基于金刚石室温固态单自旋体系的微观磁共振实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
自旋磁共振是物质科学领域的一个基本物理现象,它描述处于外磁场中的原子核或者电子自旋,能够吸收和放出对应频率的电磁辐射,即发生磁共振现象。自旋在物质中广泛存在,因而自旋磁共振技术能够用来准确、快速和无破坏性地获取物质的组成和结构上的信息,是当代科学中最为重要的物质探索技术之一。当前的自旋磁共振谱仪基于系综探测原理,它的测试对象是含有百亿个以上相同自旋的系综样品。然而,近年来随着物质科学探索的不断深入,人们开始逐渐从统计平均测量向直接探测单量子的信息迈进。在自旋磁共振领域,实现微观磁共振,甚至单自旋磁共振是这一方向发展的极为重要的科学目标。为实现这一科学目标,我们选取了基于掺杂金刚石中氮-空位(NV)对的固态单自旋作为探针,此体系室温下退相干时间长达毫秒量级、可用光学共聚焦系统实现初始化和检测,在室温下实现单电子自旋量子态调控和检测。代替传统的电探测方式,用基于此体系单自旋态制备成量子干涉仪,将微观自旋体系产生的弱磁信号转为干涉仪的相位,从而实现高灵敏度的信号检测,这也是用此体系实现微观磁共振、甚至单自旋磁共振的必要条件。最终的目标是实现单分子探测与成像,这在物理、化学、生物、材料等领域都具有广泛而重要的应用前景。
     我们围绕这一核心目标开展了相关的实验研究,本论文主要内容是介绍我们在自搭建的光探测磁共振实验平台上,完成的室温单自旋量子调控及高分辨率精密信号探测的相关成果。主体分成如下三个阶段的工作:
     1.我们建设了一套多波段光探测磁共振平台并在其上实现了室温单自旋量子调控,实验上实现了此体系上的第一个量子算法。接着,又应用动力学去耦技术到单自旋体系,观测到反常退相干效应,研究了NV探针的退相干机制,实现了精密的相位测量。而连续波去耦与逻辑门操作结合,使我们可以实现长时间高保真度的量子调控。
     2.基于以上量子调控技术,我们首先实验实现了单电子暗自旋的探测及调控,我们不仅在实验上探测到了16纳米远处的单暗电子自旋并得到其连续波谱,还将其初始化、调控和读出,发掘其作为量子寄存器的潜力。接着不同于以往对体内单核自旋的探测,我们成功探测到自旋簇,并通过计算得到其耦合强度及空间结构,这是实现大分子结构的探测可行途径之一,另外,对研究多体相互作用及演化提供了新的手段。
     3.核磁共振谱是目前应用范围最广的谱学技术,已经广泛应用于科研及医学等领域。但是,在室温下实现纳米尺度的核磁共振是一个巨大的挑战。我们通过多次尝试及技术的改进,最终利用掺杂金刚石中距表面~7纳米深度的氮-空位单电子自旋作为原子尺度磁探针,分别实现了(5nm)3体积液钵和固体有机样品中质子信号的检测,其中包括的质子总数约为二万个,其产生的磁信号强度相当于100个统计极化的核自旋。
As one of the most important exploring technologies in modern science, the spin magnetic resonance technology is capable of obtaining information of sub-jects composition and structure in an accurate, rapid and non-destructive way. At present nuclear magnetic resonance spectroscopy is the most popular spectroscopy, widely used in scientific research and medical fields. Current spin-magnetic reso-nance spectrometers are based on the principle of ensemble detection and the test object is an ensemble sample containing billions of identical spins. However, at room temperature NMR at nano-scale is still a huge challenge.
     To achieve the scientific goal, we choose single spins in solids based on NV defect center in diamond-(NV) as the sensitivity magnetic probe. The single NV spin can be easily visualized, polarized and detected with a confocal microscope. Ultra-long spin coherence time for such qubits, even at room temperature, enables it is ultra-sensitivity to external magnetic noise with characteristic frequency. Instead of traditional electrical defect, weak magnetic signals generated by the nano-scale spin system is mapped to coherent state phase, so as to realize high sensitivity signal detection.
     1. We designed and constructed the S-band Optical Detected Magnetic Reso-nance spectrometers to meet the requirement of the quantum manipulation on single NV spin at room temperature. We implemented the first quantum algorithm on the single spin system. Then, we succeed to transfer the widely used dynamical decoupling technology to our NV system. Then we observed the anomalous decoherence effect in a quantum bath at room temperature, enhanced phase estimation in a multi-pass quantum metrology protocol, and protected quantum gate by continuous dynamical decoupling.
     2. Based on the above technology, we sensed a dark electron spin located16nm from NV center and manipulated it by Double Electron-Electron Resonance methods. Besides, instead of single nuclear spin, we sensed a single13C-13C nuclear spin dimer located1nm from the NV center and characterized the interaction between the two nuclear spins. These results demonstrate that central spin decoherence under dynamical decoupling control is a feasible probe for NMR structure analysis of single molecules.
     3. Application of nuclear magnetic resonance (NMR) spectroscopy to nanoscale samples has remained an elusive goal, achieved only with great experimental effort at subkelvin temperatures. We demonstrated detection of NMR sig-nals from a (5-nanometer)3voxel of various fluid and solid organic samples under ambient conditions. We used an atomic-size magnetic field sensor, a single nitrogen-vacancy defect center, embedded~7nanometers under the surface of a bulk diamond to record NMR spectra of various samples placed on the diamond surface. Its detection volume consisted of only104nuclear spins with a net magnetization of only102statistically polarized spins.
引文
[1]C. Degen. Microscopy with single spins. Nature Nanotechnology 3,643-644 (2008).
    [2]I.I. Rabi, J. R. Zacharias, S. Millman and P. Kusch. A New Method of Measuring Nuclear Magnetic Moment. Physical Review 53,318-327 (1938).
    [3]F. Bloch. Nuclear Induction. Physical Review 70,460-474 (1946).
    [4]E. M. Purcell, H. C. Torrey, R. V. Pound. Resonance absorption by nuclear magnetic moments in a solid. Physical Review 69,37-38 (1946).
    [5]J. Jeener. Two-dimensional Fourier Transform NMR. presented at an Ampere International Summer School, Basko Polje, unpublished (1971).
    [6]E. Zavoisky. Paramagnetic relaxation of liquid solutions for perpendicular fields. Journal of Physics-USSR 9,211 (1945).
    [7]E. H. Hall. On a New Action of the Magnet on Electric Currents. American Journal of Mathematics 2,287-292 (1879).
    [8]D. Drung, C. Assmann, J. Beyer, A. Kirste, M. Peters, F. Ruede, and Th. Schurig. Highly sensi-tive and easy-to-use SQUID sensors. IEEE Transactions on Applied Superconductivity 17699-704 (2007).
    [9]R. C. Jaklevic, J. Lambe, A. H. Silver, and J. E. Mercereau. Quantum Interference Effects in Josephson Tunneling. Physical Review Letters 12 159-160 (1964).
    [10]P. Anderson, and J. Rowell. Probable Observation of the Josephson Superconducting Tunneling Effect. Physical Review Letters 98 230-232 (1963).
    [11]D. McMullan. Von Ardenne and the scanning electron microscope. Proc Roy Microsc Soc 23 283-288 (1988).
    [12]C. W. Oatley, and W. C. Nixon. Scanning electron microscopy. Adv Electronics Electron Phys 21 181-247 (1965).
    [13]K. C. A. Smith, C. W. Oatley. The scanning electron microscope and its fields of application. British Journal of Applied Physics 6 ee391-399 (1955).
    [14]G. Binng and H. Rohrer. Scanning Tunneling Microscopy. Surface Science 152,17-26 (1985).
    [15]G. Binnig, H. Rohrer. Scanning tunneling microscopy.IBM Journal of Research and Development 30,355-369 (1986)
    [16]C. Bai. Scanning tunneling microscopy and its applications. New York:Springer Verlag ISBN 3-540-65715-0 (2000).
    [17]C. Julian Chen. Introduction to Scanning Tunneling Microscopy. Oxford University Press. ISBN 0-19-507150-6 (1993).
