. Luminescence and growth of CdTe quantum dots and clusters. Phys. Chem. Chem. Phys. 2003, 5(6):1253-1258.
    [163] Piepenbrock M M, Stirner T, O’Neill M, et al. Growth dynamics of CdTe nanoparticles in liquid and crystalline phases. J. Am. Chem. Soc. 2007, 129(24):7674-7679.
    [164] Steckel J S, Snee P, Coe-Sultivan S, et al. Color-saturated green-emitting QD-LEDs. Angew. Chem., Int. Ed. 2006, 45(35):5796-5799.
    [165] Katari J E B, Colvin V L, Alivisatos A P. X-ray photoelectron-spectroscope of CdSe nanocrystals with applications to studies of the nanocrystal surface. J. Phys. Chem. 1994, 98(15):4109-4117.
    [166] Van Sark W G J H M, Frederix P L T M, Bol A A, et al. Blueing, bleaching, and blinking of single CdSe/ZnS quantum dots. ChemPhysChem 2002, 3(10):871-879.
    [167] Hay K X, Waisundara V Y, Zong Y, et al. CdSe nanocrystals as hydroperoxide scavengers: A new approach to highly sensitive quantification of lipid hydroperoxides. Small 2007, 3(2):290-293.
    [168] Jin W J, Fernandez-Arguelles M T, Costa-Fernandez J M, et al. Photoactivated luminescent CdSe quantum dots as sensitive cyanide probes in aqueous solutions. Chem. Commun. 2005, 7:883-885.
    [169] Alivisatos A P, Harris T D, Carroll P J, et al. Electron-vibration coupling in semiconductor clusters studies by resonance reman-spectroscopy. J. Chem. Phys. 1989, 90(7):3463-3468.
    [170] Fan H M, Ni Z H, Feng Y P, et al. High pressure photoluminescence and Raman investigations of CdSe/ZnS core/shell quantum dots. Appl. Phys. Lett. 2007, 90(2):021921.
    [171] Berrettini M G, Braun G, Hu J G, et al. NMR analysis of surfaces and interfaces in 2-nm CdSe. J. Am. Chem. Soc. 2004, 126(22):7063-7070.
    [172] Chen X B, Samia A C S, Lou Y B, et al. Investigation of the Crystallization Process in 2 nm CdSe Quantum Dots. J. Am. Chem. Soc. 2005, 127(12):4372-4375.
    [173] Liu L P, Peng Q, Li Y D. Preparation of CdSe quantum dots with full color emission based on a room temperature injection technique. Inorg. Chem. 2008, 47(11):5022-5028.
    [174] Liu L P, Peng Q, Li Y D. An effective oxidation route to blue emission CdSe quantum dots. Inorg. Chem. 2008, 47(8):3182-3187.
    [175] Huo Z Y, Tsung C K, Huang W Y, et al. Sub-two nanometer single crystal Au nanowires. Nano Lett. 2008, 8(7):2041-2044.
    [176] Zhuang Z B, Peng Q, Zhang B, et al. Controllable synthesis of Cu2S nanocrystals and their assembly into a superlattice. J. Am. Chem. Soc. 2008, 130(32): 10482-10483.
    [177] Sapra S, Poppe J, Eychmvller A. CdSe nanorod synthesis: A new approach. Small 3(11):1886-1888.
    [178] Jasieniak J, Bullen C, Embden J V, et al. Phosphine-free synthesis of CdSe nanocrystals. J. Phys. Chem. B 2005, 109(44):20665-20668.
    [179] Delley B. An all-electron numbeical-method for solving the local density functional for polyatomic-molecules. J. Chem. Phys. 1990, 92(1):508-517.
    [180] Delley B. Fast calculation of electrostatics in crystals and large molecules. J. Phys. Chem. 1996, 100(15):6107-6110.
    [181] Delley B. From molecules to solids with the DMol(3) approach. J. Chem. Phys. 2000, 113(18):7756-7764.
    [182] Perdew J P, Burke K, Ernzerhof M. Generalized gradient approximation made simple. Phys. Rev. Lett. 1996, 77(18):3865-3868.
    [183] Zhang S B, Wei S H. Surface energy and the common dangling bond rule for semiconductors. Phys. Rev. Lett. 2004, 92(8):086102.
    [184] Manna L, Wang L W, Cingolani R, et al. First-principles modeling of unpassivated and surfactant-passivated bulk facets of wurtzite CdSe: A model system for studying the anisotropic growth of CdSe nanocrystals. J. Phys. Chem. B 2005, 109(13):6183-6192.
    [185] Rempel J Y, Trout B L, Bawendi M G, et al. Properties of the CdSe(0001), (0001), and (1120) single crystal surfaces: Relaxation, reconstruction, and adatom and admolecule adsorption. J. Phys. Chem. B 2005, 109(41):19320-19328.
