基于基因组分析的VC发酵混菌体系共生机制及功能强化
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
剖析Ketogulonigenium vulgare及其伴生菌Bacillus sp.相互作用机制并对混菌体系进行调控,及构建高产维生素C前体的菌株,是优化维生素C工业生产的两个重要方面。本文对该混菌体系中的产酸菌株和伴生菌株进行基因组水平系统分析,探究两菌形成共生关系的遗传背景和代谢互作机制;构建产古龙酸途径及其辅因子吡咯喹啉醌(PQQ)合成的功能模块,通过功能模块之间最优组合及其与底盘细胞之间的适应性进化,强化混菌体系的发酵水平。
     采用高通量测序技术获得实验室产酸菌K. vulgare HB602全基因组序列和工业伴生菌Bacillus endophyticus Hbe603的基因组框架序列。通过基因组分析,K.vulgare的共生特性有赖于编码了分解、吸收并利用伴生菌提供的蛋白类、肽类和氨基酸类物质的强大系统,响应环境变化的转录调控蛋白及趋化调控系统。其高效的山梨糖转化能力与基因组中5拷贝的山梨糖脱氢酶基因和2拷贝的山梨酮脱氢酶基因相关。伴生菌基因组编码完整的芽孢形成途径,但缺失大量芽孢衣合成基因及rap-phr信号系统,具有独特的芽孢衣外层结构和起始芽孢形成的调控机制,与其作为优良伴生菌的特性相关。利用K. vulgare及伴生菌B. megaterium的全基因组数据构建基因组水平代谢网络,发现产酸菌在碳水化合物、脂和辅因子/维生素代谢途径中所包含代谢反应的比例低于伴生菌,是其生长缓慢的主要原因;伴生菌可能通过弥补其在半乳糖代谢、丁酸代谢、脂肪酸分解、谷氨酸合成、甲硫氨酸循环、缬氨酸/亮氨酸/异亮氨酸降解、尿素循环、色氨酸代谢、辅因子/维生素合成等途径中的代谢缺陷形成代谢互补关系,构成稳定的共生体系。
     对混菌体系产古龙酸途径进行功能强化,构建三种产酸能力不同的产酸模块和三种产PQQ水平不同的辅因子合成模块,将两类模块进行搭配组合获得九种组合模块,并发现在K. vulgare HB602中最适配的组合形式ss-pqqABCDEN,可提高混菌体系产古龙酸水平20%(79.1±0.6g/L)。通过在营养条件下50次混菌转接传代的适应性进化,强化了组合模块在工业菌株K. vulgare HKv604中的功能,其中sdh-pqqABCDEN模块和ss-pqqABCDEN模块在工业底盘细胞内发酵水平提高最为显著,混菌产古龙酸浓度达到79.47±0.00g/L和80.48±0.55g/L。
Clarifying the interaction between Ketogulonigenium vulgare and its companionBacillus sp. and obtaining a consortium with enhanced2-keto-L-gulonic acid (2-KLG)production are of great importance to vitamin C industry. In this study, the interactionwithin the consortium was systematically analyzed on genome scale. L-sorboseconversion pathway and cofactor pyrroloquinoline quinone (PQQ) synthesis pathwaywere constructed into a series of modules, and the optimal combination betweenmodules or adaptive evolution within the chassis were investigated to increase theproduction of2-KLG.
     Genome sequencing of the laboratory strain K. vulgare HB602and the industrialcompanion strain Bacillus endophyticus Hbe603were performed by next-generationDNA sequencing technologies. The K. vulgare genome encoded a large number ofproteins involved in degrading, assimilating and metabolizing proteins, peptides oramino acids, which might be provided by the companion. Various transcriptionalregulators, chemotaxis regulators and the flagella synthesis system were predicted tobe associated with cellular response.5copies of sorbose dehydrogenase and2copiesof sorbosone dehydrogenase were present in the genome, and multi-copy of these keyenzymes in the L-sorbose pathway was responsible for efficient substrate conversion.The B. endophyticus genome contained a set of genes involved in spore formation,while lacked several spore coat synthesis genes and the rap-phr system coding genes.It indicated that B. endophyticus was able to form spore with specific spore coatstructure, which was initiated by a certain regulation mechanism. Comparisonbetween the genome scale metabolic networks of K. vulgare and companion B.megaterium showed that K. vulgare contained less reactions in metabolism ofcarbohydrate, lipid, cofactors and vitamins, indicating the poor growth of K. vulgare.The companion bacterium was necessary for K. vulgare to complement its metabolicdefect in galactose and butanoate metabolism, lipid degradation, glutamate synthesis,methionine cycle, valine/leucine/isoleucine degradation, urea cycle, tryptophanmetabolism and metabolism of cofactors and vitamins.
     Sorbose/sorbosone dehydrogenase genes (sdh and sndh) and synthesis genes(pqqABCDEN) of the adjoint cofactor PQQ was constructed into3L-sorbose conversion modules and3PQQ synthesis modules respectively.9combinations ofthese two types of modules were constructed to investigate the adaptation betweenmodules, and the combinational module of ss-pqqABCDEN exhibited optimaladaptation by a20%increase in the production of2-KLG (79.1±0.6g/L) than that ofthe parental K. vulgare HB602(65.9±0.4g/L) in co-cultures. The enhancement of2-KLG production in engineered industrial strain K. vulgare HKv604was achieved byco-cultured adaptive evolution of50transfers. Combinational modules ofsdh-pqqABCDEN and ss-pqqABCDEN demonstrated improved adaptation to theindustrial chassis consortium, which produced higher concentration of2-KLG(79.47±0.00g/L and80.48±0.55g/L) than they performed before adaptation.
