颅内动脉瘤的miRNA、mRNA表达谱及其分子网络调控研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的
     颅内动脉瘤在临床上以自发脑出血、脑血管痉挛、动眼神经麻痹等局灶症状为主要表现,是最常见的脑血管病之一。先天性动脉瘤占大部分人群,发病率达万分之一,以40-66岁最为常见。调查结果显示,约有10%的病人入院前死亡,但仍约有500万以上的隐匿性颅内动脉瘤未被发现和诊断。尽管在近十年里,动脉瘤的治疗取得了长足的进步,但其致死率仍高达30%-40%,且预后不甚理想。目前,该病发病机制仍存在广泛争议,致病机理尚不清楚。仅发现芬兰和日本人群中的发病率是其他人群的两倍,在遗传家系分析中找到了可能的相关基因,但并没有进行更深入的功能研究。
     近年来,研究者们用基因芯片来检测颅内动脉瘤相关基因mRNA水平的变化,发现Bcl-2,COL1A2,COL3A1,COL5A2,CXCL12,TIMP4,TNC这7个基因的表达水平在3个或以上研究中都发生了明显变化。这些在基因转录水平相关的研究均涉及到内皮细胞功能的紊乱,壁细胞的缺失,炎症细胞浸润以及细胞外基质的降解。
     小RNA (microRNA)是由18-25个核苷酸组成的单链非编码RNA。成熟小RNA通过与靶mRNA的3'UTR(非翻译区)互补结合在转录后水平调节其表达。据保守估计,小RNA调控约20%-30%的人类基因。研究显示,小RNA的异常调控是某些疾病发生的重要因素之一,如肿瘤和癌症。
     迄今为止,研究者们尚未明确任何颅内动脉瘤致病的信号通路和关键因子,也未能通过相关基因的动物模型模拟疾病的表型,更没有任何小RNA在颅内动脉瘤中的研究报导。
     我们长期从事颅内动脉瘤的临床工作,并在科研中积累了大量的实验成果。我们发现microRNA与颅内动脉瘤有着非常密切的关系。我们利用microRNA芯片对四例颅内动脉瘤样本进行小RNA表达谱分析,通过RT-PCR验证后得到18个异常表达的microRNA。同时利用mRNA芯片分析技术对两例颅内动脉瘤样本进行mRNA表达谱分析,通过数据筛选,得到11351个颅内动脉瘤mRNA表达量数据。利用IPA (Ingenuity pathway analysis)系统,建立了颅内动脉瘤发病相关通路的分子网络以及筛选这些miRNA对应的颅内动脉瘤发病相关的致病靶基因,发现这些异常表达的miRNA主要与血管内壁细胞凋亡、促进炎症细胞增殖与浸润、内皮细胞与平滑肌细胞和巨噬细胞的迁移等基因相关。
     本课题将进行miRNA及其靶基因在颅内动脉瘤致病机制的研究,探求其调控的分子网络在瘤体发生和发展中的作用,从时间和空间水平揭示miRNA调控颅内动脉瘤的分子体系。评估miRNA作为颅内动脉瘤生物标记的可能性,为颅内动脉瘤提供新的诊断位点和治疗干预新靶点。本课题将为颅内动脉瘤的分子机制提供有价值的研究成果。
     方法
     1.筛选在颅内动脉瘤中异常表达并具有显著生物学意义的microRNA。
     2.筛选在颅内动脉瘤中异常表达并具有显著生物学意义的mRNA。
     3.确定microRNA调控的关键靶基因在颅内动脉瘤组织中的表达水平,建立颅内动脉瘤发病的分子调控系统
     4.分析颅内动脉瘤形成和发展过程中microRNA对细胞增殖、迁移和凋亡的影响,确定其在致病机理中发挥的功能。
     结果
     1.应用Agilent Human miRNA array AMADID1643芯片对4组动脉瘤样本及对照组织样本进行初步的筛选后,得到有异常表达的miRNA32种,对其中的29种miRNA进行RT-PCR验证(针对新采集的10组动脉瘤样本)后,有18种miRNA在颅内动脉瘤中异常表达。
     2.应用Agilent Whole Human Genome Oligo Microarray (4×44K)芯片对2组动脉瘤样本及对照组织样本进行筛选后,得到有异常表达的mRNA11351个。
     3.应用综合性分析系统IPA,对18种miRNA对应的靶基因进行功能分析,发现与mRNA芯片结果对应的靶基因对比有624个基因重叠。
     4.构建动脉瘤致病相关的分子网络后,异常表达的miRNA所对应的靶基因主要在以下方面参与颅内动脉瘤的致病:血管内皮细胞凋亡、炎症免疫细胞的增殖和浸润、内皮细胞和平滑肌细胞的迁移。
     5.分析IPA建立的动脉瘤致病机理的分子网络,炎症因子在颅内动脉瘤的形成和发展中扮演了重要角色。
     结论
     1. microRNA及其对应的靶基因在颅内动脉瘤的致病机理中扮演重要的角色。
     2. microRNA在颅内动脉瘤的形成中主要通过内皮细胞的凋亡、炎症免疫细胞的增殖和浸润、内皮细胞和平滑肌细胞的迁移等机制发挥作用。
     3.细胞免疫反应及细胞因子信号分子网络是颅内动脉瘤致病机理中最主要致病途径。
Background
     As one of the most incident form of cerebrovascular diseases, intracranial aneurysm (IA) has a high mortality and undesirable prognosis with Spontaneous cerebral hemorrhage, cerebral vasospasm, oculomotor nerve palsy as the main clinical feature. Most of IA are congenital aneurysms, the incidence of IA is approximately1/10,000, a significant proportion of aneurysmal patients are of40-60age. MicroRNA are post-transcriptional regulators that bind to complementary sequences on target mRNA, roughly regulate about20%-30%human genes. Aberrant expression of micoRNA is involved in the pathogenesis of some cancer. The incidence in Finland and Japan is twice that of the rest of the population, However, large amounts of data created with each study, make a comparison or interpretation of results difficult in the genetic pedigree analysis.