    [18]K. M. Lang, D. A. Hite, R. W. Simmonds, R. McDermott, D. P. Pappas, and John M. Marti-nis Conducting atomic force microscopy for nanoscale tunnel barrier characterization. Review of Scientific Instruments 75,2726-2731 (2004).
    [191 B. Cappella and G. Dietler. Force-distance curves by atomic force mirrnscopy Surfacr Science Reports 34,1-104 (1999).
    [20]R. V. Lapshin. Feature-oriented scanning methodology for probe microscopy and nanotechnology Measurement Science and Technology Nanotechnology 18,907-927 (2004).
    [21]V. Y. Yurov and A. N. Klimov. Scanning tunneling microscope calibration and reconstruction of real image:Drift and slope elimination. Review of Scientific Instruments 65,1551-1557 (1994).
    [22]G. Schitter and M. J. Rost. Scanning probe microscopy at video-rate. Materials Today 11,40-48 (2008).
    [23]R. V. Lapshin and O. V. Obyedkov. Fast-acting piezoactuator and digital feedback loop for scanning tunneling microscopes. Review of Scientific Instruments 64,2883-2887 (1993).
    [24]R. V. Lapshin. Analytical model for the approximation of hysteresis loop and its application to the scanning tunneling microscope. Review of Scientific Instruments 66,4718-4730 (1995).
    [25]R. V. Lapshin. Feature-oriented scanning probe microscopy. Encyclopedia of Nanoscience and Nan-otechnology 14,105-115 (2011).
    [26]R. V. Lapshin Automatic lateral calibration of tunneling microscope scanners. Review of Scientific Instruments 69,3268-3276 (1998).
    [27]L. Abelmann, S. Porthun, M. A. M. Haast, J. C. Lodder, A. Moser, M. E. Best, P. J. A. Schendel, B. Stiefel, H. J. Hug, G. P. Heydon, A. Farley, S. R. Hoon, T. Pfaffelhuber, R. Proksch, K. Babcock. Comparing the resolution of magnetic force microscopes using the CAMST reference samples.Journal of Magnetism and Magnetic Materials 190 135-147 (1998).
    [28]U. Hartmann. Magnetic Force Microscopy Annual Review of Materials Science 29 53-87 (1999).
    [29]J. A. Sidles, J. L. Garbini, K. J. Bruland, D. Rugar, O. Ziiger, S. Hoen, and C. S. Yannoni. Magnetic resonance force microscopy. Reviews of Modern Physics 67,249-265 (1995).
    [30]J. A. Sidles. Noninductive detection of single-proton magnetic resonance. Applied Physics Letters 58,2854 (1991).
    [31]J. A. Sidles. Folded Stern-Gerlach experiment as a means for detecting nuclear magnetic resonance in individual nuclei. Physical Review Letters 68,1124-1127 (1992).
    [32]D. Rugar, C. S. Yannoni, and J. A. Sidles. Mechanical Detection of Magnetic Resonance.Nature 360,563-566 (1992).
    [33]D. Rugar, O. Zuger, S. Hoen, C. S. Yannoni, H. M. Vieth, R. D. Kendrick. Force Detection of Nuclear-Mangetic-Resonance. Science 264,1560-1563 (1994).
    [34]H. J. Mamin, M. Poggio, C. L. Degen, D. Rugar. Nuclear magnetic resonance imaging with 90-nm resolution. Nature Nanotechnology 2,301-306 (2007).
    [35]M. J. Rust, and M. Bates, X. W. Zhuang. Sub-diffraction-limit imaging by stochastic optical re-construction microscopy (STORM). Nature Methods 3 793-796 (2006).
    [36]H. Bock, C. Geisler, C. A. Wurm, C. Von Middendorff, S. Jakobs, A. Schonle, A. Egner, S.W. Hell, and C. Eggeling. Two-color far-field fluorescence nanoscopy based on photoswitchable emitters. Applied Physics B-Lasers and Optics 88 161-165 (2007).
    [37]I. Testa, C. A. Wurm, R. Medda, E. Rothermel, C. von Middendorf, J. Folling, S. Jakobs, A. Schonle, S. W. Hell, and C. Eggeling. Multicolor Fluorescence Nanoscopy in Fixed and Living Cells by Exciting Conventional Fluorophores with a Single Wavelength.Biophysical Journal 99 2686-2694 (2010).
    [38]S. A. Jones, S. H. Shim, J. He and X. W. Zhuang. Fast three-dimensional super-resolution imaging of live cells. Nature Methods 8 499-508 (2011).
    [39]B. Huang, W. Wang, M. Bates, X. W. Zhuang. Three-dimensional Super-resolution Imaging by Stochastic Optical Reconstruction Microscopy. Science 319 810-813 (2008).
    [40]B. Huang, S. A. Jones, B. Brandenburg, X. W. Zhuang. Whole cell 3D STORM reveals interactions between cellular structures with nanometer-scale resolution. Nature Methods 5 1047-1052 (2008).
    [41]M. Bates, B. Huang, G. T. Dempsey, and X. W. Zhuang. Multicolor super-resolution imaging with photo-switchable fluorescent probes. Science 317 1749-1753 (2007).
    [42]M. Fernandez-Suarez, and A. Y. Ting. Fluorescent probes for super-resolution imaging in living cells. Nature Reviews Molecular Cell Biology 9 929-943 (2008).
    [43]S. W. Hell. Far-Field Optical Nanoscopy. Science 316 1153-1158 (2007).
    [44]B. Huang, M. Bates, and X. W. Zhuang. Super resolution fluorescence microscopy. Annual Review of Biochemistry 78993-1016 (2009).
    [45]K. I. Willig, S. O. Rizzoli, V. Westphal, R. Jahn and S. W. Hell. STED microscopy reveals that synaptotagmin remains clustered after synaptic vesicle exocytosis. Nature Letters 440935.-939 (2006).
    [46]G. H. Patterson. Fluorescence microscopy below the diffraction limit. Seminars in Cell and Devel-opmental Biology 20 886-893 (2009).
    [47]N. D. Halemani, I. Bethani, S. O. Rizzoli and T. Lang. Traffic Structure and dynamics of a two-helix SNARE complex in live cells. National Center for Biotechnology Information 11 394-404 (2010).
    [48]J. Bueckers, D. Wildanger, G. Vicidomini, L. Kastrup, and S. W. Hell. Simultaneous multi-lifetime multi-color STED imaging for colocalization analyses. OPTICS EXPRESS 19.3130-3143 (2011).
    [49]V. Westphal, M. A. Lauterbach, A. D. Nicola and S. W. Hell. Dynamic far-field nanoscopy. New Journal of Physics 9 435(1) (2007).
    [50]V. Westphal, S. O. Rizzoli, M. A. Lauterbach, D. Kamin, R. Jahn, S. W. Hell. Video-Rate Far-FieldOptical Nanoscopy Dissects Synaptic Vesicle Movement. Science 320246-249 (2008).
    [51]S. W. Hell and M. Kroug. Ground-state-depletion fluorescence microscopy:a concept for breaking the diffraction resolution limit. Applied Physies B:Lasers and Optics 60 495-497 (1995).
    [52]S. Bretschneider, C. Eggeling, S. W. Hell. Breaking the diffraction barrier in fluorescence microscopy by optical shelving. Physical Review Letters 98 218103 (2007).
    [53]A. Chmyrov, J. Arden-Jacob, A. Zilles, Karl-Heinz Drexhage, J. Widengren. Characterization of new fluorescent labels for ultra-high resolution microscopy. Photochemical and photobiological sciences 7 1378-1385 (2008).
    [54]H. Fedder, F. Dolde, F. Rempp, T. Wolf, P. Hemmer, F. Jelezko, and J. Wrachtrup. Towards T1-limited magnetic resonance imaging using Rabi beats. Applied Physics B 102,497-502 (2011).
    [55]J. Ahn, F. H. Tan and H. S. Tan. Diamond thin film growth by microwave plasma chemical vapour deposition and investigation by scanning tunnelling/force microscopy and scanning electron microscopy. Journal of Materials Science Letters 12,775-778 (1993).
