ZnO晶体形貌调控、离子掺杂及其生长动力学
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
ZnO作为宽禁带氧化物半导体具有优异的光学性能,近年其发光性能、磁学特性的研究成为热点。本文在水热条件下,系统研究了矿化剂、金属离子对ZnO晶体生长特性的影响,获得了较高浓度磁性金属离子掺杂的ZnO半导体,并进行了光、电、磁学性能的表征。利用基于密度泛函理论的第一性原理,从原子层次探讨了水热合成纤锌矿ZnO晶体形态的物理机制。主要研究结果如下:
     1、用强碱性化合物(KOH、NaOH)作为矿化剂时,氧化锌晶体显现极性生长特征,C轴方向生长速度较快,有利于晶体生长,但快速的极性生长容易出现更多缺陷。而盐类矿化剂(KBr、NaCO3)条件下因为ZnO溶蚀度低,晶体生长相对较慢。在强碱性矿化剂的反应体系中分别加入适量的LiOH、CaO、Mg(OH)2,可以抑制ZnO晶体C轴方向生长速度。其中添加CaO制备的ZnO晶体发光光谱中有较强的紫外带间跃迁发光。
     2、在强碱性矿化剂的反应体系中添加适量金属离子(Sb、Sn、In)可以控制ZnO晶体的形貌。其中添加Sn、In离子时,ZnO晶体C轴生长速度明显低于a、b轴,晶体始终大面积显露{0001}晶面,并且表现出良好的导电性能。其中添加In离子制备的ZnO晶体发光光谱中有较强的紫外带间跃迁发光。而添加Sb离子时,生成晶体完全不显露{0001}和{000}面。
     3、填充度35%条件下,反应体系中分别加入MnCl2、CoCl2·6H2O,采用磁选分离对合成产物进行处理,分别得到了Mn掺杂浓度7%,Co掺杂浓度0.64-2.87%的均匀掺杂ZnO晶体,SQUID测量表明,这些均匀掺杂Mn、Co的ZnO晶体分别表现出反铁磁性和顺磁性,生成产物中同时伴生铁磁性Co单质存在。
     4、为了提高Co掺杂浓度,采用耐压性能更好的反应釜,将填充度提高到70%,在反应体系中添加CoO,合成产物经磁选分离后获得了Co:Zn最高超过10at%的高浓度Co均匀掺杂ZnO晶体,测试结果表明该晶体表现出顺磁性。
     5、利用基于密度泛函理论的第一性原理方法,对水热合成纤锌矿ZnO晶体形态的物理机制进行了理论研究。分析了纤锌矿ZnO晶体的原子结构、能带结构和态密度,并利用乌尔夫定理得到平衡态ZnO晶体形态图。构建金属原子在极性和半极性表面上的吸附结构模型,计算K、Na、Li、Ca、Mg五种金属原子在负极面(0001)和负锥面(1011)的O原子截断面上单类和混合吸附后的表面能的变化,并预测吸附后ZnO晶体形态图。从原子层次探讨了水热合成ZnO晶体形态的物理机制,我们认为添加剂中的金属原子对其表面悬挂键的饱和作用,直接影响表面能的大小,进而影响最终生成的晶体形态。
     主要创新:
     1、弄清了矿化剂离子以及金属离子对ZnO晶体极性生长的影响关系,建立了水热条件下ZnO晶体形貌调控技术路线。
     2、在水热条件下实现了Mn/Co高浓度均匀掺杂,得到了高浓度均匀掺杂的高质量ZnO晶体,证实在Mn(Co)掺杂浓度超过7at%(10at%)时ZnO晶体不会产生铁磁性。
     3、利用基于密度泛函理论的第一性原理方法,从原子层次探讨了水热合成ZnO晶体形态的物理机制,得到了与实验比较吻合的结果。
In recent years, the study is focused on the luminescent properties and magneticcharacteristics of the wide bandgap oxide semiconductor ZnO because of its excellent opticalperformance. In this work, the effect on the growth of ZnO crystal by mineralizing agent andmetal ions is systematically studied under hydrothermal conditions. Higher concentration ofmagnetic metal ions doped in the semiconductor ZnO was obtained, and its optical properties,electrical properties, and magnetic properties were characterized. The mechanism of theformation of wurtzite ZnO crystal is studied using first-principles density functional theorymethods.
     1、Zinc oxide crystals show anosotropic growth characteristics with strong alkalinecompounds (KOH、NaOH)as mineralizer. The result is that the growth is faster at the c-axisdirection and it is conducive to the growth of crystal. However, the rapid growth of thepolarity is prone to more defects. The speed of growth was slow because of the dissolution islow with salts as mineralizer (KBr、NaCO3). The speed of growth of ZnO crystal along thec–axis was weakened obviously by adding appropriate amount of LiOH、CaO or Mg(OH)2inthe strong alkaline mineralizers in the reaction system.