引文
[1] Asakura A., Hoshino T. Isolation and characterization of a new quinoproteindehydrogenase, L-sorbose/L-sorbosone dehydrogenase. Bioscience,Biotechnology, and Biochemistry,1999,63(1):46-53
    [2] Miyazaki T., Sugisawa T., Hoshino T. Pyrroloquinoline quinone-dependentdehydrogenases from Ketogulonicigenium vulgare catalyze the directconversion of L-sorbosone to L-ascorbic acid. Applied and EnvironmentMicrobiology,2006,72(2):1487-1495
    [3] Zhang J., Liu J., Shi Z., et al. Manipulation of B. megaterium growth forefficient2-KLG production by K. vulgare. Process Biochemistry,2010,45(4):602-606
    [4] Seshadri R., Adrian L., Fouts D.E., et al. Genome sequence of thePCE-dechlorinating bacterium Dehalococcoides ethenogenes. Science,2005,307(5706):105-108
    [5] Stolyar S., Van Dien S., Hillesland K.L., et al. Metabolic modeling of amutualistic microbial community. Molecular Systems Biology,2007,3:92
    [6] Yadav V.G., De Mey M., Lim C.G., et al. The future of metabolic engineeringand synthetic biology: towards a systematic practice. Metabolic Engineering,2012,14(3):233-241
    [7] Purnick P.E., Weiss R. The second wave of synthetic biology: from modules tosystems. Nature Reviews Molecular Cell Biology,2009,10(6):410-422
    [8] Brenner K., You L., Arnold F.H. Engineering microbial consortia: a new frontierin synthetic biology. Trends in Biotechnology,2008,26(9):483-489
    [9] Sauberlich H.E. Pharmacology of vitamin C. Annual Review of Nutrition,1994,14(1):371-391
    [10] Smirnoff N. L-ascorbic acid biosynthesis. Vitamins&Hormones,2001,61:241-266
    [11] Reichstein T., Grüssner A. Eine ergiebige Synthese der l-Ascorbins ure(C-Vitamin). Helvetica Chimica Acta,1934,17(1):311-328
    [12] Reichstein T., Grüssner A., Oppenauer R. Synthese der d-und l-Ascorbins ure(C-Vitamin). Helvetica Chimica Acta,1933,16(1):1019-1033
    [13] Delic V., Sunic D., Vlasic D. Microbial reactions for the synthesis of vitamin C(L-ascorbic acid). In Vandamme, EJ, ed. Biotechnology of Vitamins, Pigmentsand Growth Factors, Elsevier Applied Science,1989:299-336
    [14]尹光琳,陶增鑫,于龙华等,L-山梨糖发酵产生维生素C前体-2-酮基-L-古龙酸的研究:Ⅰ.菌种的分离筛选和鉴定,微生物学报,1980,20(3):246-251
    [15] Urbance J.W., Bratina B.J., Stoddard S.F., et al. Taxonomic characterization ofKetogulonigenium vulgare gen. nov., sp. nov. and Ketogulonigenium robustumsp. nov., which oxidize L-sorbose to2-keto-L-gulonic acid. InternationalJournal of Systematic and Evolutionary Microbiology,2001,51(3):1059-1070
    [16] Sugisawa T., Miyazaki T., Hoshino T. Microbial production of L-ascorbic acidfrom D-sorbitol, L-sorbose, L-gulose, and L-sorbosone by Ketogulonicigeniumvulgare DSM4025. Bioscience, Biotechnology, and Biochemistry,2005,69(3):659-662
    [17] Takagi Y., Sugisawa T., Hoshino T. Continuous2-keto-L-gulonic acidfermentation from L-sorbose by Ketogulonigenium vulgare DSM4025. AppliedMicrobiology and Biotechnology,2009,82(6):1049-1056
    [18] Leduc S., de Troostembergh J.C., Lebeault J.M. Folate requirements of the2-keto-L-gulonic acid-producing strain Ketogulonigenium vulgare LMPP-20356in L-sorbose/CSL medium. Applied Microbiology and Biotechnology,2004,65(2):163-167
    [19] Zhou J., Yi H., Wang L., et al. Metabolomic analysis of the positive effects onKetogulonigenium vulgare growth and2-keto-L-gulonic acid production byreduced glutathione. OMICS,2012,16(7-8):387-396
    [20] Xu A., Yao J., Yu L., et al. Mutation of Gluconobacter oxydans and Bacillusmegaterium in a two-step process of l-ascorbic acid manufacture by ion beam.Journal of Applied Microbiology,2004,96(6):1317-1323
    [21]李义,陈宏权,VC二步发酵新组合菌系的研究,微生物学杂志,2002,22(2):26-27
    [22] Yuan Z.Y., Wei D.Z., Yin G.L., et al. Coimmobilization of Gluconobacteroxydans and Bacillus cereus for bioconversion of2-keto-L-gulonic acid. Annalsof the New York Academy of Sciences,1992,672(1):628-633
    [23] Takagi Y., Sugisawa T., Hoshino T. Continuous2-keto-L-gulonic acidfermentation by mixed culture of Ketogulonicigenium vulgare DSM4025andBacillus megaterium or Xanthomonas maltophilia. Applied Microbiology andBiotechnology,2010,86(2):469-480
    [24]仲崇斌,张忠泽,刘延吉等,环境因子对新组合菌系产生Vc前体KGA的影响,生物技术,2004,13(5):27-28
    [25]冯树,张舟,张成刚等,混合培养中巨大芽孢杆菌对氧化葡萄糖酸杆菌的作用,应用生态学报,2000,11(1):119-122
    [26]吕淑霞,刘阳,Vc二步发酵中伴生菌的作用机制,微生物学通报,2001,28(5):10-13
    [27]孙君伟,郝爱鱼,VC发酵大菌不同组分对小菌生长及产酸的影响,河北化工,2007,29(12):27-28
    [28]吕树娟,王军,虞龙等,Bacillus Megaterium在Vc二步发酵中伴生活性初步研究,中国科学院研究生院学报,2004,21(1):84-89
    [29]吕淑霞,周丽娜,冯树等,巨大芽孢杆菌在维生素C二步发酵中的作用,微生物学杂志,2001,21(3):3-4
    [30] Zhu Y., Liu J., Du G., et al. Sporulation and spore stability of Bacillusmegaterium enhance Ketogulonigenium vulgare propagation and2-keto-L-gulonic acid biosynthesis. Bioresource Technology,2012,107:399-404
    [31] Ma Q., Zhou J., Zhang W., et al. Integrated proteomic and metabolomic analysisof an artificial microbial community for two-step production of vitamin C.PLoS One,2011,6(10): e26108
    [32] Du J., Zhou J., Xue J., et al. Metabolomic profiling elucidates communitydynamics of the Ketogulonicigenium vulgare-Bacillus megaterium consortium.Metabolomics,2012,8(5):960-973
    [33] Zhou J., Ma Q., Yi H., et al. Metabolome profiling reveals metaboliccooperation between Bacillus megaterium and Ketogulonicigenium vulgareduring induced swarm motility. Applied and Environmental Microbiology,2011,77(19):7023-7030
    [34]周彬,李义,刘耀平,Vc二步发酵中的微生物生态调控,应用生态学报,2002,13(11):1452-1454
    [35] Gao Y., Yuan Y.J. Comprehensive quality evaluation of corn steep liquor in2-keto-L-gulonic acid fermentation. Journal of Agricultural and Food Chemistry,2011,59(18):9845-9853
    [36] Zhang J., Zhou J., Liu J., et al. Development of chemically defined mediasupporting high cell density growth of Ketogulonicigenium vulgare and Bacillusmegaterium. Bioresource Technology,2011,102(7):4807-4814
    [37] Liu L., Chen K., Zhang J., et al. Gelatin enhances2-keto-L-gulonic acidproduction based on Ketogulonigenium vulgare genome annotation. JBiotechnol,2011,156(3):182-187
    [38]陈克杰,周景文,刘立明等,高渗条件下利用蔗糖提升2-酮基-L-古龙酸生产效率,生物工程学报,2010,26(1):1507-1513
    [39]纪凯,刘杰,秦苏东等,金属离子促进Gluconobacter oxydans高效合成2-酮基-L-古龙酸,食品与生物技术学报,2010,29(1):139-144
    [40]郑巧双,周景文,陈孚江等,稀土元素对2-酮基-L-古龙酸发酵过程的影响,过程工程学报,2010,10(4):750-755
    [41]李国才,张忠泽,2-KLG产生菌混合发酵特性及最佳混生模式的研究,微生物学杂志,1997,17(2):1-4
    [42] Svarachorn A., Shinmyo A., Tsuchido T., et al. Autolysis of Bacillus subtilisinduced by monovalent cations. Applied Microbiology and Biotechnology,1989,30(3):299-304
    [43]谢莉,张铎,窦燕峰等,醇醛脱氢酶的分离纯化及其基因文库的构建和筛选,生物工程学报,2007,23(5):891-895
    [44]冯树,朱可丽,维生素C二步发酵中巨大芽孢杆菌对氧化葡萄糖酸杆菌生长和产酸的影响,微生物学杂志,1998,18(1):6-9
    [45]高明,吕淑霞,靳亚楠等,维生素C二步发酵新菌系发酵条件优化,食品工业科技,2012,33(014):235-238
    [46]徐婷婷,高明,吕淑霞等,响应面法优化Vc二步发酵新菌系产2-酮基-L-古龙酸的培养基,微生物学杂志,2012,32(2):47-53
    [47] Zhao S., Tang M., Wang J., et al. Mutagenic effects of BM302: GO112inducedby low-energy ion beam implantation. Plasma Science and Technology,2007,9(4):508-512
    [48]郭礼强,郭立格,卢育新等,Vc二步发酵伴生菌苏云金芽孢杆菌的选育,河北大学学报(自然科学版),2006,26(001):108-111.