    [186] Hwang E, Kim D H, Hwang Y J, et al. Bidentate structures of acetic acid on Ge(100): The role of carboxyl oxygen. J. Phys. Chem. C 2007, 111(16):5941-5945.
    [187] Murray C B, Kagan C R, Bawendi M G. Self-organization of CdSe nanocrystallites into 3-dimensional quantum-dot superlattices. Science, 1995, 270(5240):1335-1338.
    [188] Shevchenko E V, Talapin D V, Kotov N A, et al. Structural diversity in binary nanoparticle superlattices. Nature, 2006, 439(7072):55-59.
    [189] Wang Z L. Transmission Electron Microscopy of Shape-Controlled Nanocrystals and Their Assemblies. J. Phys. Chem. B 2000, 104(6):1153-1175.
    [190] Koo B, Patel R N, Korgel B A. Synthesis of CuInSe2 Nanocrystals with Trigonal Pyramidal Shape. J. Am. Chem. Soc. 2009, 131(9):3134-3135.
    [191] Kirkland A I, Jefferson D A, Duff D G, et al. Structure studies of trigonal lamellar particles of gold and silver. Proc. R. Soc. London, Ser. A 1993, 440(440):589-609.
    [192] Kim J, Nair P S, Wong C Y, et al. Sizina up the exciton in complex-shaped semiconductor nanocrystals. Nano Lett. 2007, 7(12):3884-3890.
    [193] DePuydt J M, Haase M A, Guha S, et al. Room-temperature II-VI lasers with 2.5 ma threshold. J. Cryst. Growth 1994, 138(1-4):667-676.
    [194] Blanton S A, Hines M A, Guyot-Sionnest P. Photoluminescence wandering in single CdSe nanocrystals. Appl. Phys. Lett. 1996, 69(25):3905-3907.
    [195] Liu L P, Zhuang Z B, Xie T, et al. Shape control of CdSe nanocrystals with zinc blende structure. J. Am. Chem. Soc. 2009, 131(45):16423-16429.
    [196] Honda K, Fujishima A. Electrochemical photolysis of water at a semiconductor electrode. Nature 1972, 238(5358):37-38.
    [197] Bak T, Nowotny J, Rekas M, et al. Photo-electrochemical hydrogen generation from water using solar energy. materials-related aspects. Int. J. Hydrogen energy 2002, 27(10):991-1022.
    [198] Heller A. Hydrogen-evolving solar-cells. Science 1984, 223(4641):1141-1148.
    [199] Hagfeldt A, Gratzel M. Light-induced redox reactions in nanocrystalline systems. Chem. Rev. 1995, 95(1):49-68.
    [200] Murphy A B, Barnes P R F, Randeniya L K, et al. Efficiency of sSolar water splitting using semiconductor electrodes. Int. J. Hydrogen Energy 2006, 31(14):1999-2017.
    [201] Santato C, Odziemkowski M, Ulmann M et al. Crystallographically oriented mesoporous WO3 films: synthesis, characterization, and applications. J. Am. Chem. Soc. 2001, 123(43):10639-10649.
    [202] Wolcott A, Kuykendall T R, Chen W, et al. Synthesis and characterization of ultrathin WO3 nanodisks utilizing long-chain poly(ethylene glycol). J. Phys. Chem. B 2006, 110(50):25288-25296.
    [203] Park J H, Kim S, Bard A J. Novel carbon-doped TiO2 nanotube arrays with high aspect ratios for efficient solar water splitting. Nano Lett. 2006, 6(1):24-28.
    [204] Ahn K S, Yan Y F, Lee S H, et al. Photoelectrochemical properties of N-incorporated ZnO films deposited by reactive RF magnetron sputtering. J. Electrochem. Soc. 2007, 154(9):B956–B959.
    [205] Wolcott A, Smith W A, Kuykendall T R, et al. Photoelectrochemical Water Splitting Using Dense and Aligned TiO2 Nanorod Arrays. Small 2009, 5, 104-111.
    [206] Choi W, Termin A, Hoffmann M R. The Role of Metal Ion Dopants in Quantum-Sized TiO2: Correlation Between Photoreactivity and Charge Carrier Recombination Dynamics. J. Phys. Chem. 1994, 98(51):13669-13679.
    [207] Asahi R, Morikawa T, Ohwaki T, et al. Visible-light hotocatalysis in nitrogen-doped titanium oxides. Science 2001, 293(5528):269-271.
    [208] Torres G R, Lindgren T, Lu J, et al. Photoelectrochemical study of nitrogen-doped titanium dioxide for water oxidation. J. Phys. Chem. B 2004, 108(19):5995-6003.
    [209] Qiu X F, Zhao Y X, Burda C. Synthesis and characterization of nitrogen-doped group IVB visible-light-photoactive metal oxide nanoparticles. Adv. Mater. 2007, 19(22):3995-3999.