     2、The ZnO crystal morphology could be controlled by adding appropriate amount ofmetal ions(Sb、Sn、In)in the strong alkaline mineralizer in the reaction system. The speedof growth of ZnO crystal along c–axis was weakened obviously compared with a–axis andb–axis by adding Sn or In ions. Large exposures of the positive polar face{0001} of ZnOcrystals is obtained.. Meanwhile, it exhibits good conduction properties. However, the the{0001} and {000} surfaces of ZnO crystal are not exposed in.
     3、At the fill factor of35%of adding MnCl2、CoCl2.6H2O in the reaction system, theuniformly doped ZnO crystals were obtained with7mole%Mn and0.64-2.87mole%Cocontent after magnetic separation. SQUID test showed that the samples were mainlyparamagnetic in the uniformly doped ZnO crystals, and some Co single phase appearedsimultaneously.
     4、In order to enhance the content of Co, more pressure-resistive reactor was used, andthe fill factor was enhanced to70%.Some CoO were added in the reaction system at the sametime. After magnetic separation, high content of Co, uniformly doped in ZnO crystals, wereobtained with the ratio of Co:Zn reaching10at%. The results showed that the samples weremainly paramagnetic.
     5、The physical mechanisms of wurtzite ZnO crystal morphology were studied usingdensity functional theory. The atomistic structure, the energy band structure, and density ofstates of ZnO crystal were analyzed, and the aspect-graph of the equilibrium state of ZnOcrystal was obtained by using Ulf Theorem. The adsorption structure of metal atoms on thesurface of polar and semi-polar was set up. The adsorption energies of K、Na、Li、Ca、Mgatom, singly adsorbed or in mixture, at the truncated surfaces of O atoms located at thenegative face and negative cone face were obtained., The ZnO crystal morphology diagramafter adsorption was predicted. The physical mechanism of the hydrothermal synthesis of ZnOcrystal morphology was discussed from the atomic level. We believe that the surface energiesare directly correlated with the saturation of dangling bonds from the metal atoms in theadditive and the crystal morphology was affected in turn.
     Innovations of this work:
     1、the relationship between the growth of ZnO crystal and the mineralizing agent andmetal ions were clarified and technical routes of controlling ZnO crystal morphology underthe hydrothermal conditions were obtained.
     2、 High concentrations of Mn/Co uniformly doped in the ZnO crystal underhydrothermal conditions were achieved and high qualities of ZnO crystals uniformly doped athigh concentrations were obtained. The results show that ZnO crystals doped high than7at%(10at%) of Mn(Co)do not show ferromagnetism.
     3、The physical mechanisms of wurtzite ZnO crystal morphology synthesized byhydrothermal method were studied from the atomistic level using density functional theoryand the results are consistent with experiments.
引文
[1] Bagnall D. M., Chen Y. F., Zhu Z., et al. Optical pumped lasing of ZnO at room temperature[J].Appl. Phys. Lett.[J],1997,70(17):2230-2232
    [2] Zu p,Tang Z K,Kawasaki M,et al.Ultraviolet spontaneous and stimulated emission from ZnOmicrocrystalline thinfilm at room temperature[J]. Sol.Stat.Commun.,1997,103(8);459-463
    [3] Bagnall D. M., Chen Y. F., Zhu Z., et al. High temperature excitionic stimulated from ZnO epitaxialLayers[J]. Appl. Phys. lett.[J],1998,73(8):1038-1041
    [4] Z. K. Tang, G. K. L. Wong, and P. Yu, M. Kawasaki, A. Ohtomo, and H. Koinuma, Yokohama, Y.Segawa. Room-temperature ultraviolet laser emission from elf-assembled ZnO microcrystallite thinfilms[J]. Applied physics letter,1997,72(25):3270-3273
    [5] Zheng Wei Pan, et al. Nanobelts of Semiconducting Oxides. Science291,9:1947-1949.(2001March)