    [49] Gupta A., Singh V.K., Qazi G., et al. Gluconobacter oxydans: itsbiotechnological applications. Journal of Molecular Microbiology andBiotechnology,2001,3(3):445-456
    [50] Makover S., Ramsey G.B., Vane F.M., et al. New mechanisms for thebiosynthesis and metabolism of2-keto-L-gulonic acid in bacteria.Biotechnology and Bioengineering,1975,17(10):1485-1514
    [51] Hoshino T., Sugisawa T., Tazoe M., et al. Metabolic Pathway for2-keto-L-gulonic acid formation in Gluconobacter melanogenus IFO3293.Agricultural and Biological Chemistry,1990,54(5):1211-1218
    [52] Sugisawa T., Hoshino T., Nomura S., et al. Isolation and characterization ofmembrane-bound L-sorbose dehydrogenase from Gluconobacter melanogenusUV10. Agricultural and Biological Chemistry,1991,55(2):363-370
    [53] Hancock R.D., Viola R. Biotechnological approaches for L-ascorbic acidproduction. Trends in Biotechnology,2002,20(7):299-305
    [54] Hoshino T., Sugisawa T., Shinjoh M., et al. Membrane-bound D-sorbitoldehydrogenase of Gluconobacter suboxydans IFO3255--enzymatic and geneticcharacterization. Biochimica et Biophysica Acta,2003,1647(1-2):278-288
    [55] Shinjoh M., Tomiyama N., Asakura A., et al. Cloning and nucleotide sequencingof the membrane-bound L-sorbosone dehydrogenase gene of Acetobacterliquefaciens IFO12258and its expression in Gluconobacter oxydans. Appliedand Environment Microbiology,1995,61(2):413-420
    [56] Saito Y., Ishii Y., Hayashi H., et al. Cloning of genes coding for L-sorbose andL-sorbosone dehydrogenases from Gluconobacter oxydans and microbialproduction of2-keto-L-gulonate, a precursor of L-ascorbic acid, in arecombinant G. oxydans strain. Applied and Environment Microbiology,1997,63(2):454-460
    [57] Saito Y., Ishii Y., Hayashi H., et al. Direct fermentation of2-keto-L-gulonic acidin recombinant Gluconobacter oxydans. Biotechnology and Bioengineering,1998,58(2-3):309-315
    [58] Shibata T., Ichikawa C., Matsuura M., et al. Metabolic engineering study on thedirect fermentation of2-keto-L-gulonic acid, a key intermediate of l-ascorbicacid in Pseudomonas putida IFO3738. Journal of Bioscience andBioengineering,2000,90(2):223-225
    [59] Asakura A., Hoshino T., Ojima S., et al. Alcohol/aldehyde dehydrogenase fromgluconobacter oxydans DSM4025. US Patent,5437989,2008
    [60] Fu S., Zhang W., Guo A., et al. Identification of promoters of twodehydrogenase genes in Ketogulonicigenium vulgare DSM4025and theirstrength comparison in K. vulgare and Escherichia coli. Applied Microbiologyand Biotechnology,2007,75(5):1127-1132
    [61] Cai L., Yuan M.Q., Li Z.J., et al. Genetic engineering of Ketogulonigeniumvulgare for enhanced production of2-keto-L-gulonic acid. Journal ofBiotechnology,2012,157(2):320-325
    [62] Sonoyama T., Tani H., Matsuda K., et al. Production of2-keto-L-gulonic acidfrom D-glucose by two-stage fermentation. Applied and EnvironmentMicrobiology,1982,43(5):1064-1069
    [63] Anderson S., Marks C.B., Lazarus R., et al. Production of2-keto-L-gulonate, anintermediate in L-ascorbate synthesis, by a genetically modified Erwiniaherbicola. Science,1985,230(4722):144-149
    [64] Hancock R.D., Galpin J.R., Viola R. Biosynthesis of L-ascorbic acid (vitamin C)by Saccharomyces cerevisiae. FEMS Microbiology Letters,2000,186(2):245-250
    [65] Sauer M., Branduardi P., Valli M., et al. Production of L-ascorbic acid bymetabolically engineered Saccharomyces cerevisiae and Zygosaccharomycesbailii. Applied and Environment Microbiology,2004,70(10):6086-6091
    [66] Branduardi P., Fossati T., Sauer M., et al. Biosynthesis of vitamin C by yeastleads to increased stress resistance. PLoS One,2007,2(10): e1092
    [67] Clark N.A., Thomas B.H. Microorganisms and Vitamin Production in GreenPlants. Science,1934,79(2060):571-572
    [68] Banta S., Anderson S. Verification of a novel NADH-binding motif:combinatorial mutagenesis of three amino acids in the cofactor-binding pocketof Corynebacterium2,5-diketo-D-gluconic acid reductase. Journal of MolecularEvolution,2002,55(6):623-631
    [69] Banta S., Boston M., Jarnagin A., et al. Mathematical modeling of in vitroenzymatic production of2-keto-L-gulonic acid using NAD(H) or NADP(H) ascofactors. Metabolic Engineering,2002,4(4):273-284
    [70] Banta S., Swanson B.A., Wu S., et al. Optimizing an artificial metabolicpathway: engineering the cofactor specificity of Corynebacterium2,5-diketo-D-gluconic acid reductase for use in vitamin C biosynthesis.Biochemistry,2002,41(20):6226-6236
    [71] Soemphol W., Toyama H., Moonmangmee D., et al. L-sorbose reductase and itstranscriptional regulator involved in L-sorbose utilization of Gluconobacterfrateurii. Journal of Bacteriology,2007,189(13):4800-4808
    [72] Mustafa G., Migita C.T., Ishikawa Y., et al. Menaquinone as well as ubiquinoneas a bound quinone crucial for catalytic activity and intramolecular electrontransfer in Escherichia coli membrane-bound glucose dehydrogenase. Journal ofBiological Chemistry,2008,283(42):28169-28175
    [73] Mustafa G., Ishikawa Y., Kobayashi K., et al. Amino acid residues interactingwith both the bound quinone and coenzyme, pyrroloquinoline quinone, inEscherichia coli membrane-bound glucose dehydrogenase. Journal ofBiological Chemistry,2008,283(32):22215-22221
    [74] Gómez-Manzo S., Chavez-Pacheco J.L., Contreras-Zentella M., et al. Molecularand catalytic properties of the aldehyde dehydrogenase of Gluconacetobacterdiazotrophicus, a quinoheme protein containing pyrroloquinoline quinone,cytochrome b, and cytochrome c. Journal of Bacteriology,2010,192(21):5718-5724
    [75] Goosen N., Horsman H.P., Huinen R.G., et al. Acinetobacter calcoaceticus genesinvolved in biosynthesis of the coenzyme pyrroloquinoline-quinone: nucleotidesequence and expression in Escherichia coli K-12. Journal of Bacteriology,1989,171(1):447-455