     In recent years, researchers have used microarray gene expression studies on mRNA profiling of intracranial aneurysms. Seven genes (BCL2,COL1A2, COL3A1, COL5A2, CXCL12, TIMP4, TNC) showed differences in more than three studies, these studies at the transcriptome level are in accordance with the histopathological series that associated endothelial dysfunction, loss of mural cells, inflammatory cell infiltration and degradation of the matrix with sIA wall rupture.
     MicroRNAs (miRNAs) are a class of small non-coding RNAs, miRNAs are incorporated into the RNA induced silencing complex (RISC) and preferentially bind to the3'untranslated region(3'UTR) of target mRNA. miRNAs have been predicted to regulate20-30%human genes. Recent studies have demonstrated that miRNAs play roles in tumor and cancer.
     So far, Researchers have not yet identified signaling pathways and key factors for intracranial aneurysm, also failed to simulate phenotype of related genes in animal models. None report has been published about miRNA of intracranial aneurysms.
     We engaged in clinical work of intracranial aneurysms, and accumulated a large number of experimental results. We found miRNA play an important role in intracranial aneurysms. Test of4cases with miRNA expression profiles in intracranial aneurysm indicated that18miRNA showed differences in expression, we also compared the gene expression of aneurysms vs. tissue of their STAs of two IA patients using Microarray Analysis platform. In all,11351genes showed differences in expression. miRNA centered molecular network developed by IPA identified altogether its mRNA targets, which regulates Vascular wall apoptosis, proliferation and infiltration of inflammatory cells, migration of endothelial cells and smooth muscle cells and macrophage.
     The project plans to verify pathogenesis of miRNA and its target genes in intracranial aneurysms, and to determine whether they are biologically relevant targets which may have important impact on IA formation. Our study is to explore the regulation of molecular networks of occurrence and development of I As, and to reveal the underlying mechanisms of aneurysm formation.
     We assess miRNA as prognosis and progression biological markers of the intracranial aneurysm, and a new target for the diagnosis and therapeutic. The research will provide valuable results for the molecular mechanisms of intracranial aneurysms.
     Methods Results
     1、To identify miRNAs with significantly different expression levels between LAs and controls.
     2、To identify mRNAs with significantly different expression levels between I As and controls.
     3、To predict expression level of miRNA target genes in IAs, and establish molecular regulation system of pathogenesis of intracranial aneurysms.
     4、To analysis the role and function for miRNA in Cell proliferation, migration, and apoptosis of initiation, growth and rupture of IAs.
     Results
     1、 A microarray (Agilent Human miRNA array AMADID1643) study was performed comparing miRNA expression levels in IA tissue samples (n=4) and controls.32miRNAs had significantly different expression. The expression levels of29miRNAs identified in the microarray study were validated using individual real-time qRT-PCR assays,18miRNAs had significantly different expression in IAs.
     2、A microarray (Agilent Whole Human Genome Oligo Microarray (4×44K)) study was performed comparing mRNA expression levels in IA tissue samples (n=2) and controls.11351mRNAs had significantly different expression.
     3、Functional classification of the target genes was carried out with IPA,The combined analysis revealed624relation pairs between the miRNAs and mRNAs.
     4、Ingenuity Pathway Analysis tool was used to generate the network, There were several pathway known to be regulated by these miRNA target genes,including apoptosis of vascular endothelial cell, proliferation and infiltration of inflammatory immune cells, migration of endothelial cells and smooth muscle cells.
     5、To analysis network established by IPA in pathogenesis of intracranial aneurysms, inflammatory factors plays an important role in the initiation and growth of intracranial aneurysms
     Conclusion
     1、miRNA and its target genes play an important role in the initiation and growth of intracranial aneurysms.
     2、miRNA and target genes regulate the pathogenesis of intracranial aneurysms through mainly several pathway including apoptosis of vascular endothelial cell, proliferation and infiltration of inflammatory immune cells, migration of endothelial cells and smooth muscle cells.
     3、Cellular immune response and cytokine signaling are the most important pathway in pathogenesis of intracranial aneurysms.
引文
[1]Juhana Frosen, Riikka Tulamo, Anders Paetau et al. saccular intracranial aneurysm:pathology and mechanisms. Acta Neuropathol; published online:17 Jan 2012.
    [2]Tomohiro Aoki, Masaki Nishimura. the development and the use of experimental animal models to study the underlying mechanisms of CA formation. Biomedicine and Biotechnology 2011;ID:535921:1-10.
    [3]Feigin VL, Findlay M. Advances in subarachnoid hemorrhage. Stroke.2006; 37(2):305-308.
    [4]J. van Gijn, R. S. Kerr, and G. J. Rinkel. Subarachnoid haemorrhage. Lancet,2007; 369:306-318.
    [5]van Gijn J, Kerr RS, Rinkel GJ. Subarachnoid haemorrhage. Lancet 2007; 369:306-318.
    [6]Kataoka H, Aoki T. Molecular basis for the development of intracranial aneurysm. Expert Rev Neurother 2010; 10:173-187.
    [7]Krischek B, Tatagiba M. The influence of genetics on intracranial aneurysm formation and rupture:current knowledge and its possible impact on future treatment. Adv Tech Stand Neurosurg 2008; 33:131-147.
    [8]Tulamo R, Frosen J, Junnikkala S,et al. Complement system becomes activated by the classical pathway in intracranial aneurysm walls. Lab Invest 2010; 90:168-179.
    [9]Frosen J, Piippo A, Paetau A,et al. Remodeling of saccular cerebral artery aneurysm wall is associated with rupture:histological analysis of 24 unruptured and 42 ruptured cases. Stroke 2004; 35:2287-2293.
    [10]Ronkainen A, Hernesniemi J, Puranen M,et al. Familial intracranial aneurysms. Lancet 1997; 349:380-384.
