高功率激光装置靶面光强分布精密控制技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在激光惯性约束聚变研究中,精密物理实验对靶面光强辐照均匀性有严格要求。然而,由于高功率激光装置光束上的波前畸变导致靶面光强分布不均匀,从而会引起多种等离子体不稳定性。因此激光驱动聚变要求采取束匀滑措施来精密控制靶面光强分布,并在靶的流体力学响应时间内快速改变靶面相干斑结构,从而实现靶面均匀辐照。此外,在高功率激光驱动器中,光束的传输、放大与控制问题也一直是强激光物理与技术研究的重点。论文主要针对靶面光强分布精密控制技术开展研究,分析了采用这些技术对高功率激光装置带来的影响。
     论文主要研究工作和取得的成果如下:
     1.对靶面光强分布精密控制技术中光谱色散平滑(smoothing by spectral dispersion, SSD)涉及的光传输模型进行了研究。详细讨论了SSD脉冲传输放大过程中的幅频效应及抑制措施,为研究和发展靶面光强分布精密控制技术奠定了理论基础。
     2.为弥补基于正弦调频脉冲的SSD技术边带分布不均匀且仅对靶面特定空间频段匀滑的缺点,提出了基于线性调频脉冲的SSD方法。该方法可产生超高斯型的光谱分布,实现焦斑时域快速扫动。扫动速度主要取决于基元脉冲宽度和光栅参数。时域匀滑的焦斑光强分布为与光谱类似的超高斯型。该技术的难点在于获得周期性线性调频脉冲。这里采用线性啁啾脉冲堆积的方法来获得线性调频脉冲。实验证明线性调频脉冲进行光谱角色散后对远场的束匀滑效果优于正弦调频脉冲。
     3.为解决线性光栅仅能实现焦斑一维匀滑的问题,首次提出了基于星光栅的时域匀滑方法。与线性光栅和圆光栅相比,星光栅具有最佳的辐照均匀性。该技术可实现光束在靶面的圆周‘运动”扫描,获得远场的全方位匀滑。该方法具有结构简单、可实现焦斑二维匀滑和不显著扩大焦斑尺寸的优点。
     4.在高功率激光装置上全系统连通研究了基于正弦调频脉冲的SSD关键技术。解决了调频脉冲产生、SSD参数优化、幅频效应抑制、空间滤波器小孔优化、束匀滑焦斑参数评价等关键问题,为SSD的应用奠定了坚实基础。
     5.在高功率激光装置上,基于色循环数1的SSD和磁流变加工的连续位相板(continuous phase plate, CPP)开展了靶面光强分布精密控制的综合性实验研究。采用CPP后焦斑大面均匀性和分布轮廓得到控制,包含95%焦斑能量圆内的通量对比度由不加CPP时的1.71下降到加CPP时的0.72。SSD和CPP同时采用时焦斑通量对比度下降到0.47,进一步提高了靶面辐照均匀性。在高功率激光装置上应用SSD和CPP开展了激光等离子体相互作用的物理实验研究。平面靶实验结果表明采用SSD和CPP后X光焦斑均匀性得到显著改善;黑腔靶实验表明采用SSD和CPP后背向散射光份额从不加SSD和CPP时的30%~40%下降到小于5%。为同时实现SSD功能和抑制大口径光学元件内的横向SBS,并获得更高的靶面辐照均匀性,研究了基于复合型调频(Multi-FM)脉冲的SSD技术,并结合CPP开展了全系统联机实验研究。结果表明复合型调频SSD与采用单级调频SSD相比可以进一步匀滑焦斑上的中高频调制。
     6.针对间接驱动中的激光等离子体不稳定性,研究了双折射楔板、组合式偏振旋转板和柱矢光束等偏振匀滑技术。针对甚多束激光驱动器采用组束打靶的需求,研究了不同SSD色散方向排布对焦斑匀滑性能的影响。理论模拟结果表明采用色散方向互相垂直的排布方式可在单束光采用一维SSD的情况下实现焦斑的二维匀滑。研究了一种新型巨啁啾方波脉冲产生技术,具备输出快上升沿、可精密二次整形的特点,可从源头上消除幅频效应。
     论文的创新点主要包括:
     1.提出了基于线性调频脉冲的光谱色散平滑技术,获得了均匀性优于正弦调频脉冲SSD的焦斑;与国外传统技术相比,无需相位调制器、光学精密整形和易于实现多种子脉冲间的精密同步是该技术的优点。
     2.结合SSD和CPP技术,在高功率激光装置上开展了靶面光强分布控制的综合性实验研究;应用SSD和CPP开展了激光等离子体相互作用物理实验研究,证实了SSD+CPP技术抑制背向散射的有效性。
     3.提出了基于星光栅的光谱角扫描技术,可实现光束在靶面的圆周“运动”扫描,进而获得高功率激光装置远场的全方位匀滑。
     4.针对甚多束激光驱动器组束打靶方式,提出了块匀滑技术。理论模拟结果表明通过调整光谱角扫描方向,可以在子束光采用一维SSD的情况下实现组束焦斑的二维匀滑。
In the research of Inertial Confinement Fusion (ICF), precise physical experiments place strict requirements on target illumination uniformity. While, wave front aberrations in high-power laser facilities for ICF produce nonuniformities in the intensity distribution of focal spot which can significantly degrade the coupling of energy into a fusion target, driving various plasma instabilities. Therefore, laser-driven ignition requires a strategy to precisely control the intensity distribution on target and vary the interference pattern on a time scale that is short compared to the characteristic hydrodynamic response time of target. Besides, in the research of laser drivers, the propagation, amplification and control of laser beam has also been the research focus of high-power laser physics and technologies. The dissertation mainly focused on the control strategy over target uniform illumination and the influence of beam smoothing technologies on laser facilities.