    [76] Andreeva I.G., Golubeva L.I., Kuvaeva T.M., et al. Identification of Pantoeaananatis gene encoding membrane pyrroloquinoline quinone (PQQ)-dependentglucose dehydrogenase and pqqABCDEF operon essential for PQQ biosynthesis.FEMS Microbiology Letters,2011,318(1):55-60
    [77] Gliese N., Khodaverdi V., Schobert M., et al. AgmR controls transcription of aregulon with several operons essential for ethanol oxidation in Pseudomonasaeruginosa ATCC17933. Microbiology,2004,150(6):1851-1857
    [78] Blattner F.R., Plunkett G., Bloch C.A., et al. The complete genome sequence ofEscherichia coli K-12. Science,1997,277(5331):1453-1462
    [79] Shrivastava M., Rajpurohit Y.S., Misra H.S., et al. Survival ofphosphate-solubilizing bacteria against DNA damaging agents. CanadianJournal of Microbiology,2010,56(10):822-830
    [80] Yang X.P., Zhong G.F., Lin J.P., et al. Pyrroloquinoline quinone biosynthesis inEscherichia coli through expression of the Gluconobacter oxydans pqqABCDEgene cluster. Journal of Industrial Microbiology and Biotechnology,2010,37(6):575-580
    [81] Meulenberg J.J., Sellink E., Loenen W.A., et al. Cloning of Klebsiellapneumoniae pqq genes and PQQ biosynthesis in Escherichia coli. FEMSMicrobiology Letters,1990,59(3):337-343
    [82] Holscher T., Gorisch H. Knockout and overexpression of pyrroloquinolinequinone biosynthetic genes in Gluconobacter oxydans621H. Journal ofBacteriology,2006,188(21):7668-7676
    [83] Margulies M., Egholm M., Altman W.E., et al. Genome sequencing inmicrofabricated high-density picolitre reactors. Nature,2005,437(7057):376-380
    [84] Loman N.J., Constantinidou C., Chan J.Z., et al. High-throughput bacterialgenome sequencing: an embarrassment of choice, a world of opportunity.Nature Reviews Microbiology,2012,10(9):599-606
    [85] Bowers J., Mitchell J., Beer E., et al. Virtual terminator nucleotides fornext-generation DNA sequencing. Nature Methods,2009,6(8):593-595
    [86] Eid J., Fehr A., Gray J., et al. Real-time DNA sequencing from singlepolymerase molecules. Science,2009,323(5910):133-138
    [87] Tripp H.J., Bench S.R., Turk K.A., et al. Metabolic streamlining in anopen-ocean nitrogen-fixing cyanobacterium. Nature,2010,464(7285):90-94
    [88] McInerney M.J., Rohlin L., Mouttaki H., et al. The genome of Syntrophusaciditrophicus: life at the thermodynamic limit of microbial growth.Proceedings of the National Academy of Sciences,2007,104(18):7600-7605
    [89] McCutcheon J.P., Moran N.A. Parallel genomic evolution and metabolicinterdependence in an ancient symbiosis. Proceedings of the National Academyof Sciences,2007,104(49):19392-19397
    [90] Young J.P., Crossman L.C., Johnston A.W., et al. The genome of Rhizobiumleguminosarum has recognizable core and accessory components. GenomeBiology,2006,7(4): R34
    [91] Bertalan M., Albano R., de Padua V., et al. Complete genome sequence of thesugarcane nitrogen-fixing endophyte Gluconacetobacter diazotrophicus Pal5.BMC Genomics,2009,10:450
    [92] Taghavi S., van der Lelie D., Hoffman A., et al. Genome sequence of the plantgrowth promoting endophytic bacterium Enterobacter sp.638. PLoS Genetics,2010,6(5): e1000943
    [93] Hong S.H., Kim J.S., Lee S.Y., et al. The genome sequence of the capnophilicrumen bacterium Mannheimia succiniciproducens. Nature Biotechnology,2004,22(10):1275-1281
    [94] Hongoh Y., Sharma V.K., Prakash T., et al. Genome of an endosymbiontcoupling N2fixation to cellulolysis within protist cells in termite gut. Science,2008,322(5904):1108-1109
    [95] Xu J., Bjursell M.K., Himrod J., et al. A genomic view of thehuman-Bacteroides thetaiotaomicron symbiosis. Science,2003,299(5615):2074-2076
    [96] Sela D.A., Chapman J., Adeuya A., et al. The genome sequence ofBifidobacterium longum subsp. infantis reveals adaptations for milk utilizationwithin the infant microbiome. Proceedings of the National Academy of Sciences,2008,105(48):18964-18969
    [97] Ventura M., Turroni F., Zomer A., et al. The Bifidobacterium dentium Bd1genome sequence reflects its genetic adaptation to the human oral cavity. PLoSGenetics,2009,5(12): e1000785
    [98] Luo Y., Xu X., Ding Z., et al. Complete genome of Phenylobacteriumzucineum--a novel facultative intracellular bacterium isolated from humanerythroleukemia cell line K562. BMC Genomics,2008,9:386
    [99] Greenberg D.E., Porcella S.F., Zelazny A.M., et al. Genome sequence analysisof the emerging human pathogenic acetic acid bacterium Granulibacterbethesdensis. Journal of Bacteriology,2007,189(23):8727-8736
    [100] Durot M., Bourguignon P.Y., Schachter V. Genome-scale models of bacterialmetabolism: reconstruction and applications. FEMS Microbiology Review,2009,33(1):164-190
    [101] Francke C., Siezen R.J., Teusink B. Reconstructing the metabolic network of abacterium from its genome. Trends in Microbiology,2005,13(11):550-558
    [102] Oberhardt M.A., Palsson B.O., Papin J.A. Applications of genome-scalemetabolic reconstructions. Molecular Systems Biology,2009,5:320
    [103] Reed J.L., Famili I., Thiele I., et al. Towards multidimensional genomeannotation. Nature Reviews Genetics,2006,7(2):130-141
    [104] Park J.M., Kim T.Y., Lee S.Y. Constraints-based genome-scale metabolicsimulation for systems metabolic engineering. Biotechnology Advances,2009,27(6):979-988
    [105] Salimi F., Zhuang K., Mahadevan R. Genome-scale metabolic modeling of aclostridial co-culture for consolidated bioprocessing. Biotechnol Journal,2010,5(7):726-738
    [106] Bizukojc M., Dietz D., Sun J., et al. Metabolic modelling of syntrophic-likegrowth of a1,3-propanediol producer, Clostridium butyricum, and amethanogenic archeon, Methanosarcina mazei, under anaerobic conditions.Bioprocess and Biosystems Engineering,2010,33(4):507-523
    [107] Zhuang K., Izallalen M., Mouser P., et al. Genome-scale dynamic modeling ofthe competition between Rhodoferax and Geobacter in anoxic subsurfaceenvironments. The ISME Journal,2011,5(2):305-316