    [6] Hou T. Ng, et al. G rowth of Epitaxial Nanowires at the Junctions of Nanowalls. Science300,23:1249(2003May)
    [7] Y. J. Xing, et al. Optical properties of the ZnO nanotubes synthesized via vapor phase growth. Appl.Phys. Lett.83:1689(2003)
    [8] Xiang Yang Kong, et al.Single-Crystal Nanorings Formed by Epitaxial Self-Coiling of PolarNanobelts. Science303:1348-1351(2004)
    [9] Michael H. Huang, et al.Room-Temperature Ultraviolet Nanowire Nanolasers. Science292:1897-1899.(2001)
    [10] G. H. Dua, F. Xu, Z. Y. Yuan. Flowerlike ZnO nanocones and nanowires: Preparation, structure andluminescence. Appl. Phys. Lett.,2006,88,243101
    [11] Fa-Quan He and Ya-Pu Zhao. Growth of ZnO nanotetrapods with hexagonal crown. Appl. Phys. Lett.,2006,88,193113
    [12] C. X. Xu and X. W. Sun and Z. L. Dong. Zinc oxide hexagram whiskers. Appl. Phys. Lett.,2006,88,093101_2006_
    [13] R. C. Wang, C. P. Liu, and J. L. Huang, S.-J. Chen and Y.-K. Tseng. ZnO nanopencils: Efficient fieldemitters. Appl. Phys. Lett2005,87,013110
    [14]] R. C. Wang, C. P. Liu,a! and J. L. Huang, S.-J. Chen, ZnO hexagonal arrays of nanowires grown onnanorods. Appl. Phys. Lett.,200586,251104
    [15] L. Liao, J. C. Li,a! D. H. Liu, C. Liu, D. F. Wang, and W. Z. Song, Q. Fu. Self-assembly of alignedZnO nanoscrews: Growth, configuration, and field emission. Appl. Phys. Lett.2005.86,083106
    [16] Liang-Chiun Chao, Ping-Chang Chiang, Shih-Hsuan Yang, Jian-Wei Huang, Chung-Chi Liau,Jyh-Shin Chen, and Chien-Ying Su. Zinc oxide nanodonut prepared by vapor-phase transport process.Appl. Phys. Lett.2006,88,251111ZnO基发光二极管17Atsushi Tsukazaki, et al. Repeated temperature modulation epitaxy for p-type doping andlight-emitting diode based on ZnO. Nature Materials,2005,4(1):42-46
    [18] W. Z. Xu, Z. Z. Ye, et al. ZnO light-emitting diode grown by plasma-assisted metal organicchemical vapor deposition. Appl. Phys. Lett.,2006,88:173506
    [19] W. Liu, S. L. Gu, et al. Blue-yellow ZnO homostructural light-emitting diode realized bymetalorganic chemical vapor deposition technique. Appl. Phys. Lett.,2006,88:092101
    [20] Yungryel Ryua, Tae-Seok Lee, et al. Next generation of oxide photonic devices: ZnO-basedultraviolet light emitting diodes. Appl. Phys. Lett.,2006,88:241108
    [21] Henry White.全彩ZnO基LED暂露头角.化合物半导体与光电技术,2006,第11期
    [22] Matt Law, Lori E. Greene, et al. Nanowire dye-sensitized solar cells[J] Nature Materials,2005,4:455-459
    [23] Liu B,Zeng H C. Hydrothermal Synthesis of ZnO Nanorods in the Diameter Regime of50nm[J].J. Am. Chem. Soc,(2003,125(15):4430-4431
    [24] Ji Y L, Guo L, Xu H, Simon P, Wu Z. Regularly Shaped, Single-Crystalline ZnO Nanorods withWurtzite Structure[J]. J. Am. Chem. Soc.2002,124(50):14864-14865
    [25] Choy J H, Jang E S, et al. Hydrothermal route to ZnO nanocoral reefs and nanofibers[J]. Appl. Phys.Lett.2004,84:287
    [26] Zhengrong R. Tian, James A. Voigt, et al. Complex and oriented ZnO nanostructures[J]. NatureMaterials2,2003,2:821-826
    [27]郭敏,刁鹏,蔡生民.水热法制备高度取向的氧化锌纳米棒阵列[J].高等学校化学学报,2004,25(2):345-347.
    [28] Sue K, Kimura K, Yamamoto M, et al. Rapid hydrothermal synthesis of ZnO nanorods withoutorganics [J]. Materials Letters,2004,58(26):3350-3352.
    [29] Wang J M, Gao L. Synthesis of uniform rod-like, multi-pod-like ZnO whiskers and theirphotoluminescence properties [J]. Journal of Crystal Growth,2004,262(1-4):290-294.Wang J M, Gao L. hydrothermal synthesis and photoluminescence properties of ZnO nanowires [J].Solid State Communications,2004,132(3-4):269-271.
    [31] Guo M, Diao P, Cai S M. Hydrothermal growth of well-aligned ZnO nanorod arrays: Dependence ofmorphology and alignment ordering upon preparing conditions [J]. Journal of Solid State Chemistry,2005,178(6):1864-1873.
