A群链球菌CovRS双组份系统致病机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
A群链球菌(Group A Streptococcus, GAS)是引起人类细菌感染的最重要病原之一。据2011年数据显示,全球每年大概有7亿例GAS引起的轻微、局部感染病例,其中约65万例转化为严重侵袭性感染(严重全身性感染),最后导致约四分之一的感染者死亡。A群链球菌感染可以引起相对轻微感染,主要有咽喉炎、急性扁桃体炎、猩红热、皮肤软组织感染、脓包病。它也可导致严重的侵袭性感染,如中毒性休克综合征和坏死性筋膜炎。该菌也可能造成非化脓性后遗症,如风湿性心脏病和急性肾小球肾炎。
     由于GAS血清型的复杂性以及疫苗的安全性问题,目前尚无针对GAS的商业化疫苗。近年来由GAS引起的猩红热和严重全身性感染的发病率有所增长,引起了人们对该类细菌感染的更多关注。尽管研究者围绕GAS的毒力因子及致病机制已开展了大量研究工作,但目前对GAS导致侵袭性感染的致病机理和局部感染向侵袭性感染转化的分子机制尚不清楚。因此,进一步研究GAS在侵袭性感染过程中的固有免疫逃逸机制和了解GAS如何从局部感染转化为侵袭性感染的分子机制将有利于发现新的抗感染靶点和建立侵袭性感染早期诊断方法,对于有效预防和控制严重侵袭性感染具有重要意义。
     本研究使用从A群链球菌中毒性休克综合征和坏死性筋膜炎等危及生命的感染病例中分离频率最高的M1T1血清型代表菌株进行侵袭性感染致病机制研究。第一,发现GAS可以通过CovRS双组份调控系统抑制中性粒细胞向感染部位募集以增强其侵袭能力,也解释了侵袭性感染临床分离株MGAS5005中covS基因的天然无义突变是导致该菌株中性粒细胞募集抑制能力、侵袭能力和毒力增强的主要原因。第二,用侵袭性感染模型评估了三个受CovRS双组份系统调控的中性粒细胞募集抑制因子在侵袭性感染过程中的重要性。第三,发现中性粒细胞在M1T1血清型GAS引起的局部感染转化为侵袭性感染的过程中发挥重要作用。第四,进一步完善M1T1血清型GAS引起的局部感染转化为侵袭性感染的分子模型。主要研究内容如下:
     1.建立M1T1血清型GAS侵袭性感染模型。
     本研究首先用临床分离的侵袭性感染代表菌株MGAS5005和咽炎感染代表菌株MGAS2221通过皮下接种的方式感染小鼠,建立侵袭性感染研究模型。在该模型中,与咽炎感染代表菌株MGAS2221相比,侵袭性感染代表菌株MGAS5005具有较强的毒力和软组织侵袭能力,并且感染部位缺少中性粒细胞。该表型与严重侵袭性感染——坏死性筋膜炎感染部位缺少中性粒细胞的临床表现一致,表明该动物模型成功模拟了侵袭性感染的临床表型,为侵袭性感染致病机制的研究奠定了基础。
     2.M1T1血清型GAS通过CovRS双组份系统抑制中性粒细胞向感染部位募集以增强其侵袭能力和毒力。
     本实验室首先通过同源重组的方法将野生型covSwt基因置换MGAS5005基因组中天然无义突变的covS△1bp基因,构建MGAS5005wtcovS回复菌株。动物实验表明MGAS5005wtcovS显著降低了毒力和侵袭能力,并且在感染区域募集了大量中性粒细胞,中性粒细胞含量与咽炎感染代表菌株MGAS2221感染部位募集的中性粒细胞水平相当。相反,MGAS2221△covS突变株毒力和侵袭能力显著增强,感染部位募集的中性粒细胞含量降低至MGAS5005相似的水平。该结果表明,GAS通过CovRS双组份系统抑制中性粒细胞向感染部位募集,并因此增强侵袭能力和毒力。上述结果也解释了侵袭性感染分离菌株MGAS5005中covS基因的天然无义突变是导致其抑制中性粒细胞募集能力和毒力增强的主要原因。通过检测患者感染部位分离菌株的covRS基因是否发生突变,或许可以成为一种侵袭性感染的辅助预测方法。
     3.链球菌分泌性酯酶(SsE)是侵袭性感染中重要的中性粒细胞募集抑制因子和毒力因子。
     上述研究结果证明在GAS侵袭性感染过程中,CovRS双组份系统参与抑制中性粒细胞向感染部位募集。CovRS双组份系统需要通过调控下游基因实现抑制中性粒细胞募集的功能。白介素-8蛋白酶(SpyCEP)、C5a肽酶(ScpA)和分泌性酯酶(SsE)是受CovRS负调控的中性粒细胞募集抑制因子。为了分析和比较中性粒细胞募集抑制因子SpyCEP、ScpA和SsE在侵袭性感染过程中的重要性,本研究以侵袭性感染代表菌株MGAS5005为亲本菌株,通过同源重组的方法分别构建这三个基因的单基因缺失突变株,双基因缺失突变株△spyCEP△scpA,△scpA△sse,△spyCEP△sse和三基因缺失突变株△spyCEP△scpA△sse。通过侵袭性感染模型,对单基因缺失突变株、双基因缺失突变株和三基因缺失突变株一共7个突变株同时进行比较发现:凡是缺失了sse基因的突变株(包括单基因、双基因和三基因缺失突变株),中性粒细胞募集抑制能力和毒力都显著降低;然而,spyCEP和scpA这两个基因的单基因和双基因缺失突变株的中性粒细胞募集抑制能力和毒力与野生株相比没有显著变化;并且三个因子之间没有协同增强中性粒细胞募集抑制能力和毒力的效应。以上结果证明SsE不仅是GAS侵袭性感染过程中抑制中性粒细胞募集的重要因子,而且是GAS侵袭性感染过程中的重要的毒力因子。通过开发针对该毒力因子的药物或者治疗性单克隆抗体,有希望用于治疗侵袭性感染。将该毒力因子的表达水平与GAS侵袭性感染严重程度相关联,有潜力发展为疾病严重程度的评判指标。
     4.中性粒细胞在咽炎感染代表菌株转化成强侵袭性菌株的过程中发挥重要作用。
     有研究报道,某些GAS菌株在小鼠体内传代后,covRS基因可能发生突变。covRS基因突变的菌株不能分泌广谱半胱氨酸蛋白酶(SpeB),因此本文将该类菌株简称为SpeB阴性菌株(SpeB-菌株)。本研究将咽炎代表菌株MGAS2221(SpeB阳性菌株)进行皮下感染,发现随着感染时间的延长,从感染部位分离到的SpeB阴性突变菌株(SpeB-菌株)比例越来越高,具有体内生存优势。体外生长曲线和体内竞争感染实验共同表明SpeB-菌株在体内的生存优势并不是生长速率导致的,而是因为SpeB-菌株在感染部位具有更强的抵抗炎症细胞清除能力。通过RT-PCR方法发现,与MGAS2221相比,SpeB-菌株中spyCEP、hasA和sse等基因的表达水平均显著升高。在小鼠软组织感染模型中证明,与亲本菌株MGAS2221相比,SpeB-菌株具有更强的毒力、中性粒细胞募集抑制能力和侵袭能力。以上结果表明在小鼠体内传代,可以诱导咽炎感染代表菌株MGAS2221“转化”成为具有强中性粒细胞募集抑制能力、强侵袭能力和强毒力的SpeB-菌株。
     为了研究宿主中性粒细胞在该“转化”过程中发挥的作用,本研究采用缺乏中性粒细胞的小鼠进行实验。首先,分别通过抗Gr-1和抗Ly6G的两种单克隆抗体消除正常小鼠感染部位中性粒细胞,两种抗体处理的结果均表明中性粒细胞在该“转化”过程中发挥重要作用。其次,使用中性粒细胞杀伤能力有缺陷的gp91phox-/-基因缺陷型小鼠再次确定中性粒细胞在该“转化”过程中起到重要作用。此外,为了排除炎症单核细胞在该过程中产生的影响,本研究使用炎症单核细胞不能从骨髓进入血液的CCR2-/-基因缺陷型小鼠进行试验,结果表明炎症单核细胞并未对“转化”过程产生影响。
     5.本研究进一步完善了M1T1血清型GAS引起的局部感染向侵袭性感染转化的理论模型。
     (1)在建立感染之初,GAS不仅需要正常的CovRS双组份系统来感应环境变化并迅速调控下游基因表达,同时需要分泌广谱半胱氨酸蛋白酶(SpeB)来破坏机体的第一道屏障(如咽喉或皮肤上皮细胞)。(2)当GAS突破第一道屏障之后,机体在感染部位募集大量中性粒细胞来清除GAS,此时GAS将通过各种免疫逃逸机制来抵抗免疫系统的清除。(3)其中,covRS基因发生突变将使得免疫逃逸相关的因子能够大量表达,因此具有较强的固有免疫逃逸能力,获得了体内生存优势。(4)成功免疫逃逸的GAS进入血液全身性扩散进而导致侵袭性感染发生。
Group A Streptococcus (GAS) is one of the most important human bacterial pathogens. According to the data in2011, it shows that700million of mild, local infection cases occurred worldwide each year, in which650,000cases turn into serious invasive infections (severe systemic infection). One quarter of these invasive infection cases eventually lead to death. GAS can cause relatively mild infections including pharyngitis, acute tonsillitis, scarlet fever, skin infections and impetigo. It can also cause life-threatening invasive infections, such as toxic shock syndrome (TSS) and necrotizing fasciitis. Besides, GAS is also responsible for apyogenous sequelae, such as rheumatic heart disease and acute glomerulonephritis.