    [11]Kataoka H, Aoki T. Molecular basis for the development of intracranial aneurysm. Expert Rev Neurother 2010; 10:173-187.
    [12]Krischek B, Kasuya H, Tajima A,et al. Network-based gene expression analysis of intracranial aneurysm tissue reveals role of antigen presenting cells. Neuroscience 2008; 154:1398-1407.
    [13]Li L, Yang X, Jiang F, et al. Transcriptome-wide characterization of gene expression associated with unruptured intracranial aneurysms. Eur Neurol 2009; 62:330-337.
    [14]Shi C, Awad IA, Jafari N, et al. Genomics of human intracranial aneurysm wall. Stroke 2009; 40:1252-1261.
    [15]Marchese E, Vignati A, Albanese A,et al. Comparative evaluation of genome-wide gene expression profiles in ruptured and unruptured human intracranial aneurysms. J Biol Regul Homeost Agents 2010; 24:185-195.
    [16]Pera J, Korostynski M, Krzyszkowski T, et al. Gene expression profiles in human ruptured and unruptured intracranial aneurysms:what is the role of inflammation? Stroke 2010; 41:224-231.
    [17]Zamore PD, Haley B. Ribo-genome:the big world of small RNAs. Science 2005; 309:1519-24.
    [18]Xiong S, Zheng Y, Jiang P et al. MicroRNA-7 inhibits the growth of human non-small cell lung cancer A549 cells through targeting BCL-2. Biol Sci. 2011;7(6):805-14.
    [19]Care A, Catalucci D, Felicetti F, et al. MicroRNA-133 controls cardiac hypertrophy. Nat Med 2007,13:613-618.
    [20]Horie T, Ono K, Nishi H, et al. MicroRNA-133 regulates the expression of GLUT4 by targeting KLF15 and is involved in metabolic control in cardiac myocytes. Biochem Biophys Res Commun 2009,389:315-320.
    [21]Li Q, Lin X, Yang X, Chang J. NFATc4 is negatively regulated in miR-133a-mediated cardiomyocyte hypertrophic repression. Am J Physiol Heart Circ Physiol 2010,298:H1340-1347.
    [22]Liu N, Bezprozvannaya S, Williams AH, et al. microRNA-133a regulates cardiomyocyte proliferation and suppresses smooth muscle gene expression in the heart. Genes Dev 2008,22:3242-3254
    [23]Torella D, Iaconetti C, Catalucci D, et al. MicroRNA-133 controls vascular smooth muscle cell phenotypic switch in vitro and vascular remodeling in vivo. CircRes 2011,109:880-893.
    [24]Sun SG, Zheng B, Han M, et al. miR-146a and Kruppel-like factor 4 form a feedback loop to participate in vascular smooth muscle cell proliferation. EMBO Rep 2011,12:56-62.
    [25]Xiao J, Zhu X, He B,et al. MiR-204 regulates cardiomyocyte autophagy induced by ischemia-reperfusion through LC3-Ⅱ. J Biomed Sci 2011,18:35.
    [26]Maegdefessel L, Azuma J, Toh R, et al. MicroRNA-21 blocks abdominal aortic aneurysm development and nicotine-augmented expansion. Sci Transl Med 2012, 4:122.
    [27]Absi TS, Sundt TM 3rd, Tung WS, et al. Altered patterns of gene expression distinguishing ascending aortic aneurysms from abdominal aortic aneurysms: complementaryDNAexpression profiling in the molecular characterization of aortic disease. J Thoracic Cardiovasc Surg 2003;126:344-57; discussion 357
    [28]Xin F, Li M., Balch C,et al. Computational analysis of miRNA profiles and their target genes suggests significant involvement in breast cancer antiestrogen resistance. Bioinformatics 2009; 25:430-434.
    [29]Jiang Q, Wang Y, Hao Y, et al. miR2Disease:a manually curated database for miRNA deregulation in human disease. Nucleic Acids Res 2009;37, D98-D104.
    [30]Seungyoon Na, Meng Li, Kwangmin Ch, MicroRNA and mRNA integrated analysis (MMIA):a web tool for examining biological functions of microRNA expression. Nucleic Acids Research 2009; 37:356-362.
    [31]Asli NS, Pitulescu ME, Kessel M. MiRNAs in organogenesis and disease. Curr Mol Med 2008; 8:698-710.
    [32]Boddy AM, Lenk GM, Lillvis JH, et al. Basic research studies to understand aneurysm disease. Drug News Perspect 2008; 21:142-148.
    [33]Abdul-Hussien H, Hanemaaijer R, Kleemann R, et al. The pathophysiology of abdominal aortic aneurysm growth:corresponding and discordant inflammatory and proteolytic processes in abdominal aortic and popliteal artery aneurysms. J Vase Surg 2010; 51:1479-1487.
    [34]McCormick ML, Gavrila D, Weintraub NL. Role of oxidative stress in the pathogenesis of abdominal aortic aneurysms. Arterioscler Thromb Vase Biol 2007; 27:461-469.
    [35]Weinsheimer S, Lenk GM, van der Voet M, et al. Integration of expression profiles and genetic mapping data to identify candidate genes in intracranial aneurysm. Physiol Genomics 2007; 32:45-57.
    [36]Tulamo R, Frosen J, Junnikkala S,et al. Complement system becomes activated by the classical pathway in intracranial aneurysm walls. Lab Invest 2010; 90:168-179.
    [37]Ruigrok YM, Rinkel GJ.Genetics of intracranial aneurysms. Stroke 2008; 39:1049-1055.
    [38]Nathason KL, Domcheck SM. Therapeutic approaches for women predisposed to breast cancer. Annu Rev Med 2011;62:295-306.
    [39]Pera J, Korostynski M, Krzyszkowski T, et al. Gene expression profiles in human ruptured and unruptured intracranial aneurysms:what is the role of inflammation? Stroke 2010; 41:224-231.