    [32] Zhang H Yang D R, Li S Z, et al. Controllable growth of ZnO nanostructures by citric acid assistedhydrothermal process [J]. Materials Letters,2005,59(13):1696-1700.
    [33] Wei H Y, Wu Y S, Lun N, et al. Hydrothermal synthesis and characterization of ZnO nanorods [J].Materials Science and Engineering: A,2005,393(1-2):80-82.
    [34] Zhang F, Dong Z W, et al. Observation of two-photon-induced photoluminescence in ZnOmicrotubes [J]. Appl. Phys. Lett.2005,87:051920
    [35] Zhang F, Dong Z W, et al. Observation of two-photon-induced photoluminescence in ZnOmicrotubes [J]. Appl. Phys. Lett.2005,87:051920
    [36] Sekiguchi T, Miyashita S, Obara K, Shishido T, Sakagami N J. Hydrothermal growth of ZnO singlecrystals and their optical characterization.2000Cryst Growth.214-21572-76
    [37] Eriko O M, Hiraku O, Ikuo N K, Katsumi M, Mitsuru S, Masumi I, Growth of the2-in-size bulkZnO single crystals by the hydrothermal method. Tsuguo F D.2004Journal of Crystal Growth260166-170
    [38] Katsumi Maeda, Mitsuru Sato, Ikuo Niikura. Et al. Growth of2inch ZnO bulk single crystal by thehydrothermal method. Semicond. Sci. Technol.20(2005) S49–S54
    [39]福田承生等.第三届亚洲晶体生长与晶体技术学术会议论文集.北京,2005,10.
    [40] L. N. Demianets, et al. Mechanism of Growth of ZnO Single Crystals from Hydrothermal AlkaliSolutions. Crystallogr. Rep.47: S86(2002)
    [41] High-quality hydrothermal ZnO crystals. suscavage M, et al. M.suscavage,1998GaN and RelatedAlloys, Boston, Massachusetts, U.S.A, November30-December4,.G3.40
    [42] Toru Aoki, et al. Appl. ZnO diode fabricated by excimer-laser doping. Phys. Lett.76:3257(2000)
    [43] N. Sakagami. Variation of electrical properties on growth sectors of ZnO single crystals. Journal ofCrystal Growth. Vol229,1-4:98-103(July2001)
    [44] Urbieta A., et al. Cathodoluminescence microscopy of hydrothermal and flux grown ZnOsinglecrystals. Journal of Physics. D. Vol.34, No.19:2945-2949(2001)
    [45] Cathodoluminescence and scanning tunnelling spectroscopy of ZnO singlecrystals. Urbieta A,et al.Materials Science&Engineering. B, Vol.91-92:345-348(2002)
    [46]霍汉德,左艳彬,张昌龙等.氧化锌晶体的水热法生长及其性能研究.超硬材料工程,2006,18(2):60
    [47] Z. Q. Chen, S. et al. Postgrowth annealing of defects in ZnO studied by positron annihilation, x-raydiffraction, Rutherford backscattering, cathodoluminescence, and Hall measurements. Appl. Phys.94:4807(2003)
    [48] A. Uedono, T. Koida, A. Tsukazaki, et al. Defects in ZnO thin films grown on ScAlMgO4substratesprobed by a monoenergetic positron beam. J. Appl. Phys.93,2481(2003)
    [49] T. Koida, S. F. Chichibu, A. Uedono, et al. Correlation between the photoluminescence lifetime anddefect density in bulk and epitaxial ZnO. Appl. Phys. Lett.82,532(2003)
    [50] G. Alvin Shi, Michael Stavola, and W. Beall Fowler. Identification of an OH-Li center in ZnO:Infrared absorption spectroscopy and density functional theory. Phys. Rev. B73,081201(2006)
    [51] G. Alvin Shi, Michael Stavola, S. J. Pearton, et al. Hydrogen local modes and shallow donors inZnO. Phys. Rev. B72,195211(2005)
    [52] G. Alvin Shi, Marjan Saboktakin, Michael Stavola, and S. J. Pearton. Hidden hydrogen" in as-grownZnO. Appl. Phys. Lett.85,5601(2004)
    [53] Wolf, S. A. et al. Spintronics: a spin-based electronics vision for the future. Science294,1488–1495(2001).
    [54] Ohno, H. Making nonmagnetic semiconductors ferromagnetic. Science281,951–956(1998).
    [55] Electric-field control of ferromagnetism. Ohno, H. et al. Nature408,944–946(2000).
    [56] Chiba,D.,Yamanouchi, M.,Matsukura, F.&Ohno, H. Electrical manipulation of magnetizationreversal in a ferromagnetic semiconductor. Science301,943–945(2003)
    [57] Data B., Das B. Electronic analog of the electro-optic modulator[J]. Appl.phys.Lett.,1990,56(7):665.