     There is currently no commercial vaccine against GAS because of its diverse serotype complexity and vaccine safety concerning. In recent years, there is an increase in cases of scarlet fever and severe systemic infections caused by GAS, which aroused greater concern for streptococcal infections. Despite there have been a lot of researches on virulence factors and pathogenesis of GAS, the pathogenic mechanism of GAS invasive infections and the molecular mechanism how local infections transit to invasive infections are still unclear. Therefore, further study on the mechanism of innate immunity evasion during invasive infections and the phase-switching mechanism could help to discover new anti-infection targets and establish early-stage diagnostic methods of invasive diseases. These progresses will be helpful to prevent and control severe invasive diseases.
     In this study, we selected representative strains of MIT1serotype to elucidate the pathogenesis of invasive infections. M1T1is the serotype which is mostly related with life-threatening conditions, such as streptococcal toxic shock syndrome and necrotizing fasciitis. First, our study found that GAS could inhibit the recruitment of neutrophils to infection sites via regulating the two-component system CovRS, in which way GAS increases the invasive capacity. This explains natural null mutation of CovRS in hypervirulent GAS strain MGAS5005is responsible for the enhancement of its invasiveness and virulence. Second, the importance of three reported factors, which are regulated by CovRS and involved in the inhibition of neutrophil recruitment, in the course of invasive infections are evaluated in invasive infection model. Third, neutrophils play an important role during the course, in which local infections caused by M1T1strains transit to invasive infections. Fourth, the molecular model of local invasive infections caused by M1T1serotype strains switching to invasive infections is further established. The main contents are as follows:
     1. Infection model of invasive infection caused by M1T1GAS strains is established.
     In this study, mice were subcutaneously infected with clinical isolates of invasive representative strain MGAS5005and pharyngitis representative strain MGAS2221to establish the infection model of invasive infection. Compared with pharyngitis representative strain MGAS2221, invasive representative strain MGAS5005displays more virulence and invasive capacity in soft tissue. In addition, the infection sites of MGAS5005was severely lack of recruited neutrophils, which is consistent with clinical manifestation that in cases of severe invasive infections-necrotizing fasciitis, infection sites also lacks of neutrophil. This indicates that the animal model successfully simulates the process of invasive infections, thus it laid the foundation for the study of pathogenesis of invasive infections.
     2. M1T1GAS strains inhibit the neutrophil recruitment to infection sites to increase the invasive ability and virulence via regulation of two-component system CovRS.
     Homologous replacement of natural null covS△1bp in MGAS5005with wild-type covS resulted in MGAS5005wtcovS. In animal infection experiments, MGAS5005wtcovS showed reduced virulence as well as invasive ability. Besides, it enhanced neutrophil ingress to infection sites, where the level of neutrophils was similar to that at MGAS2221sites. On the contrary, MGAS2221△covS mutant showed greatly enhanced virulence and invasion capacity. The level of neutrophils at MGAS2221△covS sites was similar to that at MGAS5005infection sites. Therefore, these results indicate that GAS employs the two-component system CovRS to inhibit neutrophil recruitment in infection sites, in which way increases invasive capacity and virulence. It also explains that covS null mutation is responsible for the enhancement of the inhibition of neutrophil recruitment and virulence in invasive strain MGAS5005. Detecting the mutation state of covRS in patients'infection sites is promising to develop into an auxiliary prediction method of invasive infections.
     3. Streptococcal secreted esterase (SsE) is the critical neutrophil recruitment inhibitor and virulence factor during invasive infections.
     Previous results demonstrated two-component system CovRS is closely related to inhibition of neutrophil recruitment in invasive infections. CovRS functions via regulating down-stream effectors. Interleukin-8/CXC chemokine peptidase (SpyCEP), C5a peptidase (ScpA), and streptococcal secreted esterase (SsE) are reported to be negatively regulated by CovRS and involved in inhibition of neutrophil recruitment during GAS infections. To evaluate and compare the importance of these factors during the invasive infection process, we constructed single mutants, double mutant AspyCEPAscpA, AscpAAsse, AspyCEPAsse and triple mutant△spyCEPAscpAAsse of invasive representative strain MGAS5005. In invasive infection model, comparing the single, double and triple mutants, a total of seven mutants we found that:all of the mutants with sse deletion (including single, double and triple mutants) decreased inhibition capacity of neutrophil recruitment and virulence; on the contrary, AspyCEP, AscpA and AspyCEPAscpA lead to similar overall pathology with parent strain MGAS5005; these three factors have no synergistic effect on inhibition of neutrophil infiltration and virulence enhancement. These results demonstrate that SsE is not only the key factor required for GAS inhibition of neutrophil infiltration during invasive infections, but also an important virulence factor of GAS. Development of drug and therapeutic monoclonal antibodies against SsE is promising for the treatment of invasive infections. Besides, association the expression level of SsE with the invasive infection severity has the potential to develop as an evaluation indicator of disease severity.
     4. Neutrophil plays a critical role during the phase of GAS in vivo transition from pharyngitis strain to invasive strain.
     Some studies reported that covRS spontaneously mutates in some mouse-passaged derivatives, which could not secret streptococcal pyrogenic exotoxin (SpeB). In this study, we refer these strains as SpeB negative (SpeB-) strains. Mice were subcutaneously infected with pharyngitis infection representative strain MGAS2221(SpeB positive). It was discovered that SpeB negative (SpeB-) mutants recovered from infection sites increased with the passage of time, which indicates that SpeB-mutants have survival advantage in infection sites compared to MGAS2221. Based on the result of in vitro growth curve and in vivo competitive growth assay, the survival advantage of SpeB-is not due to a growth advantage but the increasing resistance against inflammatory cells-mediated clearance. By RT-PCR analysis, we found the expression of important factors, such as spyCEP, hasA and sse, increased in SpeB-strains. Compared with MGAS2221, SpeB-strain showed enhanced virulence, capacity of neutrophil recruitment inhibition and invasiveness in mice soft tissue infection model. These results indicate that passage in mice could induce the pharyngitis representative strain MGAS2221to transit into SpeB strain with enhanced capacity of neutrophil recruitment inhibition, invasiveness and virulenc.
     To find the selective pressure favoring the phase-switching, mice model lacking neutrophil is used in this study. First, anti-Gr-1and anti-Ly6G monoclonal antibodies are used to deplete neutrophils in mice infection sites. The results verified that neutrophil involves in the phase-switching process. Second, the results with gp91phox-/-deficient mice, which are defective in neutrophil-mediated killing, further support that neutrophil plays a critical role during the phase of GAS in vivo transition. Besides, to exclude the effect exerted by inflammatory monocytes, CCR2-/-deficient mice, in which inflammatory monocytes could not emigrate to bloodstream from bone marrow, was used. The results showed that inflammatory monocytes didn't contribute critically to this process.
     5. This study improved the theoretical model of local infections caused by M1T1switching to invasive infections
     (1) At the beginning of infection establishment, GAS needs wild type CovRS two-component system to sense environmental change and regulate downstream gene expression, as well as SpeB to destroy the host first barrier (such as the throat or skin epithelial cells).(2) After bacteria break through the first barrier, host will recruit a large number of neutrophils to the infection sites to clear the bacteria. In responding, GAS employs multiple mechanisms to evade from immunity clearance.(3) Partial bacteria mutated in covRS, which leads to increasing expression of.immunity evasion factors. These strains with enhanced capacity of innate immunity evasion take survival advantage in vivo.(4) GAS which succeeds in immunity evasion diffuses into the blood and cause invasive disease.