    [40]Nogales-Cadenas R, Carmona-Saez P, Vazquez M, et al. GeneCodis:interpreting gene lists through enrichment analysis and integration of diverse biological information. Nucleic Acids Res 2009; 37:W317-W322.
    [41]Paszkowiak JJ, Dardik A. Arterial wall shear stress:observations from the bench to the bedside. Vase Endovasc Surg 2003; 37:47-57.
    [42]Marchese E, Vignati A, Albanese A, et al. Comparative evaluation of genome-wide gene expression profiles in ruptured and unruptured human intracranial aneurysms. J Biol Regul Homeost Agents 2010; 24:185-195.
    [43]Cahan P, Rovegno F, Mooney D, et al. Meta-analysis of microarray results: challenges, opportunities, and recommendations for standardization. Gene 2007; 401:12-18.
    [44]Feigin VL, Rinkel GJ, Lawes CM, et al. Risk factors for subarachnoid hemorrhage:an updated systematic review of epidemiological studies. Stroke 2005; 36:2773-2780.
    [45]Carmona-Saez P, Chagoyen M, Tirado F,et al. GENECODIS:a web-based tool for finding significant concurrent annotations in gene lists. Genome Biol 2007; 8:R3.
    [46]Griffith OL, Melck A, Jones SJ, et al. Meta-analysis and meta-review of thyroid cancer gene expression profiling studies identifies important diagnostic biomarkers. J Clin Oncol 2006; 24:5043-5051.
    [47]Hsia HC, Schwarzbauer JE. Meet the tenascins:multifunctional and mysterious. J Biol Chem 2005; 280:26641-26644.
    [48]Koskivirta I, Rahkonen O, Mayranpaa M, et al. Tissue inhibitor of metalloproteinases 4 (TIMP4) is involved in inflammatory processes of human cardiovascular pathology. Histochem Cell Biol 2006; 126:335-342.
    [49]Wiebers DO, Whisnant JP, Huston J et al. Unruptured intracranial aneurysms: natural history, clinical outcome, and risks of surgical and endovascular treatment. Lancet 2003; 362(9378):103-110.
    [50]Komotar RJ, Mocco J, Solomon RA. Guidelines for the surgical treatment of unruptured intracranial aneurysms:the first annual J. Lawrence pool memorial research symposium-controversies in the management of cerebral aneurysms. Neurosurgery 2008;62(1):183-193.
    [51]Juvela S. Natural history of unruptured intracranial aneurysms:risks for aneurysm formation, growth, and rupture. Acta Neurochir 2002 Suppl.82: 27-30.
    [52]Mineharu Y, Inoue K, Inoue S et al. Model-based linkage analyses confirm chromosome 19q13.3 as a susceptibility locus for intracranial aneurysm. Stroke 2007; 38(4):1174-1178.
    [53]Yamada S, Utsunomiya M, Inoue K et al. Absence of linkage of familial intracranial aneurysms to 7q11 in highly aggregated Japanese families. Stroke 2003; 34(4):892-900.
    [54]van der Voet, Olson JM, Kuivaniemi H et al. Intracranial aneurysms in Finnish families:confirmation of linkage and refinement of the interval to chromosome 19q13.3. Am. J. Hum. Genet 2004; 74(3):564-571.
    [55]Nahed BV, Seker A, Guclu B et al. Mapping a Mendelian form of intracranial aneurysm to 1p34.3-p36.13. Am. J. Hum. Genet 2005; 76(1):172-179.
    [56]Ruigrok YM, Wijmenga C, Rinkel GJ et al. Genomewide linkage in a large Dutch family with intracranial aneurysms:replication of 2 loci for intracranial aneurysms to chromosome 1p36.11-p36.13 and Xp22.2-p22.32. Stroke 2008; 39(4):1096-1102.
    [57]Ozturk AK, Nahed BV, Bydon M et al. Molecular genetic analysis of two large kindreds with intracranial aneurysms demonstrates linkage to 11q24-25 and 14q23-31. Stroke 2006; 37(4):1021-1027.
    [58]Verlaan DJ, Dube MP, St-Onge J et al. A new locus for autosomal dominant intracranial aneurysm, ANIB4, maps to chromosome 5p15.2-14.3. J. Med. Genet 2006; 43(6):e31.
    [59]Krischek B, Narita A, Akagawa H et al. Is there any evidence for linkage on chromosome 17cen in affected Japanese sib-pairs with an intracranial aneurysm? J. Hum. Genet 2006; 51(5):491-494.
    [60]Foroud T, Sauerbeck L, Brown R et al. Genome screen to detect linkage to intracranial aneurysm susceptibility genes:the Familial Intracranial Aneurysm (FIA) study. Stroke 2008; 39(5):1434-1440.
    [61]Bederson JB, Awad I A, Wiebers DO et al. Recommendations for the management of patients with unruptured intracranial aneurysms:a statement for healthcare professionals from the Stroke Council of the American Heart Association. Circulation 2000; 102(18):2300-2308.
    [62]Akagawa H, Tajima A, Sakamoto Y et al. A haplotype spanning two genes, ELN and LIMK1, decreases their transcripts and confers susceptibility to intracranial aneurysms. Hum. Mol. Genet2006; 15(10):1722-1734.
    [63]Ruigrok YM, Rinkel GJ, van't SR, et al. Evidence in favor of the contribution of genes involved in the maintenance of the extracellular matrix of the arterial wall to the development of intracranial aneurysms. Hum Mol Genet 2006;15(22):3361-3368.
    [64]Ruigrok YM, Rinkel GJ, Wijmenga C. The versican gene and the risk of intracranial aneurysms. Stroke 2006;37(9):2372-2374.
    [65]Mineharu Y, Inoue K, Inoue S et al. Association analysis of common variants of ELN, NOS2A, APOE and ACE2 to intracranial aneurysm. Stroke 2006;37(5): 1189-1194.