    [56]J. Isberg, J. Hammersberg, E. Johansson, T. Wikstrom, D. J. Twitchen, A. J. Whitehead, S. E. Coe, and G. A. Scarsbrook. High Carrier Mobility in Single-Crystal Plasma-Deposited Diamond. Science 297,1670-1672 (2002).
    [57]N. Mizuochi, J. Isoya, J. Niitsuma, T. Sekiguchi, H. Watanabe, H. Kato, T. Makino, H. Okushi, and S. Yamasaki. Isotope effects between hydrogen and deuterium microwave plasmas on chemical vapor deposition homoepitaxial diamond growth. Journal of Applied Physics 101,103501 (2007).
    [58]J. Isoya, H. Kanda, Y. Uchida, S. C. Lawson, S. Yamasaki, H. Itoh, and Y. Morita. EPR identifi-cation of the negatively charged vacancy in diamond. Physical Review B 45,1436-1439 (1992).
    [59]G. Davies and M. F. Hamer. Optical studies of the 1.945 eV Vibronic Band in Diamond. Proceedings of the Royal Society A:Mathematical, Physical and Engineering Science 348,285-298 (1976).
    [60]H. B. Dyer, F. A. Raal, L. Du Preez, and J. H. N. Loubser. Optical absorption features associated with paramagnetic nitrogen in diamond. Philosophical Magazine 11,763-774 (1965).
    [61]J. Walker. Optical absorption and luminescence in diamond. Reports on Progress in Physics 42, 1605 (1979).
    [62]J. H. N. Loubser and J. A. van Wyk. Optical spin-polarization in a triplet state in irradiated and annealed Typ Ib diamonds. Diamond Research 11,4-8 (1977).
    [63]J. H. N. Loubser and J. A. van Wyk. Electron spin resonance in the study of diamond. Reports on Progress in Physics 41,1201 (1978).
    [64]Weil, J. A. and Bolton, J. R. Electron paramagnetic resonance:elementary theory and practical applications. Second edition,6.2.2, Page 162 (2007).
    [65]N. Reddy, N. Manson, and E. Krausz. Two-laser spectral hole burning in a colour centre in diamond. Journal of Luminescence 38,46-47 (1987).
    [66]R. P. Feynman. Simulating physics with computers. International Journal of Theoretical Physics 21,467 (1981).
    [67]A. Gruber, A. Drabenstedt, C. Tietz, L. Fleury, J. Wrachtrup, and C. vonBorczyskowski. Scanning confocal optical microscopy and magnetic resonance on single defect centers. Science 276,2012-2014 (1997).
    [68]J.-P. Boudou, P. A. Curmi, F. Jelezko, J. Wrachtrup, P. Aubert, M. Sennour, G. Balasubrama-nian, R. Reuter, A. Thorel, and E. Gaffet. High yield fabrication of fluorescent nanodiamonds. Nanotechnology 20,235602 (2009).
    [69]J. R. Rabeau, P. Reichart, G. Tamanyan, D. N. Jamieson, S. Prawer, F. Jelezko, T. Gaebel, I. Popa, M. Domhan, and J. Wrachtrup. Implantation of labelled single nitrogen vacancy centers in diamond using N-15. Applied Physics Letters 88,023113 (2006).
    [70]J. Meijer, B. Burchard, M. Domhan, C. Wittmann, T. Gaebel, I. Popa, F. Jelezko, and J. Wrachtrup. Generation of single color centers by focused nitrogen implantation. Applied Physics Letters 87,261909 (2005).
    [71]T. Gaebel, M. Domhan, I. Popa, C. Wittmann, P. Neumann, F. Jelezko, J. R. Rabeau, N. Stavrias, A. D. Greentree, S. Prawer, J. Meijer, J. Twamley, P. R. Hemmer, and J. Wrachtrup. Room-temperature coherent coupling of single spins in diamond. Nature Physics 2,408-413 (2006).
    [72]B. Naydenov, V. Richter, J. Beck, M. Steiner, P. Neumann, G. Balasubramanian, J. Achard, F. Jelezko, J. Wrachtrup, and R. Kalish. Enhanced generation of single optically active spins in diamond by ion implantation. Applied Physics Letters 96,163108 (2010).
    [73]A. Lenef and S. C. Rand. Electronic structure of the N-V center in diamond:Theory. Physical Review B 53,13441-13445 (1996).
    [74]A. Gali, M. Fyta, and E. Kaxiras. Ab initio supercell calculations on nitrogenvacancy center in diamond:Electronic structure and hyperfine tensors. Physical Review B 77,155206 (2008).
    [75]M. V. Hauf, B. Grotz, B. Naydenov, M. Dankerl, S. Pezzagna, J. Meijer, F. Jelezko, J. Wrachtrup, M. Stutzmann, F. Reinhard, and J. A. Garrido. Chemical control of the charge state of nitrogen-vacancy centers in diamond. Physical Review B 83,081304 (2011).
    [76]L. Rondin, G. Dantelle, A. Slablab, F. Grosshans, F. Treussart, P. Bergonzo, S. Perruchas, T. Gacoin, M. Chaigneau, H.-C. Chang, V. Jacques, and J.-F. Roch. Surface-induced charge state conversion of nitrogen-vacancy defects in nanodiamonds. Physical Review B 82,115449 (2010).
    [77]N. B. Manson and J. Harrison. Photo-ionization of the nitrogen-vacancy center in diamond. Dia-mond and Related Materials 14,1705-1710 (2005).
    [78]T. Gaebel, M. Domhan, C. Wittmann, I. Popa, F. Jelezko, J. R. Rabeau, A. D. Greentree, S. Prawer, E. Trajkov, P. Hemmer, and J. Wrachtrup. Photochromism in single nitrogen-vacancy defect in diamond. Applied Physics B 82,243-246 (2006).
    [79]J. P. Goss, R. Jones, S. J. Breuer, P. R. Briddon, and S. Oberg. The Twelve-Line 1.682 eV Lumines-cence Center in Diamond and the Vacancy-Silicon Complex. Physical Review Letters 77,3041-3044 (1996).
    [80]L. J. Rogers, S. Armstrong, M. J. Sellars, and N. B. Manson. Infrared emission of the NV centre in diamond:Zeeman and uniaxial stress studies. New Journal of Physics 10,103024 (2008).
    [81]N. B. Manson, L. Rogers, M. Doherty, and L. Hollenberg. Optically induced spin polarisation of the NV-centre in diamond:role of electron-vibration interaction. arXiv 1011.2840, (2010).
    [82]A. Batalov, V. Jacques, F. Kaiser, P. Siyushev, P. Neumann, L. J. Rogers, R. L. McMurtrie, N. B. Manson, F. Jelezko, and J. Wrachtrup. Low Temperature Studies of the Excited-State Structure of Negatively Charged Nitrogen-Vacancy Color Centers in Diamond. Physical Review Letters 102, 195506 (2009).
    [83]J. P. Goss, R. Jones, P. R. Briddon, G. Davies, A. T. Collins, A. Mainwood, J. A. van Wyk, J. M. Baker, M. E. Newton, A. M. Stoneham, and S. C. Lawson. Comment on "Electronic structure of the N-V center in diamond:Theory". Physical Review B 56,16031-16032 (1997).
    [84]A. Lenef and S. C. Rand. Reply to "Comment on'Electronic structure of the NV center in diamond:Theory'". Physical Review B 56,16033-16034(1997).
    [85]J. R. Maze, A. Gali, E. Togan, Y. Chu, A. Trifonov, E. Kaxiras, and M. D. Lukin. Properties of nitrogen-vacancy centers in diamond:the group theoretic approach. New Journal of Physics 13, 025025 (2011).
    [86]N. B. Manson, J. P. Harrison, and M. J. Sellars. Nitrogen-vacancy center in diamond:Model of the electronic structure and associated dynamics. Physical Review B 74,104303 (2006).
    [87]N. Manson and R. McMurtrie. Issues concerning the nitrogen-vacancy center in diamond. Journal of Luminescence 127,98-103 (2007).
    [88]V. M. Acosta, A. Jarmola, E. Bauch, and D. Budker. Optical properties of the nitrogen-vacancy singlet levels in diamond. Physical Review B 82,201202 (2010).
    [89]A. Gali. Identification of individual C 13 isotopes of nitrogen-vacancy center in diamond by com-bining the polarization studies of nuclear spins and first-principles calculations. Physical Review B 80,241204 (2009).