     The main research works and conclusions are as follows:
     1. The propagation theory of smoothing by spectral dispersion (SSD) was analyzed. Generation of frequency modulation to amplitude modulation (FM-to-AM) conversion effect when using SSD was discussed in detail. Restraining ways were proposed. The research founds theoretical basis for the research and the development of beam smoothing technologies.
     2. As traditional SSD using sinusoidal phase modulation has the shortcoming of nonuniformly distributed side bands and smoothing only specific spatial frequencies in the far field, a new SSD route using linear modulation was proposed. The spectrum of the stacked chirped pulse is a frequency comb under Gaussian envelope. The smoothing time with one color cycle is short and mainly determined by the pulse width of the seed pulse and grating parameters. The focal spot is distributed in Gaussian envelope, in accordance with the spectrum. The difficulty of the technique is the generation of periodic linear modulation. Here, periodic linear modulation was realized by stacking a series of chirped pulses in fiber delay lines. Smoother focal spot was obtained using linear modulation, compared with sinusoidal modulation.
     3. To solve the problem of one-dimensional (1-D) smoothing using linear grating, star grating (or spiral grating) dispersion was proposed. Simulation results indicate that star grating has the best smoothing effect compared with linear grating and circular grating. Insertion of star grating could realize color variation across the beam in the azimuthal direction and make the far-field pattern rotate with time. Therefore, the time-integrated focal spot is smoothed in a more comprehensive way. This smoothing method bears the advantage of simple configuration, two-dimensional beam smoothing and not enlarging the far field too much.
     4. Aimed at indirect drive laser fusion, key techniques of using SSD on high-power laser facilities were investigated, including generation of frequency-modulated pulse, optimization of SSD parameters, suppression of FM-to-AM conversion, optimization of spatial filter pinholes after using SSD and evaluation of the smoothed focal spot. The research founds solid basis for the application of SSD on high-power laser facilities.