引文
1. 陈兆鸿,谢永强,邓秋连,万根平.广州地区儿童感染A群链球菌87株的emm基因分型.广东医学,2008,4:22-29
    2. 郝秀红,关淑珍,杜连荣.A群链球菌引起急性扁桃腺炎的暴发流行.海军总医院学报,1998,11:179-180
    3. 俞桑洁.A族链球菌细菌学及其感染的诊断.临床儿科杂志,2006,24:445-446
    4. Aarestrup FM, Rasmussen SR, Artursson K. Trends in the resistance to antimicrobial agents of Streptococcus suis isolates from Denmark and Sweden. Vet Microbiol,1998,63:71-80
    5. Abbot EL, Smith WD, Siou GP, Chiriboga C, Smith RJ, Wilson JA, Hirst BH, Kehoe MA. Pili mediate specific adhesion of Streptococcus pyogenes to human tonsil and skin. Cell Microbiol,2007,9:1822-1833
    6. Ashbaugh CD, Moser TJ, Shearer MH, White GL, Kennedy RC, Wessels MR. Bacterial determinants of persistent throat colonization and the associated immune response in a primate model of human group A streptococcal pharyngeal infection. Cell Microbiol,2000,2:283-292
    7. Ato M, Ikebe T, Kawabata H, Takemori T, Watanabe H. Incompetence of neutrophils to invasive group A Streptococcus is attributed to induction of plural virulence factors by dysfunction of a regulator. PLoS One.2008,3:e34-e55
    8. Aziz RK, Kotb M. Rise and persistence of global M1T1 clone of Streptococcus pyogenes. Emerg Infect Dis,2008,14:1511-1517
    9. Aziz RK, Pabst MJ, Jeng A. Invasive M1T1 group A Streptococcus undergoes a phase-shift in vivo to prevent proteolytic degradation of multiple virulence factors by SpeB. Mol Microbiol,2004,51:123-134
    10. Bakleh M, Wold LE, Mandrekar JN. Correlation of histopathologic findings with clinical outcome in necrotizing fasciitis. Clin Infect Dis,2005,40:410-414
    11. Beachey EH, Seyer JM, Dale JB, Simpson WA, Kang AH. Type-specific protective immunity evoked by synthetic peptide of Streptococcus pyogenes M protein. Nature, 1981,292:457-459
    12. Beall B, Facklam R, ThompsonT. Sequencing emm-specific PCR products for routine and accurate typing of group A Streptococci. J Clin Microbiol,1996,34: 953-958
    13. Ben-Chetrit E, Moses AE, Agmon-Levin N, Block C, Ben-Chetrit E. Serum levels of anti-streptolysin O antibodies:their role in evaluating rheumatic diseases. Int J Rheum Dis,2012,15:78-85
    14. Benveniste J, Henson PM, Cochrane CG Leukocyte-dependent histamine release from rabbit platelets. The role of IgE, basophils, and a platelet-activating factor. J Exp Med,1972,136:1356-1377
    15. Berge A, Sjobring U. A novel plasminogenbinding protein from Streptococcus pyogenes. J Biol Chem,1993,268:25417-25424
    16. Bhakdi S, Tranum-Jensen J, Sziegoleit A. Mechanism of membrane damage by streptolysin-O. Infect Immun,1985,47:52-60
    17. Bisno AL, Stevens DL. Streptococcal infections of skin and soft tissues. N Engl J Med,1996,334:240-245
    18. Bober M, Enochsson C, Collin M, Morgelin M. Collagen VI is a subepithelial adhesive target for human respiratory tract pathogens. J Innate Immun,2010,2: 160-166
    19. Bottaro GB, Iasci P, Lo Giudice M, Mele G, Montanari G, Napoleone E, Santucci A, Tucci PL, Fano M, Biraghi MG.5 days Cefaclor vs.10 days amoxicillin/clavulanate in the treatment of childhood streptococcal pharyngitis. Minerva Pediatr,2012, 64(3):341-346
    20. Bradley PP, Priebat DA, Christensen RD. Measurement of cutaneous inflammation: estimation of rieutrophil content with an enzyme marker. J Investig Dermatol,1982, 78:206-209
    21. Bricker AL, Cywes C, Ashbaugh CD, Wessels MR. NAD+-glycohydrolase acts as an intracellular toxin to enhance the extracellular survival of group A Streptococci. Mol Microbiol,2002,44:257-269
    22. Brinkmann VA, Zychlinsky. Beneficial suicide:why neutrophils die to make NETs. Nat Rev Microbiol,2007,5:577-582
    23. Brinkmann VU, Reichard C, Goosmann B, Fauler Y, Uhlemann DS, Weiss Y, Weinrauch A, Zychlinsky. Neutrophil extra-cellular traps kill bacteria. Science, 2004,303:1532-1535
    24. Buchanan JT, Simpson AJ, Aziz RK, Liu GY, Kristian SA, Kotb M, Feramisco J, Nizet V. DNase expression allows the pathogen group A Streptococcus to escape killing in neutrophil extracellular traps. Curr Biol,2006,16:396-400
    25. Burova L, Pigarevsky P, Seliverstova V, Gupalova T, Schalen C, Totolian A. Experimental poststreptococcal glomerulonephritis elicited by IgG Fc-binding M family proteins and blocked by IgG Fc fragment. APMIS,2012,120:221-230
    26. Campos MA, Vargas MA, Regueiro V, Llompart CM, Alberti S, Bengoechea JA. Capsule polysaccharide mediates bacterial resistance to antimicrobial peptides. Infect Immun,2004,72:7107-7114
    27. Caparon MG, Stevens DS, Olsen A, Scott JR. Role of M protein in adherence of group A Streptococci. Infect Immun,1991,59:1811-1817
    28. Carapetis JR, Steer AC, Mulholland EK, Weber M. The global burden of group A Streptococcal diseases. Lancet Infect Dis,2005,5:685-694
    29. Carlsson F, Berggard K, Stalhammar-Carlemalm M, Lindahl G. Evasion of phagocytosis through cooperation between two ligand-binding regions in Streptococcus pyogenes M protein. JExp Med,2003,198:1057-1068
    30. Chao W, Olson MS. Platelet-activating factor:receptors and signal transduction. Biochem J,1993,292:617-629
    31. Chatellier S, Ihendyane N, Kansal RG, Khambaty F, Basma H, Norrby-Teglund A, Low DE, McGeer A, Kotb M. Genetic relatedness and superantigen expression in group A streptococcus serotype Ml isolates from patients with severe and nonsevere invasive diseases. Infect Immun,2000,68:3523-34
    32. Chaussee MS, Liu J, StevensDL, Ferretti JJ. Genetic and phenotypic diversity among isolates of Streptococcus pyogenes from invasive infections. J Infect Dis, 1996,173:901-908
    33. Chaussee MS, Phillips ER, Ferretti JJ. Temporal production of streptococcal erythrogenic toxin B (streptococcal cysteine" proteinase) in response to nutrient depletion. Infect Immun,1997,65:1956-1959
    34. Chen M, Yao W, Wang X, Li Y, Chen M, Wang G, Zhang X, Pan H, Hu J, Zeng M. Outbreak of scarlet fever associated with emml2 type group A Streptococcus in 2011 in Shanghai, China. Pediatr Infect Dis J.2012,9:158-162
    35. Chiappini N, Seubert A, Telford JL, Grandi G, Serruto D, Margarit I, Janulczyk R. Streptococcus pyogenes SpyCEP influences host-pathogen interactions during infection in amurine air pouchmodel. PloS One,2012,7:e40411
    36. Cockerill FR, Thompson RL, Musser JM, Schlievert PM, Talbot J, Holley KE, Harmsen WS, Ilstrup DM, Kohner PC, Kim MH, Frankfort B, Manahan JM, Steckelberg JM, Roberson F, Wilson WR. Molecular, serological and clinical features of 16 consecutive cases of invasive streptococcal disease. Clin Infect Dis, 1998,26:1448-1458
    37. Cohn AC, Mac Neil JR, Clark TA, Ortega-Sanchez IR, Briere EZ, Meissner HC, Baker CJ, Messonnier NE. Prevention and control of meningococcal disease. MMWR Recomm Rep,2013,62:1-22
    38. Cole JN, Henningham A, Gillen CM, Ramachandran V, Walker MJ. Human pathogenic streptococcal proteomics and vaccine development. Proteomics Clin Appl,2008,2:387-410
    39. Cole JN, Mc Arthur JD, McKay FC, Sanderson-Smith ML, Cork AJ, Ranson M, Rohde M, Itzek A, Sun H, Ginsburg D, Kotb M, Nizet V, Chhatwal GS, Walker MJ. Trigger for group A streptococcal M1T1 invasive disease. FASEB J,2006,20: 1745-1747
    40. Cole JN, Pence MA, VonKockritz-Blickwede M, Hollands A, Gallo RL, Walker MJ, Nizet V. M protein and hyaluronic acid capsule are essential for in vivo selection of covRS mutations characteristic of invasive serotype M1T1 group A Streptococcus. Mbio,2010,1(4):e00191-10.