    [58] Ferromagnetic semiconductors: moving beyond (Ga,Mn)As. A. H. MacDonald, P. Schiffer, N.Samarth. Nature Materials4,195-202(01Mar2005)
    [59] T. Dietl, et al. Zener Model Description of Ferromagnetism in Zinc-Blende Magnetic Semiconductors.Science287:1019-1022(2000)
    [60] I. Malajovich, J. J. Berry, N. Samarth, D. D. Awschalom. Persistent sourcing of coherent spins formultifunctional semiconductor spintronics. Nature411,770-772(14Jun2001)
    [61] George Kioseoglou, Aubrey T. Hanbicki, James M. Sullivan, et al. Electrical spin injection from ann-type ferromagnetic semiconductor into a III–V device heterostructure. Nature Materials3,799-803(01Nov2004)
    [62] R. Fiederling, M. Keim, G. Reuscher, W. Ossau, et al. Injection and detection of a spin-polarizedcurrent in a light-emitting diode. Nature402,787-790(16Dec1999)
    [63] Jun He, Shifa Xu, Young K. Yoo, et al. Room temperature ferromagnetic n-type semiconductor in(In1–xFex)2O3. Appl. Phys. Lett.86,052503(2005)
    [64] K Sato and H Katayama-Yoshida. Semicond. Sci. First principles materials design for semiconductorspintronics. Technol.17No4:367-376(April2002)
    [65] Kazunori Sato and Hiroshi Katayama-Yoshida. Stabilization of ferromagnetic states by electrondoping in Fe-, Co-or Ni-doped ZnO. Jpn. J. Appl. Phys., Part240, L334(2001)
    [66] Kazunori Sato and Hiroshi Katayama-Yoshida. Material Design for Transparent Ferromagnets withZnO-Based Magnetic Semiconductors. Jpn. J. Appl. Phys., Part239, L555(2000)
    [67]阚二军.新型磁性材料的第一性原理计算与设计研究.博士论文.中国科技大学.2008
    [68] S. B. Ogale. et al. High Temperature Ferromagnetism with a Giant Magnetic Moment in TransparentCo-doped SnO2–δ. Phys. Rev. Lett.91:077205(2003)
    [69] Song, K. W. Geng, F. Zeng, X. B. Wang, Y. X. Shen, et al. Giant magnetic moment in an anomalousferromagnetic insulator: Co-doped ZnO. C. Phys. Rev. B73,024405(2006)
    [70] Electric and magnetic behaviors of Li and Co codoped ZnO thin film on Si (100) substrate Yuan-HuaLin, Jingnan Cai, Ce-Wen Nan, M. Kobayashi, and Jinliang He. J. Appl. Phys.99,056107(2006)
    [71] Y. Z. Peng, T. Liew, T. C. Chong, W. D. Song, H. L. Li, and W. Liu. Growth and characterization ofdual-beam pulsed-laser-deposited Zn1–xCoxO thin films. J. Appl. Phys.98,114909(2005)
    [72] Electrodeposition and room temperature ferromagnetic anisotropy of Co and Ni-doped ZnOnanowire arrays. J. B. Cui and U. J. Gibson. Appl. Phys. Lett.87,133108(2005)
    [73] Magnetic and transport properties of (Mn, Co)-codoped ZnO films prepared by radio-frequencymagnetron cosputtering. Zheng-Bin Gu, Chang-Sheng Yuan, Ming-Hui Lu, et al. J. Appl. Phys.98,053908(2005)
    [74] Room-temperature ferromagnetism in well-aligned Zn1-x Co xO nanorods. Jih-Jen Wu,Sai-Chang Liu, and Ming-Hsun Yang. Appl. Phys. Lett.85:1027(2004)
    [75] Enhancement of ferromagnetic properties in Zn1-x] Co x O by additional Cu doping. Hung-Ta Lin,Tsung-Shune Chin, Jhy-Chau Shih, Show-Hau Lin, Tzay-Ming Hong, Rong-Tan Huang, Fu-RongChen, and Ji-Jung Kai. Appl. Phys. Lett.85:621(2004)
    [76] Magnetic order in Co-doped and (Mn, Co) codoped ZnO thin films by pulsed laser deposition. L.Yan, C. K. Ong, and X. S. Rao. J. Appl. Phys.96:508(2004)
    [77] Laser ablation of Co:ZnO films deposited from Zn and Co metal targets on (0001) Al2]O3substrates. W. Prellier, A. Fouchet, B. Mercey, Ch. Simon, and B. Raveau. Appl. Phys. Lett.82:3490(2003)