     5. Using SSD with critical dispersion (Nc=l) and CPP machined by Magnetorheological Finishing Techniques (MFT), integrated experiments were carried out on high-power laser facilities. The contrast of the focal spot with95%energy included with CPP dropped to0.72compared with1.71without CPP, and further improved to0.47when using SSD and CPP in the same time. The experiments solve some key technical problems in implementing SSD and CPP on high-power laser facilities, and provide a flexible platform for laser-plasma interaction experiments. Using SSD and CPP, some laser plasma interaction experiments have been done. The plane target experiments indicate the X-ray distribution has been greatly improved after using SSD and CPP. Hohlraum experiments indicate backscattered light from the laser entrance hole dropped to below5%after using SSD and CPP, compared with30%-40%without SSD and CPP. To obtain smoother focal spot and suppress transverse SBS, Multi-FM SSD was studied in high fluence combined with CPP. Results indicate intermediate and high frequency modulations on the focal spot are smoothed in a more comprehensive way compared with single modulation frequency SSD.
     6. Aimed at suppression of laser-plasma instabilities in indirect drive laser fusion, several polarization smoothing techniques were studied, including birefringent wedge, ditributed polarization rotators and cylindrical vector beams. Considering future laser drivers with hundreds of laser beams, quad beam smoothing was studied. Simulation results indicate through adjusting dispersion directions of1-D SSD beams in a quad, two-dimensional beam smoothing could be obtained. A square waveform pulse generation method for high-power laser facilities was studied, which bear the advantages of fast rise edge and easy to be reshaped precisely, providing a new way to suppress FM-to-AM effect in the source.
     Highlights of the dissertation are as follows:
     1. A new SSD route using linear modulation was proposed. Better beam smoothing effect of the linear modulation compared with sinusoidal modulation was experimentally demonstrated. Compared with traditional SSD, without phase modulator, optical pulse shaping, and precise synchronization between different types of pulses in the front end of a multifunctional laser driver are the advantages.
     2. Using SSD and CPP, integrated experiments were carried out on high-power laser facilities. Some key technical problems were solved. Using SSD and CPP, laser plasma interaction characteristics were studied. Experiments indicate backscattered light from the laser entrance hole dropped notablely after using SSD and CPP.
     3. To solve the problem of one-dimensional (1-D) smoothing using linear grating, star grating (or spiral grating) dispersion was proposed. Simulation results indicate insertion of star grating could realize color variation across the beam in the azimuthal direction and make the far-fie Id pattern rotate with time. Therefore, the time-integrated focal spot could be smoothed in a more comprehensive way.
     4. Quad beam smoothing was proposed and studied for laser drivers with hundreds of laser beams. Simulation results indicate through adjusting dispersion directions of the1-D SSD beams in a quad, two-dimensional beam smoothing could be obtained.
引文
[1]范滇元,贺贤土.1999.惯性约束聚变能源与激光驱动器[J].大自然探索,18(67):31-35.
    [2]Bodner S E, McCrory R L, Afeyan B B.1998. Direct-drive laser fusion:Status and prospects[J]. Phys Plasmas,5(5):1901-1918.
    [3]Lindl J D.1995. Development of the indirect-drive approach to inertial confinement fusion and the target physics basis for ignition and gain[J]. Phys Plasmas,2(11):3933-4024.
    [4]Deutsch C, Furukawa H, Mima K, et al.1996. Interaction physics of the fast ignitor concept[J]. Phys Rev Lett,77:2483-2486.
    [5]Tikhonchuk V T, Mima K.2011. Alternative schemes for the inertial fusion energy[J]. Fusion Engineering and Design,86:504-508.
    [6]Kato Y, Mima K, Miyanaga N, et aL 1984. Random phasing of high power lasers for uniform target acceleration and plasma instability suppression[J]. Phys Rev Lett,53:1057-1060.
    [7]Deng X M, Liang X C, Chen Z Z, et al.1986. Uniform illumination of large targets using a lens array[J]. Applied Optics,25(3):377-381.