    41. Cone LA, Woodard DR, Schlievert PM, Tomory GS. Clinical and bacteriologic observations of a toxic-shock like syndrome due to Streptococcus pyogenes. N Engl JMed,1987,317:146-149
    42. Cork AJ, Jergic S, Hammerschmidt S, Kobe B, Pancholi V, Benesch JL, Robinson CV, Dixon NE, Aquilina JA, Walker MJ. Defining the structural basis of human plasminogen binding by streptococcal surface enolase. J Biol Chem,2009,284: 17129-17137
    43. Courtney HA, Hasty DL, Dale JB, Poirer TP. A 29-kilodalton fibronectin binding protein of group A Streptococci. Curr Microbiol,1992b,25:245-250
    44. Courtney HS, Dale JB, Hasty DL. Strategies for prevention of group A streptococcal adhesion and infection. Totowa:Humana Press,1999.553-579
    45. Courtney HS, Li Y, Dale JB, Hasty DL. Cloning, sequencing and expression of a fibronectin/fibrinogen-binding protein from group A Streptococci. Infect Immun, 1994,62:3937-3946
    46. Courtney HS, Von Hunolstein C, Dale JB, Bronze MS, Beachey EH, Hasty DL. Lipoteichoic acid and M protein:dual adhesins of group A Streptococci. Microb Pathog,1992,12:199-208
    47. Crater DL, Van de Rijn I. Hyaluronic acid synthesis operon (has) expression in group A Streptococci. J Biol Chem,1995,270:18452-18458
    48. Cue C, Dombek PE, Lam H, Cleary PP. Streptococcus pyogenes serotype M1 encodes multiple pathways for entry into human epithelial cells. Infect Immun,1998, 66:4593-4601
    49. Cunningham MW. Pathogenesis of group A streptococcal infections. Clin Microbiol Rev,2000,13:470-511
    50. Cunningham MW. Streptococcus and rheumatic fever. Curr Opin Rheumatol,2012, 24:408-416
    51. Dale JB, Baird RW, Courtney HS. Passive protection of mice against group A streptococcal pharyngeal infection by lipoteichoic acid. J Infect Dis,1994,169: 319-323
    52. Dale J, Washburn R, Marques M, Wessels M. Hyaluronate capsule and surface M protein inresistance to opsonization of group A Streptococci. Infect Immun,1996, 64:1495-1501
    53. Datta V, Myskowski SM, Kwinn LA, Chiem DN, Varki N, Kansal RG, Kotb M, Nizet V. Mutational analysis of the group A streptococcal operon encoding streptolysin S and its virulence role in invasive infection. Mol Microbiol,2005,56: 681-695
    54. Deutscher M, Lewis M, Zell ER, Taylor TH Jr, Van Beneden C, Schrag S. Incidence and severity of invasive Streptococcus pneumoniae, group A Streptococcus, and group B Streptococcus infections among pregnant and postpartum women. Clin Infect Dis.2011,53:114-23
    55. Dhanda V, Vohra H, Kumar R. Virulence potential of Group A Streptococci isolated from throat cultures of children from north India. Indian J Med Res.2011,133: 674-80
    56. Edwards RJ, Taylor GW, Ferguson M, Murray S, Rendell N, Wrigley A, Bai Z, Boyle J, Finney SJ, Jones A, Russell HH, Turner C, Cohen J, Faulkner L, Sriskandan S. Specific C-terminal cleavage and inactivation of interleukin-8 by invasive disease isolates of Streptococcus pyogenes. J Infect Dis,2005,192: 783-790
    57. Ellen RP, Gibbons RJ. M protein-associated adherence of Streptococcus pyogenes to epithelial surfaces:prerequisite for virulence. Infect Immun,1972,5:826-830
    58. Ellis NM, Kurahara DK, Vohra H, Mascaro-Blanco A, Erdem G, Adderson EE, Veasy LG, Stoner JA, Tam E, Hill HR, Yamaga K, Cunningham MW. Priming the immune system for heart disease:a perspective on group A Streptococci. J Infect Dis, 2010,202:1059-67
    59. Endorf FW, Cancio LC, Klein MB. Necrotizing soft-tissue infections:clinical guidelines. JBurn Care Res,2009,30:769-75
    60. Engleberg NC, Heath A, Miller A, Rivera C, DiRita VJ. Spontaneous mutations in the CsrRS two-component regulatory system of Streptococcus pyogenes result in enhanced virulence in a murine model of skin and soft tissue infection. J Infect Dis, 2001,183:1043-1054
    61. Engleberg NC, Heath A, Vardaman K, DiRita VJ. Contribution of CsrR-regulated virulence factors to the progress and outcome of murine skin infections by Streptococcus pyogenes. Infect Immun,2004,72:623-628
    62. Eriksson A, Norgren M. Cleavage of antigen-bound immunoglobulin G by SpeB contributes to streptococcal persistence in opsonizing blood. Infect Immun,2003,71: 211-217
    63. Ertugrul BM, Erol N, Emek M, Ozturk B, Saylak OM, Cetin K, Sakarya S. Food-borne tonsillopharyngitis outbreak in a hospital cafeteria. Infection,2012,40: 49-55
    64. Facklam RR. Screening for streptococcal pharyngitis:current technology. Infect Med,1997,14:891-898
    65. Fast DJ, Schliever PM, Nelson RD. Toxic shock syndrome-associated staphylococcal and streptococcal pyrogenic toxins are potentinducers of tumor necrosis factor production. Infect Immun,1989,57:291-294
    66. Federle MJ, McIver KS, Scott JR. A response regulator that represses transcription of several virulence operons in the group A Streptococcus. J Barter iol,1999,181: 3649-3657
    67. Fernie-King BA, Seilly DJ, Davies A, Lachmann PJ. Streptococcal inhibitor of complement inhibits two additional components of the mucosal innate immune system:secretory leukocyte proteinase inhibitor and lysozyme. Infect Immun,2002, 70:4908-4916
    68. Fernie-King BA, Seilly DJ, Lachmann PJ. The interaction of streptococcal inhibitor of complement (SIC) and its proteolytic fragments with the human beta defensins. Immunology,2004,111:444-452
    69. Fernie-King BA, Seilly DJ, Willers C, Wurzner R, Davies A, Lachmann PJ. Streptococcal inhibitor of complement (SIC) inhibits the membrane attack complex by preventing uptake of C567 onto cell membranes. Immunology,2010,103: 390-398
    70. Ferretti JJ, McShan WM, Ajdic D, Savic DJ, Savic G, Lyon K, Primeaux C, Sezate S, Suvorov AN, Kenton S, Lai HS, Lin SP, QianY, Jia HG, Najar FZ, Ren Q, Zhu H, SongL, White J, Yuan X, Clifton SW, Roe BA, McLaughlin R. Complete genome sequence of an M1 strain of Streptococcus pyogenes. Proc Natl Acad Sci USA,2001, 98:4658-4663
    71. Fischetti VA. Streptococcal M protein:molecular design and biological behavior. Clin Microbiol Rev,1989,2:285-314
    72. Gerlach D, Schalen C, Tigyi Z, Nilsson B, Forsgren A, Naidu AS. Identification of a novel lectin in Streptococcus pyogenes and its possible role in bacterial adherence to pharyngeal cells. Curr Microbiol,1994,28:331-338
    73. Gooskens J, Neeling AJ, Willems RJ, Wout JW, Kuijper EJ. Streptococcal toxic shock syndrome by an iMLS resistant M type 77. Streptococcus pyogenes in the Netherlands. Scand J Infect Dis,2005,37:85-89
    74. Gordon DB, DeGirolami PC, Bolivar S, Karafotias G, Eichelberger K. A comparison of the identification of group A Streptococci and enterococci by two rapid pyrrolidonyl aminopeptidase methods. Am J Clin Pathol,1988,90:210-212
    75. Graham MR, Virtaneva K, Porcella SF, Barry WT, Gowen BB, Johnson CR, Wright FA, Musser JM. Group A Streptococcus transcriptome dynamics during growth in human blood reveals bacterialadaptive and survival strategies. Am J Pathol,2005, 166:455-465
    76. Gryllos IH, Tran-Winkler J, Cheng MF, Chung H, Bolcome Ⅲ R, Lu W, Lehrer RI, Wessels MR. Induction of group A Streptococcus virulence by a human antimicrobial peptide. Proc Natl Acad Sci USA,2008,105:16755-16760
    77. Gubba SD, Low E, Musser JM. Expression and characterization of group A Streptococcus extracellular cysteine protease recombinant mutant proteins and documentation of seroconversion during human invasive disease episodes. Infect Immun,1998,66:765-770