    [78] Doping concentration dependence of room-temperature ferromagnetism for Ni-doped ZnO thin filmsprepared by pulsed-laser deposition. Xiaoxue Liu, Fangting Lin, Linlin Sun, Wenjuan Cheng,Xueming Ma, and Wangzhou Shi. Appl. Phys. Lett.88,062508(2006)
    [80] Synthesis and room temperature ferromagnetism of FeCo-codoped ZnO nanowires. L. Q. Liu, B.Xiang, X. Z. Zhang, Y. Zhang, and D. P. Yu. Appl. Phys. Lett.88,063104(2006)
    [81] Magnetization dependence on electron density in epitaxial ZnO thin films codoped with Mn and Sn.M. Ivill, S. J. Pearton, D. P. Norton, J. Kelly, and A. F. Hebard. J. Appl. Phys.97,053904(2005)
    [82] Structural and magnetic properties of insulating Zn1–xCoxO thin films. Zhigang Yin, Nuofu Chen,Chunlin Chai, and Fei Yang. J. Appl. Phys.96,5093(2004)
    [83] Chemical Manipulation of High-TC Ferromagnetism in ZnO Diluted Magnetic Semiconductors.Kevin R. Kittilstved, Nick S. Norberg, and Daniel R. Gamelin. Phys. Rev. Lett.94,147209(2005)
    [84] Structure, optical, and magnetic properties of sputtered manganese and nitrogen-codoped ZnOfilms. Zheng-Bin Gu, Ming-Hui Lu, Jing Wang,et al. Appl. Phys.Let.88,082111(2006)
    [85] Carrier-controlled ferromagnetismin transparent oxide semiconductors. J. PHILIP1, A.PUNNOOSE, B. I. KIM, K. M. REDDY, S. LAYNE, J. O. HOLMES, B. SATPATI, P. R. LECLAIR1,T. S. SANTOS AND J. S. MOODERA1. Nature.2006,19:1-5
    [86] Donor impurity band exchange in dilute ferromagnetic oxides。 J. M. D. Coey, M. Venkatesan, C.B. Fitzgerald。 Nature Materials4,173-179(01Feb2005) Article
    [87] Ferromagnetism above room temperature in bulk and transparent thin films of Mn-doped ZnO.Parmanand Sharma, Amita Gupta, K. V. Rao, Frank J. Owens,et al. Nature Materials2,673-677(01Oct2003)
    [88] On the origin of high-temperature ferromagnetism in the low-temperature-processed Mn–Zn–Osystem. Darshan C. Kundaliya, S. B. Ogale, S. E. Lofland, et al. Nature Materials3,709-714(01Oct2004)
    [89] Scott Chambers. Is it really intrinsic ferromagnetism?. nature materials|VOL9|DECEMBER2010,956-957
    [90] Magnetic properties of bulk Zn1-x Mn xO and Zn1-xC o xO single crystals. M. H. Kane, K.Shalini, C. J. Summers, R. Varatharajan, J. Nause, C. R. Vestal, Z. J. Zhang, and I. T. Ferguson. J. Appl.Phys.97:023906(2005)
    [91] Absence of ferromagnetism in Co and Mn substituted polycrystalline ZnO. G. Lawes, A. S. Risbud,A. P. Ramirez, and Ram Seshadri. Phys. Rev. B71:045201(2005)
    [92] Ferromagnetism Induced by Clustered Co in Co-Doped Anatase TiO2Thin Films. J.-Y. Kim, et al.Phys. Rev. Lett.90:017401(2003)
    [93] Co-metal clustering as the origin of ferromagnetism in Co-doped ZnO thin films. Jung H. Park, et al.Appl. Phys. Lett.84:1338(2004)
    [94] Antiferromagnetism in bulk Zn1–xCoxO magnetic semiconductors prepared by the coprecipitationtechnique. M. Bouloudenine, N. Viart, S. Colis, J. Kortus, and A. Dinia. Appl. Phys. Lett.87,052501(2005)
    [95] Absence of ferromagnetism in Co and Mn substituted polycrystalline ZnO. G. Lawes, A. S. Risbud,A. P. Ramirez, and Ram Seshadri. Phys. Rev. B71,045201(2005)
    [96] Magnetic properties of bulk Zn1–xMnxO and Zn1–xCoxO single crystals. M. H. Kane, K. Shalini, C.J. Summers, R. Varatharajan, et al. J. Appl. Phys.97,023906(2005)
    [97] Magnetic ordering and x-ray magnetic circular dichroism of Co doped ZnO. Jisang Hong and R. Q.Wu. J. Appl. Phys.97,063911(2005)