    [66]Krischek B, Kasuya H, Akagawa H et al. Using endothelial nitric oxide synthase gene polymorphisms to identify intracranial aneurysms more prone to rupture in Japanese patients. J Neurosurg 2006;105(5):717-722.
    [67]Bilguvar K, Yasuno K, Niemela M et al. Susceptibility loci for intracranial aneurysm in European and Japanese populations. Nat Genet 2008; 40(12): 1472-1477.
    [68]Helgadottir A, Thorleifsson G, Magnusson KP et al. The same sequence variant on 9p21 associates with myocardial infarction, abdominal aortic aneurysm and intracranial aneurysm. Nat Genet 2008; 40(2),217-224.
    [69]Kim I, Saunders TL, Morrison SJ. Sox 17 dependence distinguishes the transcriptional regulation of fetal from adult hematopoietic stem cells. Cell 2007;130(3):470-483.
    [70]Matsui T, Kanai-Azuma M, Hara K et al. Redundant roles of Sox 17 and Sox 18 in postnatal angiogenesis in mice. J Cell Sci 2006; 119(Pt 17):3513-3526.
    [71]Shi C, Awad I A, Jafari N et al. Genomics of human intracranial aneurysm wall. Stroke 2009; 40(4),1252-1261.
    [72]Mangrum WI, Farassati F, Kadirvel R et al. mRNA expression in rabbit experimental aneurysms:a study using gene chip microarrays. AJNR Am J Neuroradiol 2007; 28(5):864-869.
    [73]Sadamasa N, Nozaki K, Kita-Matsuo H et al. Gene expression during the development of experimentally induced cerebral aneurysms. J Vasc Res 2008; 45(4):343-349.
    [74]Aoki T, Kataoka H, Ishibashi R,et al. Gene expression profile of the intima and media of experimentally induced cerebral aneurysms in rats by laser-microdissection and microarray techniques. Int J Mol Med 2008; 22(5): 595-603.
    [75]Shimizu K, Mitchell RN, Libby P. Inflammation and cellular immune responses in abdominal aortic aneurysms. Arterioscler. Thromb Vasc Biol 2006; 26(5): 987-994.
    [76]Tulamo R, Frosen J, Junnikkala S et al. Complement activation associates with saccular cerebral artery aneurysm wall degeneration and rupture. Neurosurgery 2006;59(5):1069-1076.
    [77]Aoki T, Kataoka H, Morimoto M, et al. Macrophage-derived matrix metalloproteinase-2 and-9 promote the progression of cerebral aneurysms in rats. Stroke 2007; 38(1):162-169.
    [78]Aoki T, Kataoka H, Ishibashi R, et al. Impact of monocyte chemoattractant protein-1 deficiency on cerebral aneurysm formation. Stroke 2009;40(3):942-951.
    [79]Jayaraman T, Berenstein V, Li X et al. Tumor necrosis factor a is a key modulator of inflammation in cerebral aneurysms. Neurosurgery 2005;57(3):558-564.
    [80]Jayaraman T, Paget A, Shin YS et al. TNF-a-mediated inflammation in cerebral aneurysms:a potential link to growth and rupture. Vasc Health Risk Manag 2008; 4(4):805-817.
    [81]Tamura T, Jamous MA, Kitazato KT et al. Endothelial damage due to impaired nitric oxide bioavailability triggers cerebral aneurysm formation in female rats. J Hypertens 2009; 27(6):1284-1292.
    [82]Jamous MA, Nagahiro S, Kitazato KT, et al. Role of estrogen deficiency in the formation and progression of cerebral aneurysms. Part I:experimental study of the effect of oophorectomy in rats. J Neurosurg 2005; 103(6):1046-1051.
    [83]Aoki T, Kataoka H, Shimamura M et al. NF-kB is a key mediator of cerebral aneurysm formation. Circulation 2007; 116(24):2830-2840.
    [84]Hashimoto T, Meng H, Young WL. Intracranial aneurysms:links among inflammation, hemodynamics and vascular remodeling. Neurol Res 2006; 28(4): 372-380.
    [85]Aoki T, Kataoka H, Ishibashi R, et al. Reduced collagen biosynthesis is the hallmark of cerebral aneurysm. Contribution of interleukin-lb and nuclear factor-kB. Arterioscler Thromb Vasc 2009; Biol.29(7):1080-1086.
    [86]Yoshimura K, Aoki H, Ikeda Y et al. Regression of abdominal aortic aneurysm by inhibition of c-Jun N-terminal kinase. Nat Med 2005; 11(12):1330-1338.
    [87]McCormick ML, Gavrila D, Weintraub NL. Role of oxidative stress in the pathogenesis of abdominal aortic aneurysms. Arterioscler Thromb Vase Biol 2007; 27(3):461-469.
    [88]Moriwaki T, Takagi Y, Sadamasa N, et al. Impaired progression of cerebral aneurysms in interleukin-lb-deficient mice. Stroke 2006;37(3):900-905.
    [89]de Winther MP, Kanters E, et al. Nuclear factor kB signaling in atherogenesis. Arterioscler Thromb Vase Biol 2005; 25(5):904-914.
    [90]Nakashima H, Aoki M, Miyake T et al. Inhibition of experimental abdominal aortic aneurysm in the rat by use of decoy oligodeoxynucleotides suppressing activity of nuclear factor kB and ets transcription factors. Circulation 2004;109(1):132-138.
    [1]Ingall T, Asplund K, Mahonen M et al. A multinational comparison of subarachnoid hemorrhage epidemiology in the WHO MONICA stroke study. Stroke 2000; 31:1054-1061
    [2]Nieuwkamp DJ, Setz LE, Algra A et al. Changes in case fatality of aneurysmal subarachnoid haemorrhage over time, according to age, sex, and region:a metaanalysis. Lancet Neurol 2009; 8:635-642
    [3]Stegmayr B, Eriksson M, Asplund K. Declining mortality from subarachnoid hemorrhage:changes in incidence and case fatality from 1985 through 2000. Stroke 2004;35:2059-2063
    [4]Frosen J, Tulamo R, Paetau A et al. Saccular intracranial aneurysm:pathology and mechanisms. Acta Neuropathol 2012; 17:1-14.