    [8]Stevenson R M, Norman M J, Bett T H, et aL 1994. Binary-phase zone plate arrays for the generation of uniform focal profiles[J]. Opt Lett,19:363-365.
    [9]Thomas I, Dixit S N, Rushford M C, et al. 1994. Kinoform phase plates for focal plane irradiance profile control[J]. Opt Lett,19:417-419.
    [10]Neauport J, Ribeyre X, Daurios J, et al.2003. Design and optical characterization of a large continuous phase plate for laser integration line and laser Mega joule facilities [J]. Applied Optics,42(13):2377-2382.
    [11]Lehmberg R H, Schmitt A J, Bodner S E et aL 1987. Theory of induced spatial incoherence[J]. J Appl Phys,62:2680-2701.
    [12]Lehmberg R H, Chan Y 2005. Near-field nonuniformities in angularly multiplexed KrF fusion lasers with induced spatial incoherence[J]. Applied Optics,44(14):2805-2817.
    [13]Veron D, Ayral H, Gouedard C, et al. 1988. Optial spatial smoothing of Nd-glass laser beam[J]. Opt Comm,46 (27):42-45.
    [14]Veron D, Thiell Q Gouedard C.1993. Optical smoothing of the high power PHEBUS Nd-glass laser using the multimode optical fiber technique[J]. Opt Commun,97:259-271.
    [15]Nakano H, Kanabe T, Yagi K et al.1990. Amplification and propagation of partially coherent amplified spontaneous emission from Nd:glass[J]. Opt Commun,78:123-127.
    [16]Nakano H, Tsubakimoto K, Miyanaga N, et al. 1993. Spectally dispersed amplified spontaneous emission for improving irradiation uniformity into high power Nd:glass laser system[J]. J Appl Phys,73(5):2122-2131.
    [17]Nakano H, Miyanaga N, Yagi K, et al. 1993. Partially coherent light generated by using single and multimode optical fibers in a high-power Nd:glass laser system[J]. Appl Phys Lett, 63(5):580-582.
    [18]Nakatsuka M, Mryanaga N, Kanabe T, et al. 1993. Partially coherent light sources for ICF experiment[A]. In:H. T. Powell and T. J. Kessler eds., Proceedings of SPIE 1870[C], Laser Coherence Control: Technology and Applications, Los Angeles, Bellingham:SPIE,1993: 151-162.
    [19]Skupsky S, Short R W, Kessler T, et al. 1989. Improved laser-beam uniformity using the angular dispersion of frequency-modulated light[J]. J Appl Phys,66:3456-3462.
    [20]"Broadband beam smoothing on OMEGA with two-dimensional smoothing by spectral dispersion," in LLE Review,80:197-202 (1999), http://www.lle.rochester.edu.
    [21]Miyaji G, Miyanaga N, Urushihara S, et al. 2002. Three-directional spectral dispersion for smoothing a laser irradiance profile[J]. Opt Lett,27:725-727.
    [22]Haynam C A, Wegner P J, Auerbach J M, et al. 2007. National Ignition Facility laser performance status[J].App Opt,46:3276-3303.
    [23]Morice O.2003. Miro:complete modeling and software for pulse amplification and propagation in high-power laser systems[J].Opt Eng,42:1530-1541.
    [24]Rothenberg J E.2000. Polarization beam smoothing for inertial confinement fusion[J]. J. Appl. Phys.,87(8):3654-3662.
    [25]Rothenberg J E.1997. Comparison of beam-smoothing methods for direct-drive inertial confinement fusion[J]. J Opt Soc Am B,14:1664-1671.
    [26]Skupsky S and Craxton R S.1999. Irradiation uniformity for high-compression laser-fusion experiments [J]. Phys Plasmas,6:2157-2163.
    [27]Lindl J D, Amendt P, Berger R L, et al. 2004. The physics basis for ignition using indirect-drive targets on the National Ignition Facility [J]. Phys Plasmas,11:339-491.
    [28]Bodner S E.2008. Comment on "National Ignition Facility laser performance status"[J]. Appl Opt,47:1387-1388.