    [108] Heinken A., Sahoo S., Fleming R.M., et al. Systems-level characterization of ahost-microbe metabolic symbiosis in the mammalian gut. Gut Microbes,2013,4(1):28-40
    [109] Boyle P.M., Silver P.A. Parts plus pipes: synthetic biology approaches tometabolic engineering. Metabolic Engineering,2012,14(3):223-232
    [110] Martin V.J., Pitera D.J., Withers S.T., et al. Engineering a mevalonate pathwayin Escherichia coli for production of terpenoids. Nature Biotechnology,2003,21(7):796-802
    [111] Ro D.K., Paradise E.M., Ouellet M., et al. Production of the antimalarial drugprecursor artemisinic acid in engineered yeast. Nature,2006,440(7086):940-943
    [112] Ajikumar P.K., Xiao W.H., Tyo K.E., et al. Isoprenoid pathway optimization forTaxol precursor overproduction in Escherichia coli. Science,2010,330(6000):70-74
    [113] Zhang F., Carothers J.M., Keasling J.D. Design of a dynamic sensor-regulatorsystem for production of chemicals and fuels derived from fatty acids. NatureBiotechnology,2012,30(4):354-359
    [114] Juminaga D., Baidoo E.E., Redding-Johanson A.M., et al. Modular engineeringof L-tyrosine production in Escherichia coli. Applied and EnvironmentMicrobiology,2012,78(1):89-98
    [115] Wu J., Du G., Zhou J., et al. Metabolic engineering of Escherichia coli for(2S)-pinocembrin production from glucose by a modular metabolic strategy.Metabolic Engineering,2013,16:48-55
    [116] Berrios-Rivera S.J., Bennett G.N., San K.Y. Metabolic engineering ofEscherichia coli: increase of NADH availability by overexpressing anNAD(+)-dependent formate dehydrogenase. Metabolic Engineering,2002,4(3):217-229
    [117] Sanchez A.M., Bennett G.N., San K.Y. Effect of different levels of NADHavailability on metabolic fluxes of Escherichia coli chemostat cultures indefined medium. Journal of Biotechnology,2005,117(4):395-405
    [118] San K.Y., Bennett G.N., Berrios-Rivera S.J., et al. Metabolic engineeringthrough cofactor manipulation and its effects on metabolic flux redistribution inEscherichia coli. Metabolic Engineering,2002,4(2):182-192
    [119] Zhang X., Agrawal A., San K.Y. Improving fatty acid production in Escherichiacoli through the overexpression of malonyl coA-acyl carrier protein transacylase.Biotechnology Progress,2012,28(1):60-65
    [120] Heux S., Cachon R., Dequin S. Cofactor engineering in Saccharomycescerevisiae: Expression of a H2O-forming NADH oxidase and impact on redoxmetabolism. Metabolic Engineering,2006,8(4):303-314
    [121] Shen C.R., Lan E.I., Dekishima Y., et al. Driving forces enable high-titeranaerobic1-butanol synthesis in Escherichia coli. Applied and EnvironmentMicrobiology,2011,77(9):2905-2915
    [122] Shi A., Zhu X., Lu J., et al. Activating transhydrogenase and NAD kinase incombination for improving isobutanol production. Metabolic Engineering,2013,16:1-10
    [123] Zhao J., Li Q., Sun T., et al. Engineering central metabolic modules ofEscherichia coli for improving beta-carotene production. MetabolicEngineering,2013,17:42-50
    [124] Lynch S.A., Gill R.T. Synthetic biology: new strategies for directing design.Metabolic Engineering,2012,14(3):205-211
    [125] Warner J.R., Reeder P.J., Karimpour-Fard A., et al. Rapid profiling of amicrobial genome using mixtures of barcoded oligonucleotides. NatureBiotechnology,2010,28(8):856-862
    [126] Wang H.H., Isaacs F.J., Carr P.A., et al. Programming cells by multiplexgenome engineering and accelerated evolution. Nature,2009,460(7257):894-898
    [127] Santos C.N.S., Stephanopoulos G. Combinatorial engineering of microbes foroptimizing cellular phenotype. Current Opinion in Chemical Biology,2008,12(2):168-176
    [128] Du J., Yuan Y., Si T., et al. Customized optimization of metabolic pathways bycombinatorial transcriptional engineering. Nucleic Acids Research,2012,40(18): e142
    [129] Portnoy V.A., Bezdan D., Zengler K. Adaptive laboratory evolution--harnessingthe power of biology for metabolic engineering. Current Opinion inBiotechnology,2011,22(4):590-594
    [130] Atsumi S., Wu T.Y., Machado I.M., et al. Evolution, genomic analysis, andreconstruction of isobutanol tolerance in Escherichia coli. Molecular SystemsBiology,2010,6:449
    [131] Wang Y., Manow R., Finan C., et al. Adaptive evolution of nontransgenicEscherichia coli KC01for improved ethanol tolerance and homoethanolfermentation from xylose. Journal of Industrial Microbiology andBiotechnology,2011,38(9):1371-1377
    [132] Hong K.K., Nielsen J. Adaptively evolved yeast mutants on galactose showtrade-offs in carbon utilization on glucose. Metabolic Engineering,2013,16:78-86
    [133] Cadiere A., Ortiz-Julien A., Camarasa C., et al. Evolutionary engineeredSaccharomyces cerevisiae wine yeast strains with increased in vivo flux throughthe pentose phosphate pathway. Metabolic Engineering,2011,13(3):263-271
    [134] Peng B., Shen Y., Li X., et al. Improvement of xylose fermentation inrespiratory-deficient xylose-fermenting Saccharomyces cerevisiae. MetabolicEngineering,2012,14(1):9-18
    [135] Sauer U. Evolutionary engineering of industrially important microbialphenotypes. Advances in Biochemical Engineering/Biotechnology,2001,73:129-169
    [136] Summers Z.M., Fogarty H.E., Leang C., et al. Direct exchange of electronswithin aggregates of an evolved syntrophic coculture of anaerobic bacteria.Science,2010,330(6009):1413-1415
    [137] Hillesland K.L., Stahl D.A. Rapid evolution of stability and productivity at theorigin of a microbial mutualism. Proceedings of the National Academy ofSciences,2010,107(5):2124-2129
    [138] Hansen S.K., Rainey P.B., Haagensen J.A., et al. Evolution of speciesinteractions in a biofilm community. Nature,2007,445(7127):533-536
    [139] Zou Y., Hu M., Lv Y., et al. Enhancement of2-keto-gulonic acid yield by serialsubcultivation of co-cultures of Bacillus cereus and Ketogulonigenium vulgare.Bioresource Technology,2013,132:370-373.