    [98] Characterization of magnetic components in the diluted magnetic semiconductor Zn1–xCoxO byx-ray magnetic circular dichroism. M. Kobayashi. Y. Ishida1, J. l. Hwang. et al. Phys. Rev. B72,201201(2005)
    [99] Absence of ferromagnetism in Al-doped Zn0.9Co0.10O diluted magnetic semiconductors. J. Alaria,H. Bieber, S. Colis, G. Schmerber, and A. Dinia. Appl. Phys. Lett.88,112503(2006)
    [100] Wei Li, Qingqing Kang, and Zhang Lin. Paramagnetic anisotropy of Co-doped ZnO single crystal.APPLIED PHYSICS LETTERS89,11250720061
    [101] H. B. de Carvalho, M. P. F. de Godoy, R. W. D. Paes, M. Mir, Absence of ferromagnetic order inhigh quality bulk Co-doped ZnO Samples. JOURNAL OF APPLIED PHYSICS108,0339142010
    [102] Properties of Mn-and Co-doped bulk ZnO crystals. A. Y. Polyakov, N. B. Smirnov, A. V.Govorkov, J. Vac. Sci. Technol. B23(1)…, Jan/Feb2005
    [103] Buguo Wang, M.J. Callahan, Chunchuan Xu, et al. Hydrothermal Growth and Characterization ofIndium-doped-conducting ZnO Crystals[J]. Journal of Crystal Growth,2007,304(1):73-79.
    [104]High-mobility Sb-doped p-type ZnO by molecular-beam epitaxy. F. X. Xiu, Z. Yang, L. J. Mandalapu,D. T. Zhao, J. L. Liu, and W. P. Beyermann, Appl. Phys. Lett.87,15
    [105] N. Tian, Z. Y. Zhou, S. G. Sun, Y. Ding, and Z. L. Wang. Synthesis of tetrahexahedral platinumnanocrystals with high-index facets and high electro-oxidation activity. Science.316,732-735(2007).
    [106]施尔畏,陈之战,元如林,郑燕青.水热结晶学.北京:科学出版社,2004年.
    [107] S. Piana,M. Reyhani, and J.D. Gale. Simulating micrometre-scale crystal growth from solution.Nature.2005,438:70-73.
    [108] D. L. Xu and D. F. Xue. Chemical bond analysis of the crystal growth of KDP and ADP. J.Crys.Growth.2006,286(1):108-113.
    [109] H. G.Yang, C.H. Sun, S. Z. Qiao, J. Zou, G. Liu, S. C. Smith, H. M.Cheng and G. Q. Lu. AnataseTiO2single crystals with a large percentage of reactive facets. Nature.2008,453:638-641.
    [110] A. Selloni. Crystal growth: Anatase shows its reactive side. Nature Materials.2008,7:613-615.
    [111] B. Meyer and D. Marx. Density-functional study of the structure and stability of ZnO surfaces.Phys.Rev.B.2003,67(3):035403-035414.
    [112] Y.F. Zhang, Z.Y. Guo, X.Q. Gao, D.X. Cao, Y.X. Dai, and H.T. Zhao. First-principles of wurtzite ZnO(0001) and (0001) surface structures. J.Semicond.2010,31(8):082001-082006.
    [113] C.C. Wang, G. Zhou, J. Li, B.H. Yan, and W.H. Duan. Hydrogen-induced metallization of zincoxide (2110) surface and nanowires: The effect of curvature. Phys.Rev.B.2008,77(24):245303-245310.
    [114] Shuiyi Wei, Zhiguo Wang, Zongxian Yang. First-principle studies on the Au surfactant on polar ZnOsurfaces. Phys. Lett.A,2007,363:327-331.
    [115] K. Nishidate, M. Yoshizawa, and M. Hasegawa. Energetics of Mg and B adsorption on polar zincoxide surfaces from first principles. Phys.Rev.B.2008,77(3):035330-035337.
    [116] X. Chen, D. Huang, W.J. Deng, Y.J. Zhao. Structural stability and magnetic properties of Co-doped oradsorbed polar-ZnO surface. Phys. Lett.A,2009,373:391-395.
    [117]李琦,范广涵,熊伟平,章勇. ZnO极性表面及其N原子吸附机理的第一性原理研究.物理学报,2010,59(6):4170-4177.
    [118] M. J. Lyle, O. Warschkow, B. Delley, and C. Stampfl. Coverage and charge-state dependentadsorption of carbon monoxide on the zinc oxide (0001) surface. Phys.Rev.B.2010,82(16):165401-165410.
    [119] H. Xu, R. Q. Zhang, and S. Y. Tong. Interaction of O2, H2O, N2, and O3with stoichiometric andreduced ZnO(1010) surface. Phys.Rev.B.2010,82(15):155326-155332.