    78. Guilherme L, Ferreira FM, Kohler KF, Postol E, Kalil J. A vaccine against Streptococcus pyogenes:the potential to prevent rheumatic fever and rheumatic heart disease. Am J Cardiovasc Drugs,2013,13:1-4
    79. Gurol Y, Akan H, Izbirak G, Tekkanat ZT, Gunduz TS, Hayran O, Yilmaz G The sensitivity and the specifity of rapid antigen test in streptococcal upper respiratory tract infections. IntJPediatr Otorhinolaryngol,2010,74:591-593
    80. Hakansson A, Bentley CC, Shakhnovic EA, Wessels MR. Cytolysin-dependent evasion of lysosomal killing. Proc Natl Acad Sci USA,2005,102:5192-5197
    81. Hanski E, Caparon MG, Protein F, a fibronectin-bindingprotein, is an adhesin of the group A Streptococcus. Proc Natl Acad Sci USA,1992,89:6172-6176
    82. Hasty DL, Ofek I, Courtney HS, Doyle RJ. Multiple adhesins of Streptococci. Infect Immun,1992,60:2 147-2152
    83. Heath A, Di Rita VJ, Barg NL, Engleberg NC. A two-component regulatory system CsrR-CsrS represses expression of three Streptococcus pyogenes virulence factors, hyaluronic acid capsule, streptolysin S, and pyrogenic exotoxin B. Infect Immun, 1999,67:5298-5305
    84. Henningham A, Barnett TC, Maamary PG, Walker MJ. Pathogenesis of group A streptococcal infections. Discov Med,2012,13:329-42
    85. Henningham A, Gillen CM, Walker MJ. Group a streptococcal vaccine candidates: potential for the development of a human vaccine. Curr Top Microbiol Immunol, 2013,368:207-42
    86. Herwald H, Cramer H, Morgelin M, Russell W, Sollenberg U, Norrby-Teglund A, Flodgaard H, Lindbom L, Bjorck L. M protein, a classical bacterial virulence determinant, forms complexes with fibrinogen that induce vascular leakage. Cell, 2004,116:367-79
    87. Hidalgo-Grass C, Mishalian I, Dan-Goor M, Belotserkovsky I, Eran Y, Nizet V, Peled A, Hanski E. A streptococcal protease that degrades CXC chemokines and impairs bacterial clearance from infected tissues. EMBO J,2006,25:4628-4637
    88. Horstmann N, Sahasrabhojane P, Suber B, Kumaraswami M, Olsen RJ, Flores A, Musser JM, Brennan RG, Shelburne SA. Distinct single amino acid replacements in the control of virulence regulator protein differentially impact streptococcal pathogenesis. PloS Pathog,2011,7:e1002311
    89. Horstmann R, Sievertsen H, Leippe M, Fischetti V. Role of fibrinogen in complement inhibition by streptococcal M protein. Infect Immun,1992,60: 5036-5041
    90. Hotomi M, Billal DS, Shimada J, Yamauchi K, Fujihara K, Yamanaka N. Current status of antimicrobial susceptibility of clinical isolates of Streptococcus pyogenes in Japan:report of a countrywide surveillance study. J Infect Chemother,2005,11: 48-51
    91. Hung CH, Tsao N, Zeng YF, Lu SL, Chuan CN, Lin YS, Wu JJ, Kuo CF. Synergistic effects of streptolysin S and streptococcal pyrogenic exotoxin B on the mouse model of group A streptococcal infection. Med Microbiol Immunol,2012, 201:357-69
    92. Hytonen J, Haataja S, Gerlach D, Podbielski A, Finne J. The SpeB virulence factor of Streptococcus pyogenes, a multifunctional secreted and cell surface molecule with strepadhesin, laminin-binding and cysteine protease activity. Mol Microbiol, 2001,39:512-519
    93. Ikebe T, Ato M, Matsumura T, Hasegawa H, Sata T, Kobayashi K, Watanabe H. Highly frequent mutations in negative regulators of multiple virulence genes in group A streptococcal toxic shock syndrome isolate. PloS Pathog,2010,6: e1000832
    94. Jadoun J, Ozeri V, Burstein E, Skutelsky E, Hanski E, Sela S. Protein F1 is required for efficient entry of Streptococcus pyogenes into epithelial cells. J Infect Dis,1998, 178:147-158
    95. Ji Y, Carlson B, Kondagunta A, Cleary PP. Intranasal immunization with C5a peptidase prevents nasopharyngeal colonization of mice by the group A Streptococcus. Infect Immun,1997,65:2080-2087
    96. Ji Y, McLandsborough L, Kondagunta A, Cleary PP. C5a peptidase alters clearance and trafficking of group A streptococci by infected mice. Infect Immun,1996,64: 503-510
    97. Jin H, Zhou R, Kang M, Luo R, Cai X, Chen H. Biofilm formation by field isolates and reference strains of Haemophilus parasuis. Vet Microbiol,2006,118:117-23
    98. Johnson DR, Kaplan EL, VanGheem A, Facklam RR, Beall B. Characterization of group A Streptococci (Streptococcus pyogenes):correlation of M-protein and emm-gene type with T-protein agglutination pattern and serum opacity factor. J Med Microbiol,2006,55:157-64
    99. Johnson DR, Stevens DL, Kaplan EL. Epidemiologic analysis of group A streptococcal serotypes associated with severe systemic infections, rheumatic fever, or uncomplicated pharyngitis. J Infect Dis,1992,166:374-82
    100. Jones KF, Schneewind O, Koomey JM, Fischetti VA. Genetic diversity among the T-protein genes of group A Streptococci. Mol Microbiol,1991,5:2947-2952
    101. Kambham N. Postinfectious glomerulonephritis. Adv Anat Pathol,2012,19:338-47
    102.Kansal R, McGeer GA, Low DE, Norrby-Teglund A, Kotb M. Inverse relation between disease severity and expression of the streptococcal cysteine protease, SpeB, among clonal M1T1 isolates recovered from invasive group A streptococcal infection cases. Infect Immun,2000,68:6362-6369
    103. Kapur V, Majesky MW, Li LL, Black RA, Musser JM. Kapur V, Majesky MW, Li LL, Black RA, Musser JM. Cleavage of interleukin 1 beta (IL-1 beta) precursor to produce active IL-1 beta by a conserved extracellular cysteine protease from Streptococcus pyogenes. Proc Natl Acad Sci USA,1993,90:7676-80
    104. Kapur V, Topouzis S, Majesky MW, Li LL, Hamrick MR, Hamill RJ, Patti JM, Musser JM. A conserved Streptococcus pyogenes extracellular cysteine protease cleaves human fibronectin and degrades vitronectin. Microb Pathog,1993,15: 327-46
    105.Koneman EW, Allen SD, Janda WM, Schreckenberger PC, Winn WC. Color atlas and textbook of diagnostic microbiology,5th ed. Lippincott-Raven Publishers, Philadelphia, Pa.1997
    106. Kreikmeyer B, Talay SR, Chhatwal GS. Characterization of a novel fibronectin-binding surface protein in group A Streptococci. Mol Microbiol,1995,17:137-145
    107.Kurupati P, Turner CE, Tziona I, Lawrenson RA, Alam FM, Nohadani M, Stamp GW, Zinkernagel AS, Nizet V, Edwards RJ, Sriskandan S. Chemokine-cleaving Streptococcus pyogenes protease SpyCEP is necessary and sufficient for bacterial dissemination within soft tissues and the respiratory tract. Mol Microbiol,2010,76: 1387-1397
    108.Kwinn LA, Khosravi A, Aziz RK, Timmer AM, Doran KS, Kotb M, Nizet V. Genetic characterization and virulence role of the RALP3/LSA locus upstream of the streptolysin S operon in invasive M1T1 group A Streptococcus. J Bacteriol, 2007,189:1322-1329
    109. Lancefield RC. Current knowledge of type-specific M antigens of group A Streptococci. J Immunol,1962,89:307-313
    110.LaPenta D, Rubens C, Chi E, Cleary PP. Group A Streptococci efficiently invade human respiratory epithelial cells. Proc. Natl Acad Sci USA,1994,91: 12115-12119
    111. Lauth X, Von Kockritz-Blickwede M, McNamara CW, Mys-kowski S, Zinkernagel AS, Beall B, Ghosh P, GalloRL, Nizet V. M1 protein allows group A streptococcal survival in phagocyte extracellular traps through cathelicidin inhibition. J Innate Immun,2009,1:202-214