    [140] Basu S., Mehreja R., Thiberge S., et al. Spatiotemporal control of geneexpression with pulse-generating networks. Proceedings of the NationalAcademy of Sciences,2004,101(17):6355-6360
    [141] Basu S., Gerchman Y., Collins C.H., et al. A synthetic multicellular system forprogrammed pattern formation. Nature,2005,434(7037):1130-1134
    [142] Brenner K., Karig D.K., Weiss R., et al. Engineered bidirectionalcommunication mediates a consensus in a microbial biofilm consortium.Proceedings of the National Academy of Sciences,2007,104(44):17300-17304
    [143] Balagaddé F.K., Song H., Ozaki J., et al. A synthetic Escherichia colipredator–prey ecosystem. Molecular Systems Biology,2008,4:187
    [144] Hu B., Du J., Zou R.Y., et al. An environment-sensitive synthetic microbialecosystem. PLoS One,2010,5(5): e10619
    [145] Weber W., Baba D.E., Fussenegger M. Synthetic ecosystems based on airborneinter-and intrakingdom communication. Proceedings of the National Academyof Sciences,2007,104(25):10435-10440
    [146] Tamsir A., Tabor J.J., Voigt C.A. Robust multicellular computing usinggenetically encoded NOR gates and chemical 'wires'. Nature,2011,469(7329):212-215
    [147] Regot S., Macia J., Conde N., et al. Distributed biological computation withmulticellular engineered networks. Nature,2011,469(7329):207-211
    [148] Li B., You L. Synthetic biology: division of logic labour. Nature,2011,469(7329):171-172
    [149] Chuang J.S., Rivoire O., Leibler S. Cooperation and Hamilton's rule in a simplesynthetic microbial system. Molecular Systems Biology,2010,6:398
    [150] Hong S.H., Hegde M., Kim J., et al. Synthetic quorum-sensing circuit to controlconsortial biofilm formation and dispersal in a microfluidic device. NatureCommunications,2012,3:613
    [151] Eiteman M.A., Lee S.A., Altman E. A co-fermentation strategy to consumesugar mixtures effectively. Journal of Biological Engineering,2008,2:3
    [152] Shin H.D., McClendon S., Vo T., et al. Escherichia coli binary cultureengineered for direct fermentation of hemicellulose to a biofuel. Applied andEnvironment Microbiology,2010,76(24):8150-8159
    [153] Tsai S.L., Goyal G., Chen W. Surface display of a functional minicellulosome byintracellular complementation using a synthetic yeast consortium and itsapplication to cellulose hydrolysis and ethanol production. Applied andEnvironment Microbiology,2010,76(22):7514-7520
    [154] Goyal G., Tsai S.L., Madan B., et al. Simultaneous cell growth and ethanolproduction from cellulose by an engineered yeast consortium displaying afunctional mini-cellulosome. Microbial Cell Factories,2011,10:89
    [155] Duan F., March J.C. Engineered bacterial communication prevents Vibriocholerae virulence in an infant mouse model. Proceedings of the NationalAcademy of Sciences,2010,107(25):11260-11264
    [156] Saeidi N., Wong C.K., Lo T.M., et al. Engineering microbes to sense anderadicate Pseudomonas aeruginosa, a human pathogen. Molecular SystemsBiology,2011,7:521
    [157] Perkel J.M. Streamlined engineering for synthetic biology. Nature methods,2012,10(1):39
    [158] Geiger O., G risch H. Enzymatic determination of pyrroloquinoline quinoneusing crude membranes from Escherichia coli. Analytical Biochemistry,1987,164(2):418-423
    [159] Delcher A.L., Harmon D., Kasif S., et al. Improved microbial geneidentification with GLIMMER. Nucleic Acids Research,1999,27(23):4636-4641
    [160] Lagesen K., Hallin P., R dland E.A., et al. RNAmmer: consistent and rapidannotation of ribosomal RNA genes. Nucleic Acids Research,2007,35(9):3100-3108
    [161] Nakai K., Horton P. PSORT: a program for detecting sorting signals in proteinsand predicting their subcellular localization. Trends in Biochemical Sciences,1999,24(1):34-36
    [162] Petersen T.N., Brunak S., von Heijne G., et al. SignalP4.0: discriminating signalpeptides from transmembrane regions. Nature Methods,2011,8(10):785-786
    [163] Tarailo-Graovac M., Chen N. Using RepeatMasker to identify repetitiveelements in genomic sequences. Current Protocols in Bioinformatics,2009,4:4.10
    [164] Tamura K., Peterson D., Peterson N., et al. MEGA5: molecular evolutionarygenetics analysis using maximum likelihood, evolutionary distance, andmaximum parsimony methods. Molecular Biology and Evolution,2011,28(10):2731-2739
    [165] Thiele I., Palsson B.O. A protocol for generating a high-quality genome-scalemetabolic reconstruction. Nature Protocols,2010,5(1):93-121
    [166] Feist A.M., Henry C.S., Reed J.L., et al. A genome-scale metabolicreconstruction for Escherichia coli K-12MG1655that accounts for1260ORFsand thermodynamic information. Molecular Systems Biology,2007,3:121
    [167] Oh Y.K., Palsson B.O., Park S.M., et al. Genome-scale reconstruction ofmetabolic network in Bacillus subtilis based on high-throughput phenotypingand gene essentiality data. Journal of Biological Chemistry,2007,282(39):28791-28799
    [168] Smoot M.E., Ono K., Ruscheinski J., et al. Cytoscape2.8: new features for dataintegration and network visualization. Bioinformatics,2011,27(3):431-432
    [169] Saito R., Smoot M.E., Ono K., et al. A travel guide to Cytoscape plugins. NatureMethods,2012,9(11):1069-1076
    [171]丁明珠,酵母对纤维素水解液中复合抑制剂耐受的系统分析与解耦:[博士学位论文],天津;天津大学,2011
    [171] Kovach M.E., Elzer P.H., Hill D.S., et al. Four new derivatives of thebroad-host-range cloning vector pBBR1MCS, carrying differentantibiotic-resistance cassettes. Gene,1995,166(1):175-176
    [172]杨帆,贾茜,熊朝晖等,酮古龙酸菌WB0104的全基因组分析,科学通报,2006,51(8):923-927