    [29]Haynam C A, Sacks R A, Moses E I, et al. 2008. Response to comment on "The National Ignition Facility laser performance status"[J]. Appl Opt,47(10):1384-1386.
    [30]Goodman J W.1984. Statistical properties of laser speckle patterns [M]//Dainty JC. Topics in Applied Physics. New York:Springer-Verlag,9:12-29.
    [31]McKenty P W, Skupsky S, Kelly J H et al. 1994. Numerical investigation of the self-focusing of broad-bandwidth laser light with applied angular dispersion[J]. J Appl Phys, 76 (4):2027-2035.
    [32]Rothenberg J E, Moran B, Henesian M, et al.1996. Performance of Smoothing by Spectral Dispersion (SSD) on Beamlet, LLNL, UCRL-JC-124506.
    [33]Rothenberg J E, Auerbach J M, Moran B D, et al.1998. Implementation of smoothing by spectral dispersion on beamlet and NIF[R]. UCRL-JC-129771.
    [34]Rothenberg J E, Moran B, Wegner P, et al.1997. Performance of Smoothing by Spectral Dispersion (SSD) with Frequency Conversion on the Beamlet Laser for the National Ignition Facility[R]. UCRL-JC-128870.
    [35]Gerchberg R W, Saxton W O.1971. Phase determination for image and diffraction plane pictures in the electron microscope[J]. Optik,34:275-284.
    [36]Marozas J A 2007. Fourier transform-based continuous phase-plate design technique:a high-pass phase-plate design as an application for OMEGA and the National Ignition Facility[J]. J Opt Soc Am A,24(1):74-83.
    [37]Menapace J A, Dixit S N, Genin F Y, et al.2003. Magnetorheological Finishing for Imprinting Continuous Phase Plate Structure onto Optical Surfaces[C]. Laser Induced Damage in Optical Materials:SPIE Proc,5273:220-230.
    [38]Menapace J A 2010. Developing Magnetorheological Finishing (MRF) Technology for the Manufacture of Large-Aperture Optics in Megajoule Class Laser Systems [R]. LLNL-PROC-461456.
    [39]Wegner P, Auerbach J, Biediada T, et al. 2004. NIF final optics system:frequency conversion and beam conditioning[C]. Proc. SPIE,5341:180-189.
    [40]Burkhart S C, Bliss E, Nicola P D, et al.2011. National Ignition Facility system alignment[J]. Appl Opt,50(8):1136-1157.
    [41]Regan S P, Marozas J A, Craxton R S, et al. 2005. Performance of 1-THz-bandwidth, two-dimensional smoothing by spectral dispersion and polarization smoothing of high-power, solid-state laser beams [J]. J Opt Soc Am B,22(5):998-1002.
    [42]Munro D H, Dixit S N, Langdon A B, et al.2004. Polarization smoothing in a convergent beam[J]. Appl Opt,43(36):6639-6647.
    [43]Dixit S N, Munro D, Murray J R, et al.2006. Polarization smoothing on the national ignition facility[J]. Journal De Physique IV,133:717-720.
    [44]2012. Polar Drive Ignition Campaign Conceptual Design[R]. LLNL-TR-553311:91.
    [45]Glenzer S H, Berger R L, Divol L M, et al.2001. Reduction of stimulated scattering losses from hohlraum plasmas with laser beam smoothing[J]. Phys Plasmas,8:1692-1696.
    [46]Moody J D, MacGowan B J, Rothenberg J E, et aL 2001. Backscatter reduction using combined spatial, temporal, and polarization beam smoothing in a long-scale-length laser plasma[J]. Phys Rev Lett,86:2810-2813.
    [47]Glenzer S H, Froula D H, Divol L, et al. 2007. Experiments and multiscale simulations of laser propagation through ignition-scale plasmas [J]. Nature Physics,3,716-719.