    112. Lei B, De Leo FR, Hoe NP, Graham MR, Mackie SM, Cole RL, Liu M, Hill HR, Low DE, Federle MJ, Scott JR, Musser JM. Evasion of human innate and acquired immunity by a bacterial homolog of CD11b that inhibits opsonophagocytosis. Nature Med,2001,7:1298-1305
    113.Levy M, Johnson CG, Kraa E. Tonsillopharyngitis caused by food borne group A Streptococcus:a prison-based outbreak. Clin Infect Dis,2003,36:175-82
    114.Lijnen HR, Bachmann F, Collen D, Ellis V, Pannekoek H, Rijken DC, Thorsen S. Mechanisms of plasminogen activation. J Intern Med,1994,236:415-424
    115.Lindberg LH, Vosti KL. Elution of glomerular bound antibodies in experimental streptococcal glomerulonephritis. Science,1969,166:1032-1033
    116. Liu M, Hanks TS, Zhang J, McClure MJ, Siemsen DW, Elser JL, Quinn MT, Lei B. Defects in ex vivo and in vivo growth and sensitivity to osmotic stress of group A Streptococcus caused by interruption of response regulator gene vicR. Microbiology, 2006,152:967-978
    117. Liu M, Zhu H, Li J, Garcia CC, Feng W, Kirpotina LN, Hilmer J, Tavares LP, Layton AW, Quinn MT, Bothner B, Teixeira MM, Lei B. Group A Streptococcus secreted esterase hydrolyzes platelet-activating factor to impede neutrophil recruitment and facilitate innate immune evasion. PloS Pathog,2012,8:e1002624
    118. Liu M, Zhu H, Zhang J, Lei B. Active and passive immunizations with the streptococcal esterase Sse protect mice against subcutaneous infection with group A streptococci. Infect Immun,2007,75:3651-3657
    119. Liu S, Li J, Peng XM, Yang P, Zhang DT, Wu SS, Cui SJ, Liu YM, Wang QY. Characteristics and related factors related to the resistance on antibiotics among group A Streptococcus strains isolated from children in Beijing. Zhonghua Liu Xing BingXue Za Zhi,2011,33:1133-1138
    120.Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods,2001,25:402-8
    121.Lottenberg R, Minning-Wenz D, Boyle MD. Capturing host plasmin(ogen):a common mechanism for invasive pathogens? Trends Microbiol,1994,2:20-24
    122.Loughman JA, Caparon M. Regulation of SpeB in Streptococcus pyogenes by pH and NaCl:a model for invivo gene expression. JBacteriol,2006,188:399-408
    123.Luk EY, Lo JY, Li AZ, Lau MC, Cheung TK, Wong AY, Wong MM, Wong CW, Chuang SK, Tsang T. Scarlet fever epidemic, Hong Kong,2011. Emerg Infect Dis, 2012,18:1658-1661
    124.Lukomski S, Montgomery CA, Rurangirwa J, Geske RS, Barrish JP, Adams GJ, Musser JM. Extracellular cysteine protease produced by Streptococcus pyogenes participates in the pathogenesis of invasiveskin infection and dissemination in mice. Infect Immun,1999,67:1779-1788
    125.Maamary PG, Sanderson-Smith ML, Aziz RK, Hollands A, Cole JN, McKay FC, McArthur JD, Kirk JK, Cork AJ, Keefe RJ, Kansal RG, Sun H, Taylor WL, Chhatwal GS, Ginsburg D, Nizet V, Kotb M, Walker MJ. Parameters governing invasive disease propensity of non-Mi serotype group A Streptococci. J Innate Immun,2010,2:596-606
    126. Madden JC, Ruiz N, Caparon M. Cytolysin mediated translocation (CMT):a functional equivalent of typeⅢ secretion in Gram-positive bacteria.Cell,2001,104: 143-152
    127. Manetti AG, Zingaretti C, Falugi F, Capo S, Bombaci M, Bagnoli F, Gambellini G, Bens iG, Mora M, Edwards AM, Musser JM, Graviss EA, Telford JL, Grandi G, Margarit I. Streptococcus pyogenes pili promote pharyngeal cell adhesion and biofilm formation. Mol Microbiol,2007,64:968-983
    128.Marouni MJ, Sela S. The luxS gene of Streptococcus pyogenes regulates expression of genes that affect internalization by epithelial cells. Infect Immun,2003,71: 5633-5639
    129. Martin J, Kaul A, Schacht R. Acute poststreptococcal glomerulonephritis:a manifestation of immune reconstitution inflammatory syndrome. Pediatrics,2012, 130:e710-e713
    130. Matthys J, De Meyere M. Clinical scores to predict streptococcal pharyngitis: believers and nonbelievers. JAMA Intern Med,2013,173:77-78
    131. Ma Y, Bryant AE, Salmi DB, Hayes-Schroer SM, McIndoo E, Aldape MJ, Stevens DL. Identification and characterization of bicistronic speB and prsA gene expression in the group A Streptococcus. JBacteriol,2006,188:7626-7634
    132.McIver KS, Heath AS, Green BD, Scott JR. Specific binding of the activator Mga to promoter sequences of the emm and scpA genes in the group A Streptococcus. J Bacteriol,1995,177:6619-6624
    133.McKay FC, McArthur JD, Sanderson-Smith ML, Gardam S, Currie BJ, Sriprakash KS, Fagan PK, Towers RJ, Batzloff MR, Chhatwal GS, Ranson M, Walker MJ. Plasminogen binding by group A streptococcal isolates from a region of hyperendemicity for streptococcal skin infection and a high incidence of invasive infection. Infect Immun,2004;72:364-70
    134.Metzgar D, Zampolli A. The M protein of group A Streptococcus is a key virulence factor and a clinically relevant strain identification marker. Virulence,2011,2: 402-12
    135.Michos A, Gryllos I, Hakansson A, Srivastava A, Kokkotou E, Wessels MR. Enhancement of streptolysin O activity and intrinsic cytotoxic effects of the group A streptococcal toxin, NAD-glycohydrolase. JBiol Chem,2006,281:8216-8223
    136.Middleton J, Neil S, Wintle J, Clark-Lewis I, Moore H, Lam C, Auer M, Hub E, Rot A. Transcytosis and surface presentation of IL-8 by venular endothelial cells. Cell,1997,91:385-395
    137.Miyoshi-Akiyama T, Ikebe T, Watanabe H, Uchiyama T, Kirikae T, Kawamura Y. Use of DNA arrays to identify a mutation in the negative regulator, csrR, responsible for the high virulence of a naturally occurring type M3 group A streptococcus clinical isolate. J Infect Dis,2006,193:1677-1684
    138. Miyoshi-Akiyama T, Takamatsu D, Koyanagi M, Zhao J, Imanishi K, Uchiyama T. Cytocidal effect of Streptococcus pyogenes on mouse neutrophils in vivo and the critical role of streptolysin S. J Infect Dis,2005,192:107-116
    139.Molinari GS, Chhatwal GS. Invasion and survival of Streptococcus pyogenes in eukaryotic cells correlates with the source of the clinical isolates. J Infect Dis,1998, 177:1600-1607
    140.Molinari GS, Talay R, Valentin-Weigand P, Rohde M, Chhatwasl GS. The fibronectin-binding protein of Streptococcus pyogenes, SfbI, is involved in the internalization of group A Streptococci by epithelial cells. Infect Immun,1997,65: 1357-1363
    141. Mora M, Bensi G, Capo S, Falugi F, Zingaretti C, Manetti AG, Maggi T, Taddei AR, Grandi G, Telford JL. Group A Streptococcus produce pilus-like structures containing protective antigensand Lancefield T antigens. Proc Natl Acad Sci USA, 2005,102:15641-15646
    142. Morandi PA, Kesseler D, Deom A. Performances of rapid antigen detection kits for group A Streptococcus. Rev Med Suisse,2010,6:358-360
    143. Moses A, Wessels M, Zalcman K, Alberti S, Natanson-Yaron S, Menes T, Hanski E. Relative contributions of hyaluronic acidcapsule and M protein to virulence in a mucoid strain of the group A Streptococcus. Infect Immun,1997,65:64-71
    144.Nizet V, Beall B, Bast DJ, Datta V, Kilburn L, Low DE, De Azavedo JC. Genetic locus for streptolysin S production by group A Streptococcus. Infect Immun,2000, 68:4245-4254
    145.Nobbs AH, Lamont RJ, Jenkinson HF, Streptococcus Adherence and Colonization. Microbiol Mol Biol Rev,2009,73:407-50
    146.Norrby-Teglund A, Lustig R, Kotb M. Differential induction of Thl versus Th2 cytokines by group A streptococcal toxic shock syndrome isolates. Infect Immun, 1997,65:5209-15