    [173] Xiong X.H., Han S., Wang J.H., et al. Complete genome sequence of thebacterium Ketogulonicigenium vulgare Y25. Journal of Bacteriology,2011,193(1):315-316
    [174] Liu L., Li Y., Zhang J., et al. Complete genome sequence of the industrial strainKetogulonicigenium vulgare WSH-001. Journal of Bacteriology,2011,193(21):6108-6109
    [175] Akiyama Y., Kanehara K., Ito K. RseP (YaeL), an Escherichia coli RIP protease,cleaves transmembrane sequences. The EMBO journal,2004,23(22):4434-4442
    [176] Chin D.T., Goff S., Webster T., et al. Sequence of the lon gene in Escherichiacoli. A heat-shock gene which encodes the ATP-dependent protease La. Journalof Biological Chemistry,1988,263(24):11718-11728
    [177] Lee I., Berdis A.J., Suzuki C.K. Recent developments in the mechanisticenzymology of the ATP-dependent Lon protease from Escherichia coli:highlights from kinetic studies. Molecular BioSystems,2006,2(10):477-483
    [178] Couvreur B., Wattiez R., Bollen A., et al. Eubacterial HslV and HslU subunitshomologs in primordial eukaryotes. Molecular Biology and Evolution,2002,19(12):2110-2117
    [179] Kress W., Maglica., Weber-Ban E. Clp chaperone–proteases: structure andfunction. Research in Microbiology,2009,160(9):618-628
    [180] Lang A.S., Beatty J.T. The gene transfer agent of Rhodobacter capsulatus and"constitutive transduction" in prokaryotes. Archives of Microbiology,2001,175(4):241-249
    [181] Lang A.S., Beatty J.T. Importance of widespread gene transfer agent genes inalpha-proteobacteria. Trends in Microbiology,2007,15(2):54-62
    [182] Lang A.S., Taylor T.A., Beatty J.T. Evolutionary implications of phylogeneticanalyses of the gene transfer agent (GTA) of Rhodobacter capsulatus. Journal ofMolecular Evolution,2002,55(5):534-543
    [183] Ma Q., Zhang W., Zhang L., et al. Proteomic analysis of Ketogulonicigeniumvulgare under glutathione reveals high demand for thiamin transport andantioxidant protection. PLoS One,2012,7(2): e32156
    [184] Weeks D.L., Eskandari S., Scott D.R., et al. A H+-gated urea channel: the linkbetween Helicobacter pylori urease and gastric colonization. Science,2000,287(5452):482-485
    [185] Forward J.A., Behrendt M.C., Wyborn N.R., et al. TRAP transporters: a newfamily of periplasmic solute transport systems encoded by the dctPQM genes ofRhodobacter capsulatus and by homologs in diverse gram-negative bacteria.Journal of Bacteriology,1997,179(17):5482-5493
    [186] Coulton J.W., Mason P., Allatt D.D. fhuC and fhuD genes for iron(III)-ferrichrome transport into Escherichia coli K-12. Journal of Bacteriology,1987,169(8):3844-3849
    [187] Maddocks S.E., Oyston P.C. Structure and function of the LysR-typetranscriptional regulator (LTTR) family proteins. Microbiology,2008,154(12):3609-3623
    [188] Haydon D.J., Guest J.R. A new family of bacterial regulatory proteins. FEMSMicrobiology Letters,1991,79(2):291-295
    [189] Brinkman A.B., Ettema T.J., De Vos W.M., et al. The Lrp family oftranscriptional regulators. Molecular Microbiology,2003,48(2):287-294
    [190] Holtel A., Merrick M. Identification of the Klebsiella pneumoniae glnB gene:nucleotide sequence of wild-type and mutant alleles. Molecular and GeneralGenetics,1988,215(1):134-138
    [191] Huergo L.F., Souza E.M., Steffens M., et al. Regulation of glnB gene promoterexpression in Azospirillum brasilense by the NtrC protein. FEMS MicrobiologyLetters,2006,223(1):33-40
    [192] Pawlowski K., Klosse U., Bruijn F.d. Characterization of a novel Azorhizobiumcaulinodans ORS571two-component regulatory system, NtrY/NtrX, involvedin nitrogen fixation and metabolism. Molecular and General Genetics MGG,1991,231(1):124-138
    [193] Bairoch A. A possible mechanism for metal-ion induced DNA-proteindissociation in a family of prokaryotic transcriptional regulators. Nucleic AcidsResearch,1993,21(10):2515
    [194] Helmann J.D., Ballard B.T., Walsh C.T. The MerR metalloregulatory proteinbinds mercuric ion as a tricoordinate, metal-bridged dimer. Science,1990,247(4945):946-948
    [195] Holscher T., Schleyer U., Merfort M., et al. Glucose oxidation andPQQ-dependent dehydrogenases in Gluconobacter oxydans. Journal ofMolecular Microbiology and Biotechnology,2009,16(1-2):6-13
    [196] Puehringer S., Metlitzky M., Schwarzenbacher R. The pyrroloquinoline quinonebiosynthesis pathway revisited: a structural approach. BMC Biochemistry,2008,9:8
    [197]包其郁,杨焕明,原核生物基因组DNA链组成的非对称性,微生物学报,2002,42(6):755-758
    [198] Liu L., Li Y., Zhang J., et al. Complete genome sequence of the industrial strainBacillus megaterium WSH-002. Journal of Bacteriology,2011,193(22):6389-6390
    [199] DeLong E.F., Wickham G.S., Pace N.R. Phylogenetic stains: ribosomalRNA-based probes for the identification of single cells. Science,1989,243(4896):1360-1363
    [200] Saitou N., Nei M. The neighbor-joining method: a new method forreconstructing phylogenetic trees. Molecular Biology and Evolution,1987,4(4):406-425
    [201] Challacombe J.F., Altherr M.R., Xie G., et al. The complete genome sequence ofBacillus thuringiensis Al Hakam. Journal of Bacteriology,2007,189(9):3680-3681
    [202] Ivanova N., Sorokin A., Anderson I., et al. Genome sequence of Bacillus cereusand comparative analysis with Bacillus anthracis. Nature,2003,423(6935):87-91
    [203] Eppinger M., Bunk B., Johns M.A., et al. Genome sequences of thebiotechnologically important Bacillus megaterium strains QM B1551andDSM319. Journal of Bacteriology,2011,193(16):4199-4213