    [90]S. Felton, A. M. Edmonds, M. E. Newton, P. M. Martineau, D. Fisher, D. J. Twitchen, and J. M. Baker. Hyperfine interaction in the ground state of the negatively charged nitrogen vacancy center in diamond. Physical Review B 79,075203 (2009).
    [91]F. Jelezko, I. Popa, A. Gruber, C. Tietz, J. Wrachtrup, A. Nizovtsev, and S. Kilin. Single spin states in a defect center resolved by optical spectroscopy. Applied Physics Letters 81,2160-2162 (2002).
    [92]C. Kurtsiefer, S. Mayer, P. Zarda, and H. Weinfurter. Stable solid-state source of single photons. Physical Review Letters 85,290-293 (2000).
    [93]A. Batalov, C. Zierl, T. Gaebel, P. Neumann, I. Y. Chan, G. Balasubramanian, P. R. Hemmer, F. Jelezko, and J. Wrachtrup. Temporal coherence of photons emitted by single nitrogen-vacancy de-fect centers in diamond using optical Rabioscillations. Physical Review Letters 100,077401 (2008).
    [94]P. Tamarat, N. B. Manson, J. P. Harrison, R. L. McMurtrie, A. Nizovtsev, C. Santori, R. G. Beausoleil, P. Neumann, T. Gaebel, F. Jelezko, P. Hemmer, and J. Wrachtrup. Spin-flip and spin-conserving optical transitions of the nitrogenvacancy centre in diamond. New Journal of Physics 10,045004 (2008).
    [95]C. Santori, P. Tamarat, P. Neumann, J. Wrachtrup, D. Fattal, R. G. Beausoleil, J. Rabeau, P. Olivero, A. D. Greentree, S. Prawer, F. Jelezko, and P. Hemmer. Coherent Population Trapping of Single Spins in Diamond under Optical Excitation. Physical Review Letters 97,247401 (2006).
    [96]P. Tamarat, T. Gaebel, J. R. Rabeau, M. Khan, A. D. Greentree, H. Wilson, L. C. L. Hollenberg, S. Prawer, P. Hemmer, F. Jelezko, and J. Wrachtrup. Stark Shift Control of Single Optical Centers in Diamond. Physical Review Letters 97,083002 (2006).
    [97]J. Harrison, M. J. Sellars, and N. B. Manson. Optical spin polarisation of the N-V centre in diamond. Journal of Luminescence 107,245-248 (2004).
    [98]J. Harrison, M. J. Sellars, and N. B. Manson. Measurement of the optically induced spin polarisation of N-V centres in diamond. Diamond and Related Materials 15,586-588 (2006).
    [99]E. van Oort, N. B. Manson, and M. Glasbeek. Optically detected spin coherence of the diamond N-V centre in its triplet ground state. Journal of Physics C:Solid State Physics 21,4385-4391 (1988).
    [100]G.Waldherr, J. Beck, M. Steiner, P. Neumann, A. Gali, T. Frauenheim, F. Jelezko, and J. Wrachtrup. Dark States of Single Nitrogen-Vacancy Centers in Diamond Unraveled by Single Shot NMR. Physical Review Letters 106,157601 (2011).
    [101]J. A. Weil, J. R. Bolton, and J. E. Wertz. Electron paramagnetic resonance-, elementary theory and practical applications. John Wiley & Sons, Inc. ISBN 0-471-57234-9 (1994).
    [102]J. H. N. Loubser. ESR Studies of Diamond Powders. Solid State Communications 22,767-770 (1977).
    [103]H. Haken and H. C.Wolf. Molekiilphysik und Quantenchemie. Springer,3rd edition edition ISBN 3-540-63786-9 (1998).
    [104]E. van Oort and M. Glasbeek. Electric-Field-Induced Modulation of Spin Echoes of N-V Centers in Diamond. Chemical Physics Letters 168,529-532 (1990).
    [105]F. Dolde, H. Fedder, M. W. Doherty, T. Nobauer, F. Rempp, G. Balasubramanian, T. Wolf, F. Reinhard, L. C. L. Hollenberg, F. Jelezko, and J. Wrachtrup. Electricfield sensing using single diamond spins. Nature Physics 7,459-463 (2011).
    [106]E. van Oort, B. van der Kamp, R. Sitter, and M. Glasbeek. Microwave-induced line-narrowing of the N-V defect absorption in diamond. Journal of Luminescence 48-49,803-806 (1991).
    [107]L. K.Grnvover. A fast quantum mprhnniral algorithm for datase seaarch. arXiv:quant-ph 9605043v3 (1996).
    [108]G. D. Fuchs, V. V. Dobrovitski, D. M. Toyli, F. J. Heremans, D. D. Awschalom. Gigahertz Dynamics of a Strongly Driven Single Quantum Spin. Science 326,1520-1522 (2009).
    [109]M. V. G. Dutt, L. Childress, L. Jiang, E. Togan, J. Maze, F. Jelezko, A. S. Zibrov, P. R. Hemmer, and M. D. Lukin. Quantum register based on individual electronic and nuclear spin qubits in diamond. Science 316,1312-1316 (2007).
    [110]G. Balasubramanian, P. Neumann, D. Twitchen, M. Markham, R. Kolesov, N. Mizuochi, J. Isoya, J. Achard, J. Beck, J. Tissler, V. Jacques, P. R. Hemmer, F. Jelezko, and J. Wrachtrup. Ultralong spin coherence time in isotopically engineered diamond. Nature Materials 8,383-387 (2009).
    [111]A. C. Victor. Heat Capacity of Diamond at High Temperatures. Journal of Chemical Physics 36, 1903 (1962).
    [112]A. Gali, T. Simon, and J. E. Lowther. An ab initio study of local vibration modes of the nitrogen-vacancy center in diamond. New Journal of Physics 13,025016 (2011).
    [113]A. M. Zaitsev. Vibronic spectra of impurity-related optical centers in diamond. Physical Review B 61,12909-12922 (2000).
    [114]T. Gaebel, I. Popa, A. Gruber, M. Domhan, F. Jelezko, and J. Wrachtrup. Stable single-photon source in the near infrared. New Journal of Physics 6,98 (2004).
    [115]F. Jelezko, T. Gaebel, I. Popa, A. Gruber, and J. Wrachtrup. Observation of coherent oscillations in a single electron spin. Physical Review Letters 92,076401 (2004).
    [116]F. Jelezko, T. Gaebel, I. Popa, M. Domhan, A. Gruber, and J. Wrachtrup. Observation of coherent oscillation of a single nuclear spin and realization of a two-qubit conditional quantum gate. Physical Review Letters 93,130501 (2004).
    [117]M. Mehring and J. Mende. Spin-bus concept of spin quantum computing. Physical Review A 73, 052303 (2006).
    [118]L. Jiang, J. M. Taylor, A. S. S(?)rensen, and M. D. Lukin. Distributed quantum computation based on small quantum registers. Physical Review A 76,062323 (2007).
    [119]G. Balasubramanian, I. Y. Chan, R. Kolesov, M. Al-Hmoud, J. Tisler, C. Shin, C. Kim, A. Wojcik, P. R. Hemmer, A. Krueger, T. Hanke, A. Leitenstorfer, R. Bratschitsch, F. Jelezko, and J. Wrachtrup. Nanoscale imaging magnetometry with diamond spins under ambient conditions. Nature 455,648-651 (2008).
    [120]J. R. Maze, P. L. Stanwix, J. S. Hodges, S. Hong, J. M. Taylor, P. Cappellaro, L. Jiang, M. V. G. Dutt, E. Togan, A. S. Zibrov, A. Yacoby, R. L. Walsworth, and M. D. Lukin. Nanoscale magnetic sensing with an individual electronic spin in diamond. Nature 455,644-647 (2008).
    [121]B. Grotz, J. Beck, P. Neumann, B. Naydenov, R. Reuter, F. Reinhard, F. Jelezko, J. Wrachtrup, D. Schweinfurth, B. Sarkar, and P. Hemmer. Sensing external spins with nitrogen-vacancy diamond. New Journal of Physics 13,055004 (2011).