    [5]Huttunen T, von und zu Fraunberg M, Fro"sen J et al.Saccular intracranial aneurysm disease:distribution of site, size, and age suggests different etiologies for aneurysm formation and rupture in 316 familial and 1454 sporadic eastern Finnish patients. Neurosurgery 2010; 66:631-638
    [6]Wiebers DO, Whisnant JP, Huston J 3rd. Unruptured intracranial aneurysms: natural history, clinical outcome, and risks of surgical and endovascular treatment. Lancet 2003; 362:103-110
    [7]Wermer MJ, van der Schaaf IC et al. Risk of rupture of unruptured intracranial aneurysms in relation to patient and aneurysm characteristics:an updated meta-analysis. Stroke 2007; 38:1404-1410
    [8]Yasui N, Suzuki A, Nishimura H et al. Long-term followup study of unruptured intracranial aneurysms. Neurosurgery 1997; 40:1155-1159
    [9]Beck J, Rohde S, el Beltagy M et al. Difference in configuration of ruptured and unruptured intracranial aneurysms determined by biplanar digital subtraction angiography. Acta Neurochir (Wien) 2003; 145:861-865.
    [10]Juvela S, Poussa K, Porras M. Factors affecting formation and growth of intracranial aneurysms:a long-term follow-up study. Stroke 2001; 32:485-491
    [11]Raghavan ML, Ma B, Harbaugh RE. Quantified aneurysm shape and rupture risk. J Neurosurg 2005; 102:355-362
    [12]Ujiie H, Tachibana H, Hiramatsu O et al. Effects of size and shape (aspect ratio) on the hemodynamics of saccular aneurysms:a possible index for surgical treatment of intracranial aneurysms. Neurosurgery 1999; 45:119-129
    [13]Weir B, Amidei C, Kongable G. The aspect ratio (dome/neck) of ruptured and unruptured aneurysms. J Neurosurg 2003; 99:447-451
    [14]Isaksen J, Egge A, Waterloo K et al. Risk factors for aneurysmal subarachnoid haemorrhage:the Tromso study. J Neurol Neurosurg Psychiatry 2002; 73:185-187
    [15]Sandvei MS, Romundstad PR, Mu" Her TB et al. Risk factors for aneurysmal subarachnoid hemorrhage in a prospective population study:the HUNT study in Norway. Stroke 2009; 40:1958-1962
    [16]Juvela S, Poussa K, Porras M. Natural history of unruptured intracranial aneurysms:probability of and risk factors for aneurysm rupture. J Neurosurg 2000; 93:379-387
    [17]Ronkainen A, Hernesniemi J, Ryynanen M. Familial Subarachnoid Hemorrhage in East Finland,1977-1990. Neurosurgery 1993; 33:787-797
    [18]Schievink WI, Schaid DJ, Michels VV et al. Familial aneurysmal subarachnoid hemorrhage:a community-based study. J Neurosurg 1995; 83:426-429
    [19]Ronkainen A, Hernesniemi J, Ryynanen M et al. A ten percent prevalence of asymptomatic familial intracranial aneurysms:preliminary report on 110 magnetic resonance angiography studies in members of 21 Finnish familial intracranial aneurysm families. Neurosurgery 1994; 35:208-212
    [20]Rinkel GJ, Djibuti M, Algra A et al. Prevalence and risk of rupture of intracranial aneurysms:a systematic review. Stroke 1998; 29:251-256
    [21]Bor AS, Rinkel GJ, Adami J et al. Risk of subarachnoid haemorrhage according to number of affected relatives:a population based case-control study. Brain 2008; 131:2662-2665
    [22]Korja M, Silventoinen K, McCarron P et al. Genetic epidemiology of spontaneous subarachnoid hemorrhage:Nordic Twin Study. Stroke 2010; 41:2458-2462
    [23]Chapman AB, Rubinstein D, Hughes R et al. Intracranial aneurysms in autosomal dominant poly cystic kidney disease. N Engl J Med 1992; 327:916-920
    [24]Cloft HJ, Kallmes DF, Kallmes MH et al. Prevalence of cerebral aneurysms in patients with fibromuscular dysplasia:a reassessment. J Neurosurg 1998; 88:436-440
    [25]Gieteling EW, Rinkel GJ.Characteristics of intracranial aneurysms and subarachnoid haemorrhage in patients with polycystic kidney disease. J Neurol 2003; 250:418-423
    [26]Rubinstein MK, Cohen NH.Ehlers-Danlos syndrome associated with multiple intracranial aneurysms. Neurology 1964; 14:125-132
    [27]Schievink WI, Michels VV, Piepgras DG. Neurovascular manifestations of heritable connective tissue disorders. A review. Stroke 1994; 25:889-903
    [28]Conway JE, Hutchins GM, Tamargo RJ.Marfan syndrome is not associated with intracranial aneurysms. Stroke 1999; 30:1632-1636
    [29]Nahed BV, Bydon M, Ozturk AK. Genetics of intracranial aneurysms. Neurosurgery 2007; 60:213-225
    [30]Heiskanen O. Ruptured intracranial arterial aneurysms of children and adolescents. Surgical and total management results. Childs Nerv Syst 2009 5:66-70
    [31]Heiskanen O, Vilkki J. Intracranial arterial aneurysms in children and adolescents. Acta Neurochir (Wien) 2009; 59:55-63
    [32]Stehbens WE. Etiology of intracranial berry aneurysms. J Neurosurg 2009; 70:823-831
    [33]Hashimoto N, Handa H, Hazama F. Experimentally induced cerebral aneurysms in rats. Surg Neurol 2008; 10:3-8
    [34]Hashimoto N, Kim C, Kikuchi H. Experimental induction of cerebral aneurysms in monkeys. J Neurosurg 2005; 67:903-905
    [35]Morimoto M, Miyamoto S, Mizoguchi A. Mouse model of cerebral aneurysm: experimental induction by renal hypertension and local hemodynamic changes. Stroke 2002; 33:1911-1915