    [48]Froula D H, Divol L, London R A, et al 2010. Experimental basis for laser-plasma interactions in ignition hohlraums at the National Ignition Facility[J]. Phys. Plasmas,17: 056302.
    [49]Kline J L, Glenzer S H, Olson R E, et al. 2011. Observation of high soft X-ray drive in large-scale hohlraums at the National Ignition Facility[J]. Phys Rev Lett,106:085003.
    [1]张锐.2006.基于调频脉冲的光谱色散平滑技术研究[D]:硕士.绵阳:中国工程物理研究院研究生部:22-47.
    [2]Rothenberg J E, Browning D F, and Wilcox R B. 1999. Issue of FM-to-AM conversion on the National Ignition Facility[C]. in Proceedings of the Third International Conference on Solid State Lasers for Application to Inertial Confinement Fusion, Lowdermilk W H ed., Proc SPIE 3492:51-61.
    [3]Hbcquet S, Penninckx D, Bordenave E, et al. 2008. FM-to-AM conversion in high-power lasers[J] Appl Opt,47:3338-3349.
    [4]Penninckx D, Beck N, Gleyze J, et al 2006. Signal propagation over polarization-maintaining fibers:problem and solutions[J]. J Lightwave Tech,24:4197-4207.
    [5]Hocquet S, Penninckx D, Gleyze J, et al. 2010. Nonsinusoidal phase modulations for high-power laser performance control:stimulated Brillouin scattering and FM-to-AM conversion[J].Appl Opt,49:1104-1115.
    [6]Penninckx D, Beck N.2005. Definition, meaning, and measurement of the polarization extinction ratio of fiber-based devices[J]. Appl Opt,44:7773-7779.
    [7]Penninckx D, Beck N.2006. Axis alternation for signal propagation over polarization-maintaining fibers[J]. IEEE Photon Technol Lett,18(7):856-858.
    [8]Huang X D, Wang J J, Li M Z, et al. 2010. FM-AM conversion induced by polarization mode dispersion in fiber systems[J]. Chin Phys Lett,27:104211.
    [9]Xu D P, Wang J J, Li M Z, et al. 2010. Weak etalon effect in wave plates can introduce significant FM-to-AM modulations in complex laser systems[J]. Opt Express,18:6621-6627.
    [10]Yang Y S, Feng B, Han W, et al. 2009. Suppression of FM-to-AM conversion in third-harmonic generation at the retracing point of a crystal[J]. Opt Lett,34:3848-3850.
    [11]Hocquet S, Lacroix G, and Penninckx D.2009. Compensation of frequency modulation to amplitude modulation conversion in frequency conversion systems[J]. Appl Opt,48: 2515-2521.
    [12]Vidal S, Luce J, and Penninckx D.2011. Experimental demonstration of linear precompensation of a nonlinear transfer function due to second-harmonic generation[J]. Opt Lett,36:88-90.
    [1]Rothenberg J E.1997. Comparison of beam-smoothing methods for direct-drive inertial confinement fusion[J].J Opt Soc Am B,14:1664-1671.
    [2]Skupsky S and Craxton R S.1999. Irradiation uniformity for high-compression laser-fusion experiments [J]. Phys Plasmas,6:2157-2163.
    [3]Haynam C A, Sacks R A, Moses E I, et al. 2008. Response to comment on "The National Ignition Facility laser performance status"[J].Appl Opt,47(10):1384-1386.
    [4]Rothenberg J E, Browning D F, and Wilcox R B.1999. Issue of FM-to-AM conversion on the National Ignition Facility[C]. in Proceedings of the Third International Conference on Solid State Lasers for Application to Inertial Confinement Fusion, Lowdermilk W H ed., Proc SPIE 3492:51-61.
    [5]Hocquet S, Penninckx D, Bordenave E, et al. 2008. FM-to-AM conversion in high-power lasers[J]. Appl Opt,47:3338-3349.