    [120] Hohenberg P. and Kohn W. Inhomogeneous electron gas [J]. Physical Review,1964,136(3B):B864-B871.
    [121] W. Kohn, L. J. Sham. Self-consistent equation including exchange and correlation effects [J]. Phys.Rev.,1965,140:All33一All3.
    [122] D. C. Langreth and J. P. Perdew, Theory of nonuniform electronic systems. I. Analysis of the gradientapproximation and a generalization that works [J]. Phys. Rev. B.,1980,21:5469.
    [123] M. D Segall, Philip J.D Lindan, M. J Probert, et al. First-principles simulation: ideas, illustrations andthe CASTEP code [J]. Journal of Physics: Condensed Matter,2002,14:2717.
    [124] J. A. Dean, Lange’s Handbook of Chemistry,14th ed.(McGraw Hill, New York,1992).
    [125]Karzel H,Potzel W,Oerlein M K et al..Lattice dynamics and hyperfine interactions in ZnO and ZnSe athigh external pressures[J].Phys. Rev. B,1996,53:11425.
    [126]Decremps F,Dathi F,Poloan A,et al..Local structure of condensed zin oxide[J].Phys. Rev.B,2003,68:104101.
    [127]Schleife A,Fuchs F,Furthmuller J,et al..First_principles study of ground-and excited-state propertiesof MgO,ZnO,and CdO polymorphs[J].Phys. Rev. B,2006,73:245212.
    [128] A. Wander, F. Schedin,P. Steadman,A. Norris,R. McGrath,T. S. Turner,G. Thornton,and N.M.Harrison. Stability of Polar Oxide Surfaces. Physical Review Letters,2001,86(17):3811-3814.
    [129Sung-Ho Na and Chul-Hong Park. Journal of the Korean Physical Society, Vol.54, No.2, February2009, pp.867~872
    [130] N. L. Marana,V. M. Longo,E. Longo,J. B. L. Martins,and J. R. Sambrano. lectronic and StructuralProperties of the (1010) and (1120) ZnO Surfaces J. Phys. Chem. A2008,112,8958–8963.
    [131] Vohs, J. M.; Barteau, M. A. Surf. Sci.1986,176,91.
    [132] A. Wander, N.M. Harrison, Surf. Sci.457(2000) L342.
    [133] Ulrike Diebolda, Lynn Vogel Koplitz, Olga Dulub. Applied Surface Science237(2004)336–342G.(Kresse, private communication.)
    [134] G. Wulff, Z. Kristallogr.34,449(1901).
    [135] Qian Sun, Christopher D. Yerino, Tsung Shine Ko, Yong Suk Cho, In-Hwan Lee, Jung Han, andMichael E. Coltrin. Understanding nonpolar GaN growth through kinetic Wulff plots. J. APPLIEDPHYSICS104,093523(2008)
    [136]L. Wang, F. Zhou, Y. S. Meng, and G. Ceder. First-principles study of surface properties of LiFePO4:Surface energy, structure, Wulff shape,and surface redox potentialPHYSICAL REVIEW B76,165435(2007).
    [137]B. Meyer,First-principles study of the polar O-terminated ZnO surface in thermodynamic equilibriumwith oxygen and hydrogen.PHYSICAL REVIEW B69,045416(2004).
    [138] Xu,H.; Fan,W.; Rosa, A. L.; Zhang, R.Q.; Frauenheim, T. Hydrogen and oxygen adsorption on ZnOnanowires: A first-principles study Phys.Rev. B2009,79,073402.
    [139] Kazume Nishidate and Masayuki Hasegawa,Energetics of Mg, B, Cu, and Ti Atoms Adsorbed on theZnO Polar Surfaces from First Principles. e-J. Surf. Sci. Nanotech. Vol.9(2011)199-205
    [140]S. Polarz, A. Orlov,A. Hoffmann,M. R. Wagner,C. Rauch,R. Kirste,W. Gehlhoff,Y. Aksu, M. Driess,M.W. E. van den Berg, and M. Lehmann. A Systematic Study on Zinc OxideMaterials Containing GroupI Metals (Li, Na, K)-Synthesis from Organometallic Precursors, Characterization, and Properties.Chem.Mater.2009,21:3889-3897.
    [141]Seitaro Ito,Tomomi Shimazaki, Momoji Kubo, Hideomi Koinuma,and Masatomo Sumiya.Communication: The reason why+c ZnO surface is less stable than c ZnO surface: First-principlescalculation. THE JOURNAL OF CHEMICAL PHYSICS135,241103(2011).

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700