    [36]Kim C, Cervos-Navarro J, Kikuchi H et al. Degenerative changes in the internal elastic lamina relating to the development of saccular cerebral aneurysms in rats. Acta Neurochir (Wien) 2003; 121:76-81
    [37]Kondo S, Hashimoto N, Kikuchi H et al. Apoptosis of medial smooth muscle cells in the development of saccular cerebral aneurysms in rats. Stroke 2008; 29:181-188
    [38]Jamous MA, Nagahiro S, Kitazato KT. Endothelial injury and inflammatory response induced by hemodynamic changes preceding intracranial aneurysm formation:experimental study in rats. J Neurosurg 2007; 107:405-411
    [39]Aoki T, Nishimura M. The development and the use of experimental animal models to study the underlying mechanisms of CA formation. J Biomed Biotechnol 2011:535921
    [40]Pope FM, Nicholls AC, Narcisi P et al. Some patients with cerebral aneurysms are deficient in type Ⅲ collagen. Lancet 2007 1:973-975
    [41']Hassler O. Morphological studies on the large cerebral arteries, with reference to the aetiology of subarachnoid haemorrhage. Acta Psychiatr Scand Suppl 154:1-145
    [42]Scanarini M, Mingrino S, Giordano R et al. Histological and ultrastructural study of intracranial saccular aneurysmal wall. Acta Neurochir (Wien) 2008 43:171-182
    [43]Sakaki T, Kohmura E, Kishiguchi T et al. Loss and apoptosis of smooth muscle cells in intracranial aneurysms. Studies with in situ DNA end labeling and antibody against single-stranded DNA. Acta Neurochir (Wien) 1997; 139:469-474
    [44]Scanarini M, Mingrino S, Zuccarello M et al. Scanning electron microscopy (s.e.m.) of biopsy specimens of ruptured intracranial saccular aneurysms. Acta Neuropathol 2000; 44:131-134
    [45]Stehbens WE. Histopathology of cerebral aneurysms. Arch Neurol 8:272-285
    [46]Chyatte D, Bruno G, Desai S et al. Inflammation and intracranial aneurysms. Neurosurgery 1999; 45:1137-1146
    [47]Kataoka K, Taneda M, Asai T et al. Structural fragility and inflammatory response of ruptured cerebral aneurysms. A comparative study between ruptured and unruptured cerebral aneurysms. Stroke 2009;30:1396-1401
    [48]Fro'sen J, Piippo A, Paetau A et al. Remodeling of saccular cerebral artery aneurysm wall is associated with rupture:histological analysis of 24 unruptured and 42 ruptured cases. Stroke 2004; 35:2287-2293
    [50]Tulamo R, Frosen J, Junnikkala S et al. Complement system becomes activated by the classical pathway in intracranial aneurysm walls. Lab Invest 2010; 90:168-179
    [51]Nagakawa H, Suzuki S, Haneda M. Significance of glomerular deposition of C3c and C3d in IgA nephropathy. Am J Nephro12000; 20:122-128
    [52]Krischek B, Kasuya H, Tajima A et al. Network-based gene expression analysis of intracranial aneurysm tissue reveals role of antigen presenting cells. Neuroscience 2008; 154:1398-1407
    [53]Morimoto M, Miyamoto S, Mizoguchi A. Mouse model of cerebral aneurysm: experimental induction by renal hypertension and local hemodynamic changes. Stroke 2002; 33:1911-1915
    [54]Marchese E, Vignati A, Albanese A et al. Comparative evaluation of genome-wide gene expression profiles in ruptured and unruptured human intracranial aneurysms. J Biol Regul Homeost Agents 2010; 24:185-195
    [55]Pera J, Korostynski M, Krzyszkowski T et al. Gene expression profiles in human ruptured and unruptured intracranial aneurysms:what is the role of inflammation? Stroke 2010; 41:224-231
    [56]Sawabe M. Vascular aging:from molecular mechanism to clinical significance. Geriatr Gerontol Int 2010; 10(Suppl 1):S213-S220
    [57]Bruno G, Todor R, Lewis I et al. Vascular extracellular matrix remodeling in cerebral aneurysms. J Neurosurg 1998; 89:431-440
    [58]Fro'sen J, Litmanen S, Tulamo R et al. Matrix metalloproteinase-2 and-9 expression in the wall of saccular cerebral artery aneurysm. Neurosurgery 2006; 58:413-413 (Conference abstract)
    [59]Kim SC, Singh M, Huang J et al. Matrix metalloproteinase-9 in cerebral aneurysms. Neurosurgery 2007; 41:642-666
    [60]Todor DR, Lewis I, Bruno G et al. Identification of a serum gelatinase associated with the occurrence of cerebral aneurysms as pro-matrix metalloproteinase-2. Stroke 1998; 29:1580-1583
    [61]Newby AC, Zaltsman AB. Molecular mechanisms in intimal hyperplasia. J Pathol 2000; 190:300-309
    [62]Fro"sen J, Marjamaa J, Mylla'rniemi M et al. Contribution of mural and bone marrow-derived neointimal cells to thrombus organization and wall remodeling in a microsurgical murine saccular aneurysm model. Neurosurgery 2006; 58:936-944
    [63]Pentimalli L, Modesti A, Vignati A et al. Role of apoptosis in intracranial aneurysm rupture. J Neurosurg 2004; 101:1018-1025
    [64]Guo F, Li Z, Song L, Han T. Increased apoptosis and cysteinyl aspartate specific protease-3 gene expression in human intracranial aneurysm. J Clin Neurosci 2007; 14:550-555
    [65]Virchow VR. Uber die akute Entzundung der Arterien. Virchows Arch A Pathol Anat Histopathol 1:272-378