    147.Norte A, Santos C, Gamboa F, Ferreira AJ, Marques A, Leite C, Robalo Cordeiro C. Necrotizing pneumonia-a rare complication. Acta Med Port,2012,25:51-55
    148. Okada N, Liszewski M, Atkinson J, Caparon M. Membrane cofactor protein (CD46) is a keratinocyte receptor for the M protein of the group A Streptococcus. Proc Natl Acad Sci USA,1995,92:2489-2493
    149.Oldmann O, Sastalla I, Wos-Oxley M, Rohde M, Medina E. Streptococcus pyogenes induces oncosis in macrophages through theactivation of an inflammatory programmed cell death pathway. Cell Microbiol,2009,11:138-155
    150.O'Loughlin RE, Roberson A, Cieslak PR, Lynfield R, Gershman K, Craig A, Albanese BA, Farley MM, Barrett NL, Spina NL, Beall B, Harrison LH, Reingold A, Van Beneden C. The epidemiology of invasive group A streptococcal infection and potential vaccine implications:United States. Clin Infect Dis,2007,45:853-862
    151. Olsen RJ, Musser JM. Molecular pathogenesis of necrotizing fasciitis. Annu Rev Pathol,2010,5:1-31
    152.Osaki M, Takamatsu D, Shimoji Y, Sekizaki T. Allelic variation in srtAs of Streptococcus suis strains. FEMS Microbiol Let,2003,219:195-201
    153.Osterlund A, Popa R, Nikkila T, Scheynium A, Engstrand L. Intracellular reservoir of Streptococcus pyogenes in vivo:a possible explanation for recurrent pharyngotonsillitis. Laryngoscope,1997,107:640-647
    154.Ozeri V, Rosenshine I, Mosher DF, Fassler R, Hanski E. Roles of integrins and fibronectin in the entry of Streptococcus pyogenes into cells via protein F1. Mol Microbiol,1998,30:625-637
    155.Pancholi V, Fischetti V. A major surface protein on group A Streptococci is a glyceraldehyde-3-phosphate-dehydrogenase with multiple binding activity. J Exp Med,1992,176:415-426
    156. Pavone P, Parano E, Rizzo R, Trifiletti RR. Autoimmune neuropsychiatric disorders associated with streptococcal infection:Sydenham chorea, PANDAS, and PANDAS variants. J Child Neurol,2006,21:727-736
    157.Perez-Casal J, Caparon MG, Scott JR. Introduction of the emm6 gene into an emm-deleted strain of Streptococcus pyogenes restores its ability to resist phagocytosis. Res Microbiol,1992,143:549-558
    158.Perez-Casal J, Okada N, Caparon MG, Scott JR. Role ofthe conserved C-repeat region of the M protein of Streptococcus pyogenes. Mol Microbiol,1995,15: 907-916
    159.Pichichero ME. The rising incidence of penicillin treatment failures in group A streptococcal tonsillopharyngitis:an emerging role for the cephalosporins? Pediatr Infect Dis J,1991,10:S50-S55
    160.Proft T, Moffatt SL, Berkahn CJ, Fraser JD. Identificationand characterization of novel superantigens from Streptococcus pyogenes. JExp Med,1999,189:89-102
    161.Raeder R, Woischnik M, Podbielski A, Boyle MD. A secreted streptococcal cysteine protease can cleave a surface-expressed M1 protein and alter the immunoglobulin binding properties. Res Microbiol,1998,149:539-548
    162.Raithatha AH, Bryden DC. Use of intravenous immunoglobulin therapy in the treatment of septic shock, in particular severe invasive group A streptococcal disease. Indian J Crit Care Med,2012,16:37-40
    163.Ralph AP, Carapetis JR. Group a streptococcal diseases and their global burden. Curr Top Microbiol Immunol,2013,368:1-27
    164.Rashid T, Ebringer A. Autoimmunity in Rheumatic Diseases Is Induced by Microbial Infections via Crossreactivity or Molecular Mimicry. Autoimmune Dis, 2012,53:92-102
    165.Razi-Syed S, Jafri SZ. Necrotizing fasciitis and myositis:a case report. Comput Med Imaging Graph,1994,18:213-216
    166. Rubinsky-Elefant G, Hoshino-Shimizu S, Mamizuka EM, Asciutti MM. Improvement of the indirect hemagglutination test for the detection of antibodies to Streptococcus pyogenes. Braz J Med Biol Res,1998,31:1081-1089
    167. Sanderson-Smith ML, Dinkla K, Cole JN, Cork AJ, Maamary PG, McArthur JD, Chhatwal GS, Walker MJ. M protein-mediated plasminogen binding is essential for the virulence of an invasive Streptococcus pyogenes isolate. FASEB J,2008: 2715-2722
    168. Schafer R, Sheil JM. Superantigens and their role in infectious disease. Adv Pediatr Infect Dis,1995,10:369-390
    169.Schrager HM, Alberti S, Cywes C, Dougherty GJ, Wessels MR. Hyaluronic acid capsule modulates M protein-mediated adherence and acts as a ligand for attachment of group A Streptococcus to CD44 on human keratinocytes. J Clin Investig,1998,101:1708-1716
    170. Shaw JO, Pinckard RN, Ferrigni KS, McManus LM, Hanahan DJ. Activation of human neutrophils with 1-O-hexadecyl/octadecyl-2-acetyl-sn-glycerol-3-phosphoryl choline (platelet activating factor). J Immunol,1981,127:1250-1255
    171.Shevelev BI, Briko NI, Kuksiuk PP, Iakovlev AA. Enzyme immunoassay test system for detection of antibodies to Streptococcus pyogenes group-specific A polysaccharide in blood droplets on paper. Klin Lab Diagn,1994,4:37-39
    172.Shikhman AR, Cunningham MW. Immunological mimicry between N-acetyl-beta-D-glucosamine and cytokeratin peptides:evidence for a microbially driven anti-keratin antibody response. J Immunol,1994,152:4375-4387
    173.Shlaes DM, Toossi Z, Patel A. Comparison of latex agglutination and immunofluorescence for direct Lancefield grouping of Streptococci from blood cultures. J Clin Microbiol,1984,20:195-198
    174. Shulman ST, Bisno AL, Clegg HW, Gerber MA, Kaplan EL, Lee G. et al. Clinical practice guideline for the diagnosis and management of group a streptococcal pharyngitis:2012 update by the infectious diseases society of America. Clin Infect Dis,2012,55:e86-e102
    175. Shulman ST, Tanz RR, Kabat W, Kabat K, Cederlund E, Patel D, Li Z, Sakota V, Dale JB, Beall B. Group A streptococcal pharyngitis serotype surveillance in North America,2000-2002. Clin Infect Dis,2004,39:325-332
    176. Siemsen DW, Schepetkin IA, Kirpotina LN, Lei B, Quinn MT. Neutrophil isolation from nonhuman species. Methods Mol Biol,2007,412:21-34
    177. Sierig G, Cywes C, Wessels MR, Ashbaugh CD. Cytotoxic effects of streptolysin O and streptolysin S enhance the virulence ofpoorly encapsulated group A Streptococci. Infect Immun,2003,71:446-455
    178. Simmons TL. Rash and fever in a school-aged child. Pediatr Nurs,2012,38: 289-290
    179. Simpson WA, Beachey EH. Adherence of group A Streptococci to fibronectin on oral epithelial cells. Infect Immun,1983,39:275-279
    180. Smeets L, Bous A, Heymans O. Necrotizing fasciitis:case report and review of literature. Acta Chir Belg,2007,107:29-36
    181.Smoot LM, Me Cormick JK, Smoot JC, Hoe NP, Strickland I, Cole RL, Barbian KD, Earhart CA, Ohlendorf DH, VeasyL G, Hill HR, Leung DY, Schlievert PM, Musser JM. Characterization of two novel pyrogenic toxin superantigens made by an acute rheumatic fever clone of Streptococcus pyogenes associated with multiple disease outbreaks. Infect Immun,2002,70:7095-7104
    182. Stafforini DM, McIntyre TM, Zimmerman GA, Prescott SM. Platelet-activating factor acetylhydrolases. J Biol Chem,1997,272:17895-17898
    183.Staszewska E, Kondej B, Czarkowski MP. Scarlet fever in Poland in 2010. Przegl Epidemiol,2012,66:215-220
    184. Steer AC, Danchin MH, Carapetis JR. Group A streptococcal infections in children. J Paediatr Child Health,2007;43:203-13
    185. Steer AC, Law I, Matatolu L, Beall BW, Carapetis JR. Global emm type distribution of group A Streptococci:systematic review and implications for vaccine development. Lancet Infect Dis,2009,9:611-616