    [122]P. Neumann, I. Jakobi, F. Dolde, C. Burk, R. Reuter, G.Waldherr, J. Honert, T.Wolf, A. Brunner, and J.Wrachtrup. High precision nano scale temperature sensing using single defects in diamond. arXiv:quant-ph 1304.0688, (2013).
    [123]G. Kucsko, P. C. Maurer, N. Y. Yao, M. Kubo, H. J. Noh, P. K. Lo, H. Park, and M. D. Lukin. Nanometer scale quantum thermometry in a living cell. arXiv:quant-ph 1304.1068, (2013).
    [124]J. R. Weber, W. F. Koehl, J. B. Varley, A. Janotti, B. B. Buckley, C. G. Van de Walle, and D. D. Awschalom. Quantum computing with defects. Proceedings of the National Academy of Sciences 107,8513-8518 (2010).
    [125]J. R. Weber, W. F. Koehl, J. B. Varley, A. Janotti, B. B. Buckley, C. G. V. de Walle, and D. D. Awschalom. Defects in SiC for quantum computing. Applied Physics Letters 109,102417 (2011).
    [126]U. F. S. D'Haenens-Johansson. EPR of silicon-related defects in CVD diamond. In Gordon Research Conference:Defects in Semiconductors. Colby-Sawyer College, New Hampshire, United States of America (August 2010).
    [127]P. Neumann, N. Mizuochi, F. Rempp, P. Hemmer, H. Watanabe, S. Yamasaki, V. Jacques, T. Gaebel, F. Jelezko, and J. Wrachtrup. Multipartite entanglement among single spins in diamond. Science 320,1326-1329 (2008).
    [128]P. Neumann, R. Kolesov, B. Naydenov, J. Beck, F. Rempp, M. Steiner, V. Jacques, G. Balasub-ramanian, M. L. Markham, D. J. Twitchen, S. Pezzagna, J. Meijer, J. Twamley, F. Jelezko, and J. Wrachtrup. Quantum register based on coupled electron spins in a room-temperature solid. Nature Physics 6,249-253 (2010).
    [129]F. Z. Shi, X. Rong, N. Y. Xu, Y. Wang, J. Wu, B. Chong, X. H. Peng, J. Kniepert, R. S. Schoenfeld, W. Harneit, M. Feng, and J. F. Du. Room-Temperature Implementation of the Deutsch-Jozsa Algorithm with a Single Electronic Spin in Diamond. Physical Review Letters 105,040504 (2010).
    [130]P. Huang, X. Kong, N. Zhao, F. Z. Shi, P. F. Wang, X. Rong, R. B. Liu and J. F. Du. Observation of an anomalous decoherence effect in a quantum bath at room temperature. Nature Communications 2,570 (2011).
    [131]X. Rong, P. Huang, X. Kong, X. K. Xu, F. Z. Shi, Y. Wang, and J. F. Du. Enhanced phase estimation by implementing dynamical decoupling in a multi-pass quantum metrology protocol. Europhysics Letters 95,60005 (2011).
    [132]P. Huang, J. W. Zhou, F. Fang, X. Kong, X. K. Xu, C. Y. Ju, and J. F. Du. Landau-Zener-Stuckelberg Interferometry of a Single Electronic Spin in a Noisy Environment. Physical Review X 1,011003 (2011).
    [133]X. K. Xu, Z. X. Wang, C. K. Duan, P. Huang, P. F. Wang, Y. Wang, N. Y. Xu, X. Kong, F. Z. Shi, X. Rong, and J. F. Du. Coherence-protected quantum gate by continuous dynamical decoupling in diamond. Physical Review Letters 109,070502 (2012).
    [134]F. Reinhard, F. Z. Shi, N. Zhao, F. Rempp, B. Naydenov, J. Meijer, L. T. Hall, L. Hollenberg, J. F. Du, R. B. Liu, and J. Wrachtrup. Tuning a spin bath through the quantum-classical transition. Physical Review Letters 108,200402 (2012).
    [135]T. Staudacher, F. Shi, S. Pezzagna, J. Meijer, J. Du, C. A. Meriles, F. Reinhard and J. Wrachtrup. Nuclear magnetic resonance spectroscopy on a (5nm)3 volume of liquid and solid samples. Science 339,561 (2013).
    [136]F. Z. Shi, Q. Zhang, B. Naydenov, F. Jelezko, J. F. Du, F. Reinhard, and J. Wrachtrup. Quantum logic readout and cooling of a single dark electron spin. Phys. Rev. B 87,195414 (2013).
    [137]X. D. Liu, G. Z. Wang, X. R. Song, F. P. Feng, W. Zhu, L. R. Lou, J. F. Wang, H. Wang, and P. F. Bo. Energy transfer from a single nitrogen-vacancy center in nanodiamond to a graphene monolayer. Applied Physics Letters 101,233112 (2012).
    [138]J. M. Cui, F. W. Sun, X. D. Chen, Z. J. Gong, and G. C. Guo. Quantum Statistical Imaging of Particles without Restriction of the Diffraction Limit. Physical Review Letters 110,153901 (2013).
    [139]G. Q. Liu, X. Y. Pan, Z. F. Jiang, N. Zhao, and R. B. Liu. Scientific Reports 2,432 (2012).
    [140]Y. Z. Chi, G. X. Chen, F. Jelezko, E. Wu, H. P. Zeng. Enhanced Photoluminescence of Single-Photon Emitters in Nanodiamonds on a Gold Film. IEEE Photonics Technology Letters 23,374-376 (2011).
    [141]R. Hanson, V. V. Dobrovitski, A. E. Feiguin, O. Gywat, and D. D. Awschalom. Coherent dynamics of a single spin interacting with an adjustable spin bath. Science 320,352-355 (2008).
    [142]G. de Lange, Z. H. Wang, D. Riste, V. V. Dobrovitski, and R. Hanson. Universal dynamical decoupling of a single solid-state spin from a spin bath. Science 330,60-63 (2010).
    [143]P. Neumann, J. Beck, M. Steiner, F. Rempp, H. Fedder, P. R. Hemmer, J. Wrachtrup, and F. Jelezko. Single-Shot Readout of a Single Nuclear Spin. Science 329,542-544 (2010).
    [144]L. Robledo, L. Childress, H. Bernien, B. Hensen, P. F. A. Alkemade and R. Hanson. High-fidelity projective read-out of a solid-state spin quantum register. Nature 477,574 (2011).
    [145]J. Meijer, B. Burchard, M. Domhan, C. Wittmann, T. Gaebel, I. Popa, F. Jelezko, and J. Wrachtrup. Generation of single color centers by focused nitrogen implantation. Applied Physics Letters 87,261909 (2005).
    [146]S.C. Benjamin, B.W. Lovett, J.M. Smith. Prospects for measurement-based quantum computing with solid state spins. Laser & Photonics Reviews 3,556-574 (2009).
    [147]D. Englund, B. Shields, K. Rivoire, F. Hatami, J. Vuckovic, H. Park, and M. D. Lukin. Determin-istic Coupling of a Single Nitrogen Vacancy Center to a Photonic Crystal Cavity. Nano Letters 10, 3922-3926 (2010).
    [148]J. T. Choy, B. J. M. Hausmann, T. M. Babinec, I. Bulu, M. Khan, P. Maletinsky, A. Yacoby and M. Loncar. Enhanced single-photon emission from a diamond-silver aperture. Nature Photonics 5, 738-743 (2011).
    [149]E. Togan, Y. Chu, A. S. Trifonov, L. Jiang, J. Maze, L. Childress, M. V. G. Dutt, A. S. Sorensen, P. R. Hemmer, A. S. Zibrov, and M. D. Lukin. Quantum entanglement between an optical photon and a solid-state spin qubit. Nature 466,730-734 (2010).
    [150]A. Sipahigil, M. L. Goldman, E. Togan, Y. Chu, M. Markham, D. J. Twitchen, A. S. Zibrov, A. Kubanek, and M. D. Lukin. Quantum Interference of Single Photons from Remote Nitrogen-Vacancy Centers in Diamond. Physical Review Letters 108,143601 (2012).