    [210] Hensel J, Wang G M, Li Y, et al. Synergistic effect of CdSe quantum dot sensitization and nitrogen doping of TiO2 nanostructures for photoelectrochemical solar hydrogen generation. Nano Lett. 2010, 10(2):478-483.
    [211] Chen Z H, Tang Y B, Liu C P, et al. Vertically aligned ZnO nanorod arrays sentisized with gold nanoparticles for schottky barrier photovoltaic cells. J. Phys. Chem. C 2009, 113(30):13433-13437.
    [212] Tak Y, Hong S J, Lee J S, et al. Fabrication of ZnO/CdS core/shell nanowire arrays for efficient solar energy conversion. J. Mater. Chem. 2009, 19(33):5945-5951.
    [213] Li X L, Peng Q, Yi J X, et al. Near monodisperse TiO2 nanoparticles and nanorods. Chem. Eur. J. 2006, 12(8):2383-2391.
    [214] Bai F, Wang D S, Huo Z Y, et al. A versatile bottom-up assembly approach to colloidal spheres from nanocrytstals. Angew. Chem. Int. Ed. 2007, 46(35):6650-6653.
    [215] Zhuang J Q, Wu H M, Yang Y A, et al. Supercrystalline colloidal particles from artificial atoms. J. Am. Chem. Soc. 2007, 129(46):14166-14167.
    [216] Chandrasekharan N, Kamat P V. Improved the photoelectrochemical performance of nanostructured TiO2 films by adsorption of gold nanoparticles. J. Phys. Chem. B 2000, 104(46):10851-10857.
    [217] Dawson A, Kamat P V. Semiconductor-metal nanocomposites. Photoinduced fusion and photocatalysis of gold-capped TiO2 (TiO2/Gold) nanoparticles. J. Phys. Chem. B 2001, 105(5):960-966.
    [218] Subramanian V, Wolf E, Kamat P V. Semiconductor-metal composite nanostructures. To what extent do metal nanoparticles improve the photocatalytic activity of TiO2 films. J. Phys. Chem. B 2001, 105(46):11439-11446.
    [219] Subramanian V, Wolf E E, Kamat P V. Green emission to probe photoinduced charging events in ZnO-Au nanoparticles. Charge distribution and fermi-level equilibration. J. Phys. Chem. B 2003, 107(30):7479-7485.
    [220] Jakob M, Levanon H, Kamat P V. Charge distribution between Uv-irradiated TiO2 and gold nanoparticles: Determination of shift in the fermi level. Nano Lett. 2003, 3(3):353-358.
    [221] Tian Y, Tatsuma T. Plasmon-induced photoelectrochemistry at metal nanoparticles supported on nanoporous TiO2. Chem. Commun. 2004, 16:1810-1811.
    [222] Tian Y, Tatsuma T. Mechanisms and applications of plasmon-induced charge separation at TiO2 films loaded with gold nanopaticles. J. Am. Chem. Soc. 2005, 127(20):7632-7637.
    [223] Derkacs D, Lim S H, Matheu P, et al. Improved performance of amorphous silicon solar cells via scattering form surface plasmon polaritons in nearby metallic nanoparticles. Appl. Phys. Lett. 2006, 89(9):093103.
    [224] Pillai S, Catchpole K R, Trupke T, et al. Surface plasmon enhanced silicon solar cells. J.Appl. Phys. 2007, 101(9):093105.
    [225] Schaadt D M, Feng B, Yu E T. Enhanced semiconductor optical absorption via surface plasmon excitation in metal nanoparticles. Appl. Phys. Lett. 2005, 86:063106.
    [226] Catchpole K R, Polman A. Design principles for particle plasmon enhanced solar cells. Appl. Phys. Lett. 2008, 93(19):191113.
    [227] Nakayama K, Tanabe K, Atwater H A. Plasmonic nanoparticle enhanced light absorption in GaAs solar cells. Appl. Phys. Lett. 2008, 93(12):121904.
    [228] Smith W, Mao S, Lu G H, et al. The effect of Ag nanoparticle loading on the photocatalytic activity of TiO2 nanorod arrays. Chem. Phys. Lett. 2010, 485(1-3):171-175.
    [229] Ahmadi T S, Logunov S L, El-Sayed M A. Picosecond dynamics of colloidal gold nanoparticles. J. Phys. Chem. 1996, 100(20):8053-8056.
    [230] Zhang J Z. Ultrafast studies of electron dynamics in semiconductor and metal colloidal nanoparticles: effects of size and surface. Acc. Chem. Res. 1997, 30(10):423-429.
    [231] Liu L P, Hensel J, Fitzmorris B C, et al. Preparation and photoelectrochemical properties of CdSe/TiO2 hybrid mesoporous structures. J. Phys. Chem. Lett. 2010, 1(1):155-160.
    [232] Liu L P, Wang G M, Li Y, et al. CdSe quantum dot-sensitized Au/TiO2 hybrid mesoporous films and their enhanced photoelectrochemical performance. Submitted.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700