    186. Stevens DL. Group A streptococcal sepsis. Curr Infect Dis Rep,2003,5:379-386.
    187. Stevens DL, Tanner MH, Winship J, Swarts R, Ries KM, Schlievert PM, Kaplan E. Severe group A streptococcal infections associated with a toxic shock-like syndrome and scarlet fever toxin A. NEngl JMed,1989,321:1-8
    188.Stollerman GH. Rheumatic fever. Lancet,1997,349:935-942.-
    189.Sumby P, Barbian KD, Gardner DJ, Whitney AR, WeltyDM, LongRD, BaileyJR, ParnellMJ, Hoe NP, Adams GG, DeLeo FR, Musser JM. Extracellular deoxyribonuclease made by group A Streptococcus assists pathogenesis by enhancing evasion of the innate immune response. Proc Natl Acad Sci USA,2005, 102:1679-1684
    190.Sumby P, Porcella SF, Madrigal AG, Barbian KD, Virtaneva K, Ricklefs SM, Sturdevant DE, Graham MR, Vuopio-Varkila J, Hoe NP, Musser JM. Evolutionary origin and emergence of a highly successful clone of serotype M1 group A Streptococcus involved multiple horizontal gene transfer events. J Infect Dis,2005, 192:771-782
    191. Sumby P, Whitney AR, Gravis EA, DeLeo FR, Musser JM. Genome-wide analysis of group a Streptococci reveals a mutation that modulates global phenotype and disease specificity. PloS Pathog,2006,2:e5
    192. Sumby P, Zhang S, Whitney AR, Falugi F, Grandi G, Graviss EA, Deleo FR, Musser JM. A chemokine-degrading extracellular protease made by group A Streptococcus alters pathogenesis by enhancing evasion of the innate immune response. Infect Immun,2008,76:978-985
    193. Sumitomo T, Nakata M, Higashino M, Jin Y, Terao Y, Fujinaga Y, Kawabata S. Streptolysin S contributes to group A streptococcal translocation across an epithelial barrier. JBiol Chem,2011,286:2750-2761
    194. Sun H, Ringdahl U, Homeister JW, Fay WP, Engleberg NC, Yang LS, Rozek X, Wang AY, Sjo U, Ginsburg D. Plasminogen is a critical host pathogenicity factor for group A streptococcal infection. Science,2004,305:1283-1286
    195.Suvorov A, Kok J, Venema G, Transformation of group A streptococci by electroporation. FEMS Microbiol Lett,1988,56:95-100
    196. Switalski L, Speziale P, Hook M, Waldstrom T, Timpl R. Binding of Streptococcus pyogenes to laminin. J Biol Chem,1984,259:373-374.
    197. Taylor FB, Bryant AE, Blick KE, Hack E, Jansen PM, Kosanke SD, StevensDL. Staging of the baboon response to group A streptococci administered intramuscularly:a descriptive study of the clinical symptoms and clinical chemical response patterns. Clin Infect Dis,1999,29:167-177
    198.Timmer AM, Timmer JC, Pence MA, Hsu LC, Ghochani M, Frey TG, Karin M, Salvesen GS, Nizet V. Streptolysin O promotes group A Streptococcus immune evasion by accelerated macrophage apoptosis. J Biol Chem,2009,284:862-871
    199. Todd EW. Antigenic Streptococcal hemolysin. JExp Med,1932,55:267-280
    200. Trevino J, Perez N, Ramirez-Pena E, Liu Z, Shelburne SAⅢ, MusserJM, SumbyP. CovS simultaneously activates and inhibits the CovR mediated repression of distinct subsets of group A Streptococcus virulence factor-encoding genes. Infect Immun, 2009,77:3141-3149
    201. Turner CE, Kurupati P, Jones MD, Edwards RJ, Sriskandan S. Emerging role of the interleukin-8 cleaving enzyme SpyCEP in clinical Streptococcus pyogenes infection. J Infect Dis,2009a,200:555-563
    202. Turner CE, Kurupati P, Wiles S, Edwards RJ, Sriskandan S. Impact of immunization against SpyCEP during invasive disease with two streptococcal species:Streptococcus pyogenes and Streptococcus equi. Vaccine,2009b,27: 4923-4929
    203. Valentin-Weigand P, Grulich-Henn J, Chhatwal GS, Muller-Berghaus G., Blobel H, Preissner KT. Mediation of adherence of Streptococci to human endothelial cells by complement S protein (vitronectin). Infect Immun,1988,56:2851-2855
    204. Venable ME, Zimmerman GA, McIntyre TM, Prescott SM. Platelet-activating factor:a phospholipid autacoid with diverse actions. J Lipid Res,1993,34:691-702
    205. Visai L, Bozzini S, Raucci G, Toniolo A, Speziale P. Isolation and characterization of a novel collagen-binding protein from Streptococcus pyogenes strain 6414. JBiol Chem,1995,270:347-353
    206. Von Pawel-Rammingen U, Johansson BP, Bjorck L, Ide S. A novel streptococcal cysteine proteinase with unique specificity for immunoglobulin G EMBO J,2002, 21:1607-1615
    207. Watnick PI, Kolter R. Steps in the development of a Vibrio cholerae El Tor biofilm. Mol Microbiol,1999,34:586-95
    208. Walker M, Hollands A, Sanderson-Smith ML, Cole JN, Kirk JK, Henningham A, McArthur JD, Dinkla K, Aziz RK, Kansal RG, Simpson AJ, Buchanan JT, Chhatwal GS, Kotb M, Nizet V. DNase Sdal provides selection pressure for a switch to invasive group A streptococcal infection. Nat Med,2007,13:981-985
    209. Wang H, Lottenberg R, Boyle MD. Analysis of the interaction of group A Streptococci with fibrinogen, streptokinase and plasminogen. Microb Pathog,1995, 18:153-166
    210.Wartha F, Beiter K, Albiger B, Fernebro J, Zychlinsky A, Nor-mark S, Henriques-Normark B. Capsule and D-alanylatedlipoteichoic acids protect Streptococcus pneumoniae against neutrophil extracellular traps. Cell Microbiol, 2007,9:1162-1171
    211. Watanabe-Ohnishi R, Low DE, McGeer A, Stevens DL, Schlievert PM, Newton D, Schwartz B, Kreiswirth B, Kotb M. J Infect Dis.1995,171:74-84
    212. Wessels MR, Bronze MS. Critical role of the group A streptococcal capsule in pharyngeal colonization and infection in mice. Proc. Natl Acad Sci USA,1994,91: 12238-12242
    213. Wessels MR, Moses AB, Goldberg JB, DiCesare TJ. Hyaluronicacid capsule is a virulence factor for mucoid group A Streptococci. Pro cNatl Acad Sci USA,1991, 88:8317-8321
    214.Wexler DE, Chenoweth DE, Cleary PP. Mechanism of action of the group A streptococcal C5a inactivator. Proc Natl Acad Sci USA,1985,82:8144-8148
    215.Xiao D, You Y, Bi Z, Wang H, Zhang Y, Hu B, Song Y, Zhang H, Kou Z, Yan X, Zhang M, Jin L, Jiang X, Su P, Bi Z, Luo F, Zhang J. MALDI-TOF mass spectrometry-based identification of group A Streptococcus isolated from areas of the 2011 scarlet fever outbreak in china. Infect Genet Evol,2013,14:320-6.
    216. Yang P, Peng X, Yang J, Dong X, Zhang M, Wang Q. A probable food-borne outbreak of pharyngitis after a massive rainstorm in Beijing, caused by emm89 group A Streptococcus rarely found in China. Int J Infect Dis,2013,29: S1201-9712
    217. Young MH, Aronoff DM, Engleberg NC. Necrotizing fasciitis:pathogenesis and treatment. Expert Rev Anti Infect Ther,2005,3:279-294
    218.Zhu H, Liu M, Sumby P, Lei B. The secreted esterase of group A Streptococcus is important for invasive skin infection and dissemination in Mice. Infect Immun, 2009,77:5225-5232
    219.Zinkernagel AS, Timmer AM, Pence MA, Locke JB, Buchanan JT, Turner CE, Mishalian I, Sriskandan S, Hanski E, Nizet V. The IL-8 protease SpyCEP/ScpC of group A Streptococcus promotes resistance to neutrophil killing. Cell Host Microbe, 2008,4:170-178

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700