    [151]H. Bernien, L. Childress, L. Robledo, M. Markham, D. Twitchen, and R. Hanson. Two-Photon Quantum Interference from Separate Nitrogen Vacancy Centers in Diamond. Physical Review Let-ters 108,043604 (2012).
    [152]J. A. Sidles. Folded Stern-Gerlach experiment as a means for detecting nuclear magnetic resonance in individual nuclei. Physical Review Letters 68,1124-1127 (1992).
    [153]J. A. Sidles, J. L. Garbini, K. J. Bruland, D. Rugar, O. Zuger, S. Hoen, and C. S. Yannoni. Magnetic resonance force microscopy. Reviews of Modern Physics 67,249-265 (1995).
    [154]D. Rugar, R. Budakian, H. J. Mamin and B. W. Chui. Single spin detection by magnetic resonance force microscopy. Nature 430,329-332 (2004).
    [155]C. L. Degen, M. Poggio, H. J. Mamin, C. T. Rettner, and D. Rugar. Nanoscale magnetic resonance imaging. Proceedings of the National Academy of Sciences 106,1313-1317 (2009).
    [156]S. Kolkowitz, A. C. Bleszynski Jayich, Q. Unterreithmeier, S. D. Bennett, P. Rabl, J. G. E. Harris, M. D. Lukin. Coherent Sensing of a Mechanical Resonator with a Single-Spin Qubit. Science 335, 1603 (2012).
    [157]J. M. Taylor, P. Cappellaro, L. Childress, L. Jiang, D. Budker, P. R. Hemmer, A. Yacoby, R. Walsworth, and M. D. Lukin. High-sensitivity diamond magnetometer with nanoscale resolution. Nature Physics 4,810-816 (2008).
    [158]M. S. Grinolds, P. Maletinsky, S. Hong, M. D. Lukin, R. L. Walsworth, and A. Yacoby. Quantum control of proximal spins using nanoscale magnetic resonance imaging. Nature Physics 7,687-692 (2011).
    [159]N. Zhao, J. Honert, B. Schmid, M. Klas, J. Isoya, M. Markham, D. Twitchen, F. Jelezko, R. B. Liu, H. Fedder and J. Wrachtrup. Sensing single remote nuclear spins. Nature Nanotechnology 7, 657-662 (2012).
    [160]S. Kolkowitz, Q. P. Unterreithmeier, S. D. Bennett, and M. D. Lukin. Sensing Distant Nuclear Spins with a Single Electron Spin. Physical Review Letters 109,137601 (2012).
    [161]T. H. Taminiau, J. J. T. Wagenaar, T. van der Sar, F. Jelezko, V.V. Dobrovitski, and R. Hanson. Detection and Control of Individual Nuclear Spins Using a Weakly Coupled Electron Spin. Physical Review Letters 109,137602 (2012).
    [162]H. J. Mamin, M. H. Sherwood, and D. Rugar. Detecting external electron spins using nitrogen-vacancy centers. Physical Review B 86,195422 (2012).
    [163]M. S. Grinolds, S. Hong, P. Maletinsky, L. Luan, M. D. Lukin, R. L.Walsworth and A. Yacoby. Nanoscale magnetic imaging of a single electron spin under ambient conditions. Nature Physics 9,215-219 (2013).
    [164]M. Orrit and J. Bernard. Single pentacene molecules detected by fluorescence excitation in a p-terphenyl crystal. Physical Review Letters 65,2716-2719 (1990).
    [165]M. Orrit and J. Bernard. Single molecule spectroscopy in a solid. Journal of Luminescence 53, 165-169 (1992).
    [166]J. Wrachtrup, C. von Borczyskowski, J. Bernard, M. Orrit, and R. Brown. Optically detected spin coherence of single molecules. Physical Review Letters 71,3565-3568 (1993).
    [167]J.Wrachtrup, C. von Borczyskowski, J. Bernard, M. Orritt, and R. Brown. Optical detection of magnetic resonance in a single molecule. Nature 363,244-245 (1993).
    [168]R. M. Dickson, D. J. Norris, Y.-L. Tzeng, and W. E. Moerner. Three-Dimensional Imaging of Single Molecules Solvated in Pores of Poly(acrylamide) Gels. Science 274,966-968 (1996).
    [169]R. M. Dickson, A. B. Cubitt, R. Y. Tsien, and W. E. Moerner. On/off blinking and switching behaviour of single molecules of green fluorescent protein. Nature 388,355-358 (1997).
    [170]A. Drabenstedt, L. Fleury, C. Tietz, F. Jelezko, S. Kilin, A. Nizovtzev, and J. Wrachtrup. Low-temperature microscopy and spectroscopy on single defect centers in diamond. Physical Review B 60,11503-11508 (1999).
    [171]F. Jelezko, C. Tietz, A. Gruber, I. Popa, A. Nizovtsev, S. Kilin, and J. Wrachtrup. Spectroscopy of Single N-V Centers in Diamond. Single Molecules 2,255-260 (2001).
    [172]R. H. Webb. Confocal optical microscopy. Reports on Progress in Physics 59,427 (1996).
    [173]C. H. Bennet and G. Brassard. Quantum Cryptography:Public key dis-tribution and coin tossing. Proceedings of the IEEE International Confer-ence on Computers, Systems, and Signal Processing page 175, (1984). URL http://www.research.ibm.com/people/b/bennetc/bennettc198469790513.pdf
    [174]R. Brouri, A. Beveratos, J. P. Poizat and P. Grangier. Photon antibunching in the fluorescence of individual color centers in diamond. Optics Letters 25,1294-1296 (2000).
    [175]R. J. Epstein, F. M. Mendoza, Y. K. Kato, and D. D. Awschalom. Anisotropic interactions of a single spin and dark-spin spectroscopy in diamond. Nature Physics 1,94-98 (2005).
    [176]T. P. M. Alegre, C. Santori, G. M. Ribeiro, and R. G. Beausoleil. Polarization-selective excitation of nitrogen vacancy centers in diamond. Physical Review B 76,165205 (2007).
    [177]T. P. Mayer Alegre, A. C. Torrezan, and G. Medeiros-Ribeiro. Microstrip resonator for microwaves with controllable polarization. Applied Physics Letters 91,204103 (2007).
    [178]I. L. Chuang and Y. Yamamoto. Simple Quantum Computer. Physical Review A 52,3489-3496 (1995).
    [179]E. Rittweger, K. Y. Han, S. E. Irvine, C. Eggeling, and S. W. Hell. STED microscopy reveals crystal colour centres with nanometric resolution. Nature Photonics 3,144-147 (2009).
    [180]E. Rittweger, D. Wildanger, and S. W. Hell. Far-field fluorescence nanoscopy of diamond color centers by ground state depletion. Europhysics Letters 86,14001 (2009).
    [181]D. Deutsch. Quantum Theory, the Church-Turing Principle and the Universal Quantum Computer. Proceedings of the Royal Society A:Mathematical, Physical and Engineering Science 400,97-117 (1985).
    [182]D. Deutsch and R. Jozsa. Rapid Solution of Problems by Quantum Computation. Proceedings of the Royal Society A:Mathematical, Physical and Engineering Science 439,553-558 (1992).
    [183]P. W. Shor. Polynomial-Time Algorithms for Prime Factorization and Discrete Logarithms on a Quantum Computer. arXiv:quant-ph 9508027v2, (1996).
    [184]L. K. Grover. A fast quantum mechanical algorithm for database search. arXiv:quant-ph 9605043v3, (1996).
    [185]D. P. DiVincenzo. The Physical Implementation of Quantum Computation. arXiv:quant-ph 0002077v3, (2000).
    [186]P. Hemmer, J. Wrachtrup, F. Jelezko, S. Prawer, N. Manson, and M. Lukin. Diamonds for scalable quantum information systems. International Society for Optics and Photonics SPIE Newsroom, DOI:10.1117/2.1200711.0941 (2007).
    [187]I. L. Chuang, L. M. K. Vandersypen, X. Zhou, D. W. Leung and S. Lloyd. Experimental realization of a quantumalgorithm. Nature 393,143-146 (1998).
    [188]N. Linden, H. Barjat, R. Freeman. An implementation of the Deutsch-Jozsa algorithm on a three-qubit NMR quantum computer. Chemical Physics Letters 296,61-67 (1998).