    [66]Tulamo R, Frosen J, Paetau A et al. Lack of complement inhibitors in the outer intracranial artery aneurysm wall associates with complement terminal pathway activation. Am J Pathol 2010; 177:3224-3232
    [67]Klos A, Tenner AJ, Johswich KO et al. The role of the anaphylatoxins in health and disease. Mol Immunol 2009; 46:2753-2766
    [68]Boyle J, Weissberg P, Bennett M. Tumor necrosis factoralpha promotes macrophage-induced vascular smooth muscle cell apoptosis by direct and autocrine mechanisms. Arterioscler Thromb Vasc Biol 2003; 23:1553-1558
    [69]Ueda S, Masutani H, Nakamura H et al. Redox control of cell death. Antioxid Redox Signal2002; 4:405-414
    [70]Jayaraman T, Berenstein V, Li X et al. Tumor necrosis factor alpha is a key modulator of inflammation in cerebral aneurysms. Neurosurgery 2005; 57:558-564
    [71]Alikhani M, Alikhani Z, Raptis M et al. TNF-a in vivo stimulates apoptosis in fibroblasts through caspase-8 activation and modulates expression of pro-apoptotic genes. J Cell Physiol 2004; 201:341-348
    [72]Fabriek BO, Dijkstra CD, van den Berg TK. The macrophage scavenger receptor CD163. Immunobiology 2005; 210:153-160
    [73]Gieteling EW, Rinkel GJ. Characteristics of intracranial aneurysms and subarachnoid haemorrhage in patients with polycystic kidney disease. J Neurol 2003; 250:418-423
    [74]Moestrup SK, Moller HJ. CD 163:a regulated hemoglobin scavenger receptor with a role in the anti-inflammatory response. Ann Med 2004; 36:347-354
    [75]Nielsen MJ, Moestrup SK. Receptor targeting of hemoglobin mediated by the haptoglobins:roles beyond heme scavenging. Blood 2009; 114:764-771
    [76]Nystro"m SH. Development of intracranial aneurysms as revealed by electron microscopy. J Neurosurg 20:329-337
    [77]Houard X, Ollivier V, Louedec L. Differential inflammatory activity across human abdominal aortic aneurysms reveals neutrophil-derived leukotriene B4 as a major chemotactic factor released from the intraluminal thrombus. FASEB J 2009; 23:1376-1383
    [78]Fro"sen J. The pathobiology of saccular cerebral artery aneurysm rupture and repair. A clinicopathological and experimental approach. Helsinki University Press 2006.
    [79]Hessler JR, Morel DW, Lewis LJ et al.Lipoprotein oxidation and lipoprotein-induced cytotoxicity. Arteriosclerosis 2008; 3:215-222
    [80]Kosierkiewicz TA, Factor SM, Dickson DW et al. Immunocytochemical studies of atherosclerotic lesions of cerebral berry aneurysms. J Neuropathol Exp Neurol 2004; 53:399-406
    [81]Moore KJ, Tabas I. Macrophages in the pathogenesis of atherosclerosis. Cell 2011; 145:341-355
    [82]Nurden AT. Platelets, inflammation and tissue regeneration. Thromb Haemost 2011; 105(Suppl 1):S13-S33
    [83]Fro"sen J, Piippo A, Paetau A et al. Growth factor receptor expression and remodeling of saccular cerebral artery aneurysm walls:implications for biological therapy preventing rupture. Neurosurgery 2006; 58:534-541
    [84]Fontaine V, Jacob MP, Houard X et al. Involvement of the mural thrombus as a site of protease release and activation in human aortic aneurysms. Am J Pathol 2002; 161:1701-1710
    [85]Soehnlein O, Weber C, Lindbom L. Neutrophil granule proteins tune monocytic cell function. Trens Immunol 2009; 30:538-546
    [86]Inci S, Spetzler RF. Intracranial aneurysms and arterial hypertension:a review and hypothesis. Surg Neurol 2000; 53:530-540
    [87]Bavinzski G, Talazoglu V, Killer M et al. Gross and microscopic histopathological findings in aneurysms of the human brain treated with Guglielmi detachable coils. J Neurosurg 1999; 9:284-293
    [88]Szikora I, Seifert P, Hanzely Z et al. Histopathologic evaluation of aneurysms treatedwithGuglielmi detachable coils ormatrix detachable microcoils. AJNR Am J Neuroradiol 2006; 27:283-288
    [89]Ferns SP, Sprengers ME, van Rooij WJ et al. Coiling of intracranial aneurysms:a systematic review on initial occlusion and reopening and retreatment rates. Stroke 2009; 40:e523-e529
    [90]Michel JB, Thaunat O, Houard X et al. Topological determinants and consequences of adventitial responses to arterial wall injury. Arterioscler Thromb Vasc Biol 2007; 27:1259-1268
    [91]Tedgui A, Lever MJ. Filtration through damaged and undamaged rabbit thoracic aorta. Am J Physiol 247:H784-H791
    [92]Chien S. Effects of disturbed flow on endothelial cells. Ann Biomed Eng 2008; 36:554-562
    [93]Shojima M, Oshima M, Takagi K et al. Magnitude and role of wall shear stress on cerebral aneurysm:computational fluid dynamic study of 20 middle cerebral artery aneurysms. Stroke 2004; 35:2500-2505
    [94]Shojima M, Oshima M, Takagi K et al. Role of the bloodstream impacting force and the local pressure elevation in the rupture of cerebral aneurysms. Stroke 2005; 36:1933-1938
    [95]Laaksamo E, Tulamo R, Baumann M et al. Involvement of mitogen-activated protein kinase signaling in growth and rupture of human intracranial aneurysms. Stroke 2008; 39:886-892.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700