    [6]Penninckx D, Beck N, Gleyze J, et al.2006. Signal propagation over polarization-maintaining fibers:problem and solutions [J]. J Lightwave Tech,24:4197-4207.
    [7]Vidal S, Luce J, and Penninckx D.2011. Experimental demonstration of linear precompensation of a nonlinear transfer function due to second-harmonic generation[J]. Opt Lett,36:88-90.
    [8]Zhang R, Zhang X M, Sui Z, et al. 2008. Research on beam smoothing characteristics using linearly modulated light[J]. Optics & Laser Technology 40:1018-1024.
    [9]Oron R, Davidson N, Friesem A A, et al.2000. Continuous-phase elements can improve laser beam quality[J]. Opt Lett,25(13):939-941.
    [10]Oemrawsingh S S R, Van Houwelingen J A W, Eliel E R, et al. 2004. Production and characterization of spiral phase plates for optical wavelengths [J]. Appl Opt,43(3):688-694.
    [11]Allen L, Beijersbergen M W, Spreeuw R J, et al.1992. Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes [J]. Phy Rev A,45:8185-8189.
    [12]Beijersbergen M W, Coerwinkel R P C, and Woerdman J P.1994. Helical-wavefront laser beams produced by a spiral phase plate[J]. Opt Comm,112:321-327.
    [1]Lindl J D.1995. Development of the indirect-drive approach to inertial confinement fusion and the target physics basis for ignition and gain[J]. Phys Plasmas,2(11):3933-4024.
    [2]Neauport J, Ribeyre X, Daurios J, et al. 2003. Design and optical characterization of a large continuous phase plate for laser integration line and laser Megajoule facilities[J]. Applied Optics,42(13):2377-2382.
    [3]Nakano H, Tsubakimoto K, Miyanaga N, et al. 1993. Spectally dispersed amplified spontaneous emission for improving irradiation uniformity into high power Nd:glass laser system[J]. J Appl Phys,73(5):2122-2131.
    [4]Nakano H, Miyanaga N, Yagi K, et al. 1993. Partially coherent light generated by using single and multimode optical fibers in a high-power Nd:glass laser system[J]. Appl Phys Lett, 63(5):580-582.
    [5]Skupsky S, Short R W, Kessler T, et al. 1989. Improved laser-beam uniformity using the angular dispersion of frequency-modulated light[J]. J Appl Phys,66:3456-3462.
    [6]Miyaji Q Miyanaga N, Urushihara S, et al. 2002. Three-directional spectral dispersion for smoothing a laser irradiance profile[J]. Opt Lett,27:725-727.
    [7]Haynam C A, Wegner P J, Auerbach J M, et al. 2007. National Ignition Facility laser performance status[J]. App Opt,46:3276-3303.
    [8]Morice O.2003. Miro:complete modeling and software for pulse amplification and propagation in high-power laser systems [J]. Opt Eng,42:1530-1541.
    [9]Rothenberg J E.2000. Polarization beam smoothing for inertial confinement fusion[J]. J. Appl Phys,87(8):3654-3662.
    [10]Rothenberg J E.1997. Comparison of beam-smoothing methods for direct-drive inertial confinement fusion[J]. J Opt Soc Am B,14:1664-1671.
    [11]Skupsky S and Craxton R S.1999. Irradiation uniformity for high-compression laser-fusion experiments [J]. Phys Plasmas,6:2157-2163.
    [12]Hocquet S, Penninckx D, Bordenave E, et aL 2008. FM-to-AM conversion in high-power lasers[J] AppL Opt.47,3338-3349.
    [13]Lindl J D, Amendt P, Berger R L, et al. 2004. The physics basis for ignition using indirect-drive targets on the National Ignition Facility[J]. Phys Plasmas,11:339-491.
    [1]Lindl J D, Amendt P, Berger R L, et al.2004. The physics basis for ignition using indirect-drive targets on the National Ignition Facility [J]. Phys Plasmas,11 (2):339-491.