    [189]P. Bianucci, A. Muller, C. K. Shih, Q. Q. Wang, Q. K. Xue and C. Piermarocchi. Experimental realization of the one qubit Deutsch-Jozsa algorithm in a quantum dot. Physical Review B 69, 161303(R) (2004).
    [190]M. Scholz, T. Aichele, S. Ramelow, and O. Benson. Deutsch-Jozsa Algorithm Using Triggered Single Photons from a Single Quantum Dot. Physical Review Letters 96,180501 (2006).
    [191]S. Gulde, M. Riebe, G. P. T. Lancaster, C. Becher, J. Eschner, H. Haffner, F. S.-Kaler, I. L. Chuang and R. Blatt. Implementation of the Deutsch-Jozsa algorithm on an ion-trap quantum computer. Nature 421,48-50 (2003).
    [192]M. Mohseni, J. S. Lundeen, K. J. Resech, and A. M. Steinberg. Experimental Application of Decoherence-Free Subspaces in an Optical Quantum-Computing Algorithm. Physical Review Let-ters 91,187903 (2003).
    [193]M. S. Tame, R. Prevedel, M. Patemostro, P. Bohi, M. S. Kim, and A. Zeilinger. Experimental Realization of Deutsch's Algorithm in a One-Way Quantum Computer. Physical Review Letters 98,140501 (2007).
    [194]D. Collins, K. W. Kim, and W. C. Holton. Deutsch-Jozsa algorithm as a test of quantum com-putation. Physical Review A 58, R1633-R1636 (1998).
    [195]L. M. K. Vandersypen, I. L. Chuang. NMR techniques for quantum control and computation. Reviews of Modern Physics 76,1037-1069 (2005).
    [196]M. A. Nielsen and I. L. Chuang. Quantum Computation and Quantum Information. Cambridge University Press ISBN 0-521-63503-9, (2000).
    [197]D. A. Lidar. Review of Decoherence Free Subspaces, Noiseless Subsystems, and Dynamical De-coupling. arXiv:quant-ph 1208.5791v2, (2012).
    [198]L. Viola, E. Knill, and S. Lloyd. Dynamical Decoupling of Open Quantum Systems. Physical Review Letters 82,2417-2421 (1999).
    [199]E. L. Hahn. Spin Echoes. Physical Review 50,580-594 (1950).
    [200]王亚.固态量子计算中动力学解耦方法抑制退相干的实验研究.中国科大博士论文,(2012).
    [201]H. Y. Carr, and E. M. Purcell. Effects of Diffusion on Free Precession in Nuclear Magnetic Reso-nance Experiments. Physical Review 94,630-638 (1954).
    [202]S. Meiboom, and D. Gill. Modified spin-echo method for measuring nuclear relaxation times. Review of Scientific Instruments 29,688-691 (1958).
    [203]T. Gullion, D. B. Baker, and M. S. Conradi. New, compensated Carr-Purcell sequences. Journal of Magnetic Resonance 89,479-484 (1969).
    [204]A. Bermudez, F. Jelezko, M.B. Plenio, and A. Retzker. Electron-Mediated Nuclear-Spin Interac-tions between Distant Nitrogen-Vacancy Centers. Physical Review Letters 107,150503 (2011).
    [205]N. Zhao, Z. Y. Wang, and R. B. Liu. Anomalous Decoherence Effect in a Quantum Bath. Physical Review Letters 106,217205 (2011).
    [206]P. W. Anderson. A Mathematical Model for the Narrowing of Spectral Lines by Exchange or Motion. Journal of the Physical Society of Japan 9,316-339 (1954).
    [207]L. Cywin'ski, R. M. Lutchyn, C. P. Nave, and S. DasSarma. How to enhance dephasing time in superconducting qubits. Physical Review B 77,174509 (2008).
    [208]W. H. Zurek. Pointer basis of quantum apparatus:Into what mixture does the wave packet collapse? Physical Review D 24,1516-1525 (1981).
    [209]M. Brune, E. Hagley, J. Dreyer, X. Maitre, A. Maali, C. Wunderlich, J. M. Raimond, and S. Haroche. Observing the Progressive Decoherence of the "Meter" in a Quantum Measurement. Physical Review Letters 77,4887-4890 (1996).
    [210]C. J. Myatt, B. E. King, Q. A. Turchette, C. A. Sackett, D. Kielpinski, W. M. Itano, C. Mon-roe, and D. J. Wineland. Decoherence of quantum superpositions through coupling to engineered reservoirs. Nature 403,269-273 (2000).
    [211]L. Childress, M. V. G. Dutt, J. M. Taylor, A. S. Zibrov, F. Jelezko, J. Wrachtrup, P. R. Hemmer, and M. D. Lukin. Coherent dynamics of coupled electron and nuclear spin qubits in diamond. Science 314,281-285 (2006).
    [212]H. Bluhm, S. Foletti, I. Neder, M. Rudner, D. Mahalu, V. Umansky, and A. Yacoby. Dephasing time of GaAs electron-spin qubits coupled to a nuclear bath exceeding 200 s. Nature Physics 7, 109-113 (2011).
    [213]W. Yao, R.-B. Liu, and L. J. Sham. Theory of electron spin decoherence by interacting nuclear spins in a quantum dot. Physical Review B 74,195301 (2006).
    [214]W. Yao, R.-B. Liu, and L. J. Sham. Restoring Coherence Lost to a Slow Interacting Mesoscopic Spin Bath. Physical Review Letters 98,077602 (2007).
    [215]A. Laraoui, J. S. Hodges, C. A. Ryan, and C. A. Meriles. Diamond nitrogen-vacancy center as a probe of random fluctuations in a nuclear spin ensemble. Physical Review B 84,104301 (2011).
    [216]G. S. Uhrig. Keeping a Quantum Bit Alive by Optimized -Pulse Sequences. Physical Review Letters 98,100504 (2007).
    [217]J. Du, X. Rong, N. Zhao, Y. Wang, J. Yang, and R. B. Liu. Preserving electron spin coherence in solids by optimal dynamical decoupling. Nature 461,1265-1268 (2009).
    [218]B. Naydenov, F. Dolde, L. T. Hall, C. Shin, H. Fedder, L. C. L. Hollenberg, F. Jelezko, and J. Wrachtrup. Dynamical decoupling of a single-electron spin at room temperature. Physical Review B 83,081201 (2011).
    [219]J. R. Maze, J. M. Taylor, and M. D. Lukin. Electron spin decoherence of single nitrogen-vacancy defects in diamond. Physical Review B 78,094303 (2008).
    [220]E. J. Reijerse and S. A. Dikanov. Electron spin echo envelope modulation spectroscopy on orien-tationally disordered systems:Line shape singularities in S=1/2,1=1/2 spin systems. Journal of Chemical Physics 95,836-845 (1991).
    [221]W. M. Witzel and S. Das Sarma. Quantum theory for electron spin decoherence induced by nuclear spin dynamics in semiconductor quantum computer architectures:Spectral diffusion of localized electron spins in the nuclear solid-state environment. Physical Review B 74,035322 (2006).
    [222]W. Yang, and R. B. Liu. Quantum many-body theory of qubit decoherence in a finite-size spin bath. Physical Review B 78,085315 (2008).
    [223]J. H. Cole and L. C. L. Hollenberg. Scanning quantum decoherence microscopy. Nanotechnology 20,495401 (2009).
    [224]L. T. Hall, J. H. Cole, C. D. Hill, and L. C. L. Hollenberg. Sensing of Fluctuating Nanoscale Magnetic Fields Using Nitrogen-Vacancy Centers in Diamond. Physical Review Letters 103,220802 (2009).
    [225]L. T. Hall, J. H. Cole, C. D. Hill, and, L. C. L. Hollenberg. Ultrasensitive diamond magnetometry using optimal dynamic decoupling. Physical Review B 82,045208 (2010).
    [226]L. T. Hall, C. D. Hill, J. H. Cole, B. Sta'dler, F. Caruso, P. Mulvaney, J. Wrachtrup, and L. C. L. Hollenberg. Monitoring ion-channel function in real time through quantum decoherence. Proceedings of the National Academy of Sciences 107,18777-18782 (2010).