    [204] Eichenberger P., Fujita M., Jensen S.T., et al. The program of gene transcriptionfor a single differentiating cell type during sporulation in Bacillus subtilis. PLoSBiology,2004,2(10): e328
    [205] Paredes C.J., Alsaker K.V., Papoutsakis E.T. A comparative genomic view ofclostridial sporulation and physiology. Nature Reviews Microbiology,2005,3(12):969-978
    [206] Britton R.A., Eichenberger P., Gonzalez-Pastor J.E., et al. Genome-wideanalysis of the stationary-phase sigma factor (sigma-H) regulon of Bacillussubtilis. Journal of Bacteriology,2002,184(17):4881-4890
    [207] Jiang M., Shao W., Perego M., et al. Multiple histidine kinases regulate entryinto stationary phase and sporulation in Bacillus subtilis. MolecularMicrobiology,2000,38(3):535-542
    [208] LeDeaux J.R., Yu N., Grossman A.D. Different roles for KinA, KinB, and KinCin the initiation of sporulation in Bacillus subtilis. Journal of Bacteriology,1995,177(3):861-863
    [209] Driks A. Bacillus subtilis spore coat. Microbiology and Molecular BiologyReviews,1999,63(1):1-20
    [210] Anderson I., Sorokin A., Kapatral V., et al. Comparative genome analysis ofBacillus cereus group genomes with Bacillus subtilis. FEMS MicrobiologyLetters,2005,250(2):175-184
    [211] Kramer N., Hahn J., Dubnau D. Multiple interactions among the competenceproteins of Bacillus subtilis. Molecular Microbiology,2007,65(2):454-464
    [212] Claverys J.P., Martin B. Bacterial "competence" genes: signatures of activetransformation, or only remnants? Trends in Microbiology,2003,11(4):161-165
    [213] Chung Y.S., Dubnau D. All seven comG open reading frames are required forDNA binding during transformation of competent Bacillus subtilis. Journal ofBacteriology,1998,180(1):41-45
    [214] Vijay K., Brody M.S., Fredlund E., et al. A PP2C phosphatase containing a PASdomain is required to convey signals of energy stress to the sigmaBtranscription factor of Bacillus subtilis. Molecular Microbiology,2000,35(1):180-188
    [215] Horsburgh M.J., Moir A. Sigma M, an ECF RNA polymerase sigma factor ofBacillus subtilis168, is essential for growth and survival in high concentrationsof salt. Molecular Microbiology,1999,32(1):41-50
    [216] Pottathil M., Lazazzera B.A. The extracellular Phr peptide-Rap phosphatasesignaling circuit of Bacillus subtilis. Frontiers in Bioscience,2003,8:32-45
    [217] Takami H., Nakasone K., Takaki Y., et al. Complete genome sequence of thealkaliphilic bacterium Bacillus halodurans and genomic sequence comparisonwith Bacillus subtilis. Nucleic Acids Research,2000,28(21):4317-4331
    [218] Derre I., Rapoport G., Devine K., et al. ClpE, a novel type of HSP100ATPase,is part of the CtsR heat shock regulon of Bacillus subtilis. MolecularMicrobiology,1999,32(3):581-593
    [219] Gerth U., Kruger E., Derre I., et al. Stress induction of the Bacillus subtilis clpPgene encoding a homologue of the proteolytic component of the Clp proteaseand the involvement of ClpP and ClpX in stress tolerance. MolecularMicrobiology,1998,28(4):787-802
    [220] Kruger E., Zuhlke D., Witt E., et al. Clp-mediated proteolysis in Gram-positivebacteria is autoregulated by the stability of a repressor. EMBO Journal,2001,20(4):852-863
    [221] Nair S., Derre I., Msadek T., et al. CtsR controls class III heat shock geneexpression in the human pathogen Listeria monocytogenes. MolecularMicrobiology,2000,35(4):800-811
    [222] de Oliveira N.E., Abranches J., Gaca A.O., et al. clpB, a class III heat-shockgene regulated by CtsR, is involved in thermotolerance and virulence ofEnterococcus faecalis. Microbiology,2011,157(3):656-665
    [223] Ito M., Guffanti A.A., Oudega B., et al. mrp, a multigene, multifunctional locusin Bacillus subtilis with roles in resistance to cholate and to Na+and in pHhomeostasis. Journal of Bacteriology,1999,181(8):2394-2402
    [224] Janto B., Ahmed A., Ito M., et al. Genome of alkaliphilic Bacillus pseudofirmusOF4reveals adaptations that support the ability to grow in an external pH rangefrom7.5to11.4. Environmental Microbiology,2011,13(12):3289-3309
    [225] Fujisawa M., Wada Y., Ito M. Modulation of the K+efflux activity of Bacillussubtilis YhaU by YhaT and the C-terminal region of YhaS. FEMS MicrobiologyLetters,2004,231(2):211-217
    [226] Holtmann G., Bakker E.P., Uozumi N., et al. KtrAB and KtrCD: two K+uptakesystems in Bacillus subtilis and their role in adaptation to hypertonicity. Journalof Bacteriology,2003,185(4):1289-1298
    [227] Bursy J., Pierik A.J., Pica N., et al. Osmotically induced synthesis of thecompatible solute hydroxyectoine is mediated by an evolutionarily conservedectoine hydroxylase. Journal of Biological Chemistry,2007,282(43):31147-31155
    [228] Edwards J.S., Palsson B.O. Systems properties of the Haemophilus influenzaeRd metabolic genotype. Journal of Biological Chemistry,1999,274(25):17410-17416
    [229] Henry C.S., Zinner J.F., Cohoon M.P., et al. iBsu1103: a new genome-scalemetabolic model of Bacillus subtilis based on SEED annotations. GenomeBiology,2009,10(6): R69
    [230] Sekowska A., Denervaud V., Ashida H., et al. Bacterial variations on themethionine salvage pathway. BMC Microbiology,2004,4:9
    [231] Choi O., Kim J., Kim J.G., et al. Pyrroloquinoline quinone is a plant growthpromotion factor produced by Pseudomonas fluorescens B16. Plant Physiology,2008,146(2):657-668
    [232] Hu H., Wood T.K. An evolved Escherichia coli strain for producing hydrogenand ethanol from glycerol. Biochemical and Biophysical ResearchCommunications,2010,391(1):1033-1038

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700