    [2]Regan S P, Marozas J A, Craxton R S, et aL 2005. Performance of 1-THz-bandwidth, two-dimensional smoothing by spectral dispersion and polarization smoothing of high-power, solid-state laser beams [J]. J Opt Soc Am B,22(5):998-1002.
    [3]Haynam C A, Wegner P J, Auerbachet J M, et aL 2007. National Ignition Facility laser performance status[J]. App Opt,46:3276-3303.
    [4]Rothenberg J E.2000. Polarization beam smoothing for inertial confinement fusion[J]. J. Appl Phys,87(8):3654-3662.
    [5]Lefebvre E, Berger R L, Langdon A B, et al. 1998. Reduction of laser self-focusing in plasma by polarization[J]. Phys Plasmas,5(7):2701-2705.
    [6]Moody J D, MacGowan B J, Rothenberg J E, et a.. 2001. Backscatter reduction using combined spatial, temporal, and polarization beam smoothing in a long-scale-length laser plasma[J]. Phys Rev Lett,86:2810-2813.
    [7]Froula D H, Divol L, London R A, et al. 2010. Experimental basis for laser-plasma interactions in ignition hohlraums at the National Ignition Facility[J]. Phys Plasmas,17: 056302.
    [8]Skupsky S, Craxton R S.1999. Irradiation uniformity for high-compression laser-fusion experiments [J]. Phys Plasmas,6(5):2157-2163.
    [9]Goodman J W. in Topics in Applied Physics, edited by J. C. Dainty (Springer, New York, 1984),9:12-40.
    [10]Zhan Q W.2009. Cylindrical vector beams:from mathematical concepts to applications [J]. Advances in Optics and Photonics 1:1-57.
    [11]Zhan Q W and Leger J R.2002. Focus shaping using cylindrical vector beams [J]. Opt Express,10:324-331.
    [12]Dorn R, Quabis S, and Leuchs G 2003. Sharper focus for a radially polarized light beam[J]. Phys Rev Lett,91:233901.
    [13]Pohl D.1972. Operation of a Ruby laser in the purely transverse electric mode TE01[J]. Appl Phys Lett,20:266-267.
    [14]Kozawa Y and Sato S.2005. Generation of a radially polarized laser beam by use of a conical Brew ster prism [J]. Opt Lett,30:3063-3065.
    [15]Ahmed M A,Voss A, Vogel M M, et al. 2007. Multilayer polarizing grating mirror used for the generation of radial polarization in Yb:YAG thin-disk lasers[J]. Opt Lett,32:3272-3274.
    [16]Niziev V Q Chang R S, and Nesterov A V 2006. Generation of inhomogeneously polarized laser beams by use of a Sagnac interferometer[J]. Appl Opt,45:8393-8399.
    [17]Zhan Q W, Leger J R.2002. Microellipsometer with radial symmetry[J]. Appl Opt,41: 4630-4637.
    [18]Zhan Q W, Leger J R.2002 Interferometric measurement of Berry's phase in space-variant polarization manipulations [J]. Opt. Commun.213:241—245.
    [19]Bomzon Z, Biener G, Kleiner V, et al. 2002. Radially and azimuthally polarized beams generated by space-variant dielectric subwavelength gratings [J]. Opt Lett,27:285-287.
    [20]Niziev V, Nesterov A.1999. Influence of beam polarization on laser cutting efficiency [J]. J Phys D,32:1455-1461.
    [21]Kawauchi H, Yonezawa K, Kozawa Y, et al 2007. Calculation of optical trapping forces on a dielectric sphere in the ray optics regime produced by a radially polarized laser beam[J]. Opt Lett,32:1839-1841.
    [22]Rothenberg J E.1996. Electro-optic deflectors as a method of beam smoothing for inertial confinement fusion[R]. UCRL-JC-124507.
    [23]Goltsov A Y, Kolomiysky AN, Kovalsky N G, et al. 1999. Beam Wiggler operating in high frequency and single pulse modes[C]. SPIE 3492:62-78.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700