    [227]C. A. Meriles, L. Jiang, G. Goldstein, J. S. Hodges, J. Maze, M. D. Lukin, and P. Cappellaro. Imaging mesoscopic nuclear spin noise with a diamond magnetometer. Journal of Chemical Physics 133,124105 (2010).
    [228]N. Zhao, J.-L. Hu, S.-W. Ho, J. T. K. Wan, and R. B. Liu. Atomic-scale magnetometry of distant nuclear spin clusters via nitrogen-vacancy spin in diamond. Nature Nanotechnology 6,242-246 (2011).
    [229]A. Zaitsev. Optical properties of diamond:a data handbook[M]. Springer (2001).
    [230]S. Materials, The Landoldt-Bornstein database, http://www.springermaterials.com/navigation/, (2011).
    [231]B. E. Kane. A silicon-based nuclear spin quantum computer. Nature 393,133-137 (1998).
    [232]M. Schaffry, E. M. Gauger, J. J. L. Morton, and S. C. Benjamin. Proposed Spin Amplification for Magnetic Sensors Employing Crystal Defects. Physical Review Letters 107,207210 (2011).
    [233]T. Rosenband, D. Hume, P. Schmidt, C. Chou, A. Brusch, L. Lorini, W. Oskay, R. Drullinger, T. Fortier, J. Stalnaker, S. Diddams, W. Swann, N. Newbury, W. Itano, D. Wineland, and J. Bergquist. Frequency ratio of A1+ and Hg+ single-ion optical clocks; Metrology at the 17th decimal place. Science 319,1808-1812 (2008).
    [234]P. Cappellaro, L. Jiang, J. S. Hodges, and M. D. Lukin. Coherence and Control of Quantum Registers Based on Electronic Spin in a Nuclear Spin Bath. Physical Review Letters 102,210502 (2009).
    [235]R. Hanson, F. M. Mendoza, R. J. Epstein, and D. D. Awschalom. Polarization and readout of coupled single spins in diamond. Physical Review Letters 97,087601 (2006).
    [236]D. M. Toyli, C. D. Weis, G. D. Puchs, T. Schenkel, and D. D. Awschalom. PChip-Scale Nanofab-rication of Single Spins and Spin Arrays in Diamond. Nano Letters 10,3168-3172 (2010).
    [237]S. Pezzagna, B. Naydenov, F. Jelezko, J. Wrachtrup, and J. Meijer. Creation efficiency of nitrogen-vacancy centres in diamond. New Journal of Physics 12,065017 (2010).
    [238]C. P. Slichter, Principles of Magnetic Resonance, Springer 3rd ed. (1990).
    [239]G. de Lange, T. van der Sar, M. Blok, Z.-H. Wang, V. Dobrovitski, and R. Hanson. Controlling the quantum dynamics of a mesoscopic spin bath in diamond. Scientific Reports 2,382 (2012).
    [240]H. J. Mamin, M. H. Sherwood, and D. Rugar. Detecting external electron spins using nitrogen-vacancy centers. Physical Review B 86,195422 (2012).
    [241]H. J. Mamin, M. Kim, M. H. Sherwood, C. T. Rettner, K. Ohno, D. D. Awschalom, and D. Rugar. Nanoscale Nuclear Magnetic Resonance with a Nitrogen-Vacancy Spin Sensor. Science 339, 557 (2013).
    [242]L. Viola, S. Lloyd. Dynamical suppression of decoherence in two-state quantum systems. Physical Review A 58,2733-2744 (1998).
    [243]J. R. West, D. A. Lidar, B. H. Fong, and M. F. Gyure. High Fidelity Quantum Gates via Dynamical Decoupling. Physical Review Letters 105,230503 (2010).
    [244]T. van der Sar, Z. H. Wang, M. S. Blok, H. Bernien, T. H. Taminiau, D. M. Toyli, D. A. Lidar, D. D. Awschalom, R. Hanson, and V. V. Dobrovitski. Decoherence-protected quantum gates for a hybrid solid-state spin register. Nature 484,82 (2012).
    [245]M. E. Newton and J. M. Baker,14N ENDOR of the N2 centre in diamond. Journal of Physics: Condensed Matter 1,9801 (1989).
    [246]C. J. Terblanche, E. D. Reynhardt, and J. A. van Wyk.13C Spin-Lattice Relaxation in Natural Diamond:Zeeman Relaxation at 4.7 T and 300 K Due to Fixed Paramagnetic Nitrogen Defects. Solid State Nuclear Magnetic Resonance 20,1-22 (2001).
    [247]T. Staudacher, F. Z. Shi, S. Pezzagna, J. Meijer, J. F. Du, C. A. Meriles, F. Reinhard, J. Wrachtrup. Nuclear magnetic resonance spectroscopy on a (5-nanometer)3 sample volume. Science 339,561-563 (2013).
    [248]P. Maletinsky, S. Hong, M. S. Grinolds, B. Hausmann, M. D. Lukin, R. L. Walsworth, M. Loncar and A. Yacoby. A robust scanning diamond sensor for nanoscale imaging with single nitrogen-vacancy centres. Nature Nanotechnology 7,320-324 (2012).
    [249]Zhao, N., Ho, S. W.& Liu, R. B. Decoherence and dynamical decoupling control of nitrogen vacancy center electron spins in nuclear spin baths. Physical Review B 85,115303 (2012).
    [250]Lange, G. de., Riste, D., Dobrovitski, V. V., and & Hanson, R. Single-spin magnetometry with multipulse sensing sequences. Physical Review Letters 106,080802 (2011).
    [251]Loretz, M., C. L. Degen. Radio-frequency magnetometry using a single electron spin. Physical
    [252]C. A. Ryan, J. S. Hodges, and D. G. Cory. Robust Decoupling Techniques to Extend Quantum Coherence in Diamond. Physical Review Letters 105,200402 (2010).
    [253]C. L. Degen, M. Poggio, H. J. Mamin, and D. Rugar. Role of Spin Noise in the Detection of Nanoscale Ensembles of Nuclear Spins. Physical Review Letters 99,250601 (2007).
    [254]A. Laraoui, J. S. Hodges, and C. A. Meriles. Magnetometry of random ac magnetic fields using a single nitrogen-vacancy center. Applied Physics Letters 97,143104 (2010).
    [255]S. Kotler, N. Akerman, Y. Glickman, A. Keselman, R. Ozeri. Single-ion quantum lock-in amplifier. Nature 473,61-65 (2011).
    [256]J. Bylander, S. Gustavsson, F. Yan, F. Yoshihara, K. Harrabi, G. Fitch, D. G. Cory, Y. Nakamura, J. S. Tsai, W. D. Oliver. Noise spectroscopy through dynamical decoupling with a superconducting flux qubit. Nature Physics 7,565-570 (2011).
    [257]N. Bar-Gill, L.M. Pham, C. Belthangady, D. Le Sage, P. Cappellaro, J.R. Maze, M.D. Lukin, A. Yacoby, and R. Walsworth. Suppression of spin-bath dynamics for improved coherence of multi-spin-qubit systems. Nature Communications 3,858 (2012).
    [258]K. M. Sinnott. Nuclear Magnetic Resonance and Molecular Motion in Polymethyl Acrylate, Poly-methyl Methacrylate, and Polyethyl Methacrylate. Journal of Polymer Science 42,3-13 (1960).
    [259]E. C. Reynhardt, G. L. High, and J. A. van Wyk. Temperature dependence of spin-spin and spin-lattice relaxation times of paramagnetic nitrogen defects in diamond. Journal of Chemical Physics 109,8471-8477 (1998).
    [260]F. Verpillat, M. P. Ledbetter, S. Xu, D. J. Michalak, C. Hilty, L. S. Bouchard, S. Antoijevic, D. Budker, and A. Pines. Remote detection of nuclear magnetic resonance with an anisotropic magnetoresistive sensor. Proceedings of the National Academy of Sciences 105,2271-2273 (2008).
    [261]S. Steinert, F. Dolde, P. Neumann, A. Aird, B. Naydenov, G. Balasubramanian, F. Jelezko, and J. Wrachtrup. High sensitivity magnetic imaging using an array of spins in diamond. Review of Scientific Instruments 81,043705 (2010).

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700