马耳他型布氏杆菌弱毒疫苗株M5-90致弱分子机制的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
布病尤其是由B. melitensis感染所致,仍然是目前世界上最重要的种人畜共患病,每年大约有50多万病例报道。迄今为止,采用多种方法开发和研究防控布病的疫苗,但是还没有种安全有效的疫苗能应用于人的布病防控,当前的主要疫苗均对人有定致病性。B. melitensis M5-90系我国自行分离培养的弱毒疫苗株,具有较好的安全性及免疫保护力,为我国布病防控发挥了重要作用,但其致弱的分子机制还不甚清楚。为研制更加安全、有效的布氏杆菌疫苗,迫切需要加强对布氏杆菌病病原致病分子机制与免疫机制的基础研究。
     I.马耳他布氏杆菌疫苗株M5-90致弱分子机制的研究
     在完成M5-90及其亲本强毒株M28的全基因组测序基础上,通过系统基因组比对,并结合比对亲缘关系最近的强毒国际参考株B. melitensis 16M和ATCC23457,共筛选到23个毒力相关基因(OCDs)。其中差异最显著的是延伸因子EF-Tu(BM28_A1261),在M5-90编码区出现50处SNPs和9处Indels,占整个基因组差异的30%。2-D DIGE分析实验室条件下培养的M28和M5-90全细菌蛋白(pH范围4.0-7.0)表达差异,共鉴定到24个差异显著蛋白,7个为M5-90高表达,其余17个为M28高表达。这是第次关于人工致弱的强、弱亲本毒株间基因组学和比较蛋白组学分析。结果发现, DNA/RNA合成代谢,营养吸收利用和细胞外膜合成或外膜蛋白等相关基因变异在M5-90的致弱过程中起到了重要作用。在此基础上,首先选择基因组上突变最为集中的tuf-2(BM28_A1261)基因作为重组靶位点,以M28和M5-90为亲本,以卡那霉素抗性基因(Kan~r)作为筛选标记,构建tuf基因缺失突变株;成功构建了突变株M28-tuf1、M28-tuf2和M90-tuf2。M90-tuf2和亲本株M5-90不论在生长特性还是对小鼠毒力上都无显著差异;M28-tuf1、M28-tuf2对小鼠致病力明显减弱(p<0.01),但仍比疫苗株强(p<0.01)。M28-tuf1致病力略高于M28-tuf2,差异不显著;通过小鼠感染模型证实tuf是M5-90致弱的重要基因,但不是唯因素,tuf-2在M5-90致弱中的起到重要作用。
     II.马耳他布氏杆菌疫苗株M5-90致弱免疫机制研究
     布氏杆菌是种胞内寄生菌,巨噬细胞是布氏杆菌体内侵袭的主要目标细胞。M5-90及其强毒亲本株M28致病力显著差异,研究二者与宿主相互作用差异,有助于与理解M5-90致弱的免疫机制。本研究,利用数字表达谱DGE技术分析鼠腹膜巨噬细胞感染M28和M5-90 4 h后转录组的变化,共计鉴定出1019个DEGs。发现多个显著性差异信号通路,如溶酶体和SNARE胞内运输通路。首次分析了强弱毒布氏杆菌感染组间DEGs,并对显著性差异代谢通路DEGs构建蛋白相互作用网络(Singal-Net)。网络中关键基因多为细胞凋亡相关基因,如Mapk3、Traf6、Chuk、Kras、Jak1和Ptpn6等。这些基因及其参与的信号转导过程体现了强弱菌株侵染宿主细胞的主要差别,其结果是弱毒株M5-90抗溶酶体消化及抗细胞凋亡能力弱于强毒株M28,导致宿主细胞内生存能力的下降或存活时间的缩短。这些数据有利于深入理解M5-90的致弱分子免疫机制。
Brucella melitensis is a Gram-negative coccobacillus bacteria belonging to theα-Proteobacteria subclass. It is an important zoonotic pathogen that causes brucellosis, a disease affecting sheep, cattle, and sometimes humans. So far, no satisfactory vaccine has been discovered to fight the disease in humans, while animal vaccines are pathogenic to humans. Therefore, we should venture deeper in the study of the pathogenic and attenuation mechanism of Brucella as well as the development of new types of Brucella vaccines.
     I. molecular basis of Attenuation of Brucella melitensis strain M5-90
     B. melitensis vaccine strain M5-90 (identified as biovar 1) originated after a virulent B. melitensis (M28) isolation from a sheep was serially-passaged through chickens, treated with acriflavine and passaged for 90 generations in chicken embryo fibroblasts. This attenuated vaccine is considered to be one of the key factors that led to a rapid decline in the incidence of brucellosis in animals and humans in China during the 1970s to 1990s. Understanding the genetic similarities and differences between the vaccine strain and wild virulent strain will provide clues as to how the vaccine provides protection. To that end, we sequenced the B. melitensis parent strain M28 and the M5-90 strain using a whole-genome shotgun sequencing strategy. The main goal of this study is to identify candidate virulence genes by systematic comparative analysis of the attenuated strain with virulent strain M28 and other published genome sequences of two closely related strains B. melitensis 16M and ATCC 23457. We found 23 OCDs (ORFs with consistent differences) were different between the attenuated strains but they were identical amongst the virulent strains. A proteome study based on 2-D DIGE was performed in order to analyze the proteome difference between M28 and M5-90, which were grown under identical laboratory conditions. The majority of the 24 proteins heavily regulated at this stage were involved in bacterial metabolism, amino acid transportation, cell envelope and outer membrane biogenesis. This is the first genomic and proteomic analysis of an artificially attenuated Brucella strain. The results suggest that inactivation of genes involved in DNA/RNA metabolism, nutrient acquisition and utilization, and cell envelope or outer membrane proteins biogenesis may have played a role in the attenuation of M5-90.
     Compared with the M28 EF-Tu gene (BM28_A1261), M5-90 had one combined EF-Tu pseudogene with 50 SNPs and nine gaps (eight single nucleotide additions and one nucleotide deletion). To evaluate the potential role of EF-Tu in pathogenesis, the mutant tuf gene of B.melitensis (M28-tuf1, M28-tuf2 and M90-tuf2) was constructed by replacing the tuf gene of M28 and its attenuated M5-90 strain with kanamycin resistance gene. Double mutation recombinant was selected by adding kanamycin and ampicillin in the culture, and confirmed by PCR. The M28-tuf1 and M28-tuf2 mutant strains exhibited significant attenuation compared to M28 in mice infection model and still more pathogenically significant than M5-90. M28-tuf2 attenuation was compared to M28-tuf1, but the difference between the two groups is not considered statistically significant. These results indicated that the tuf-2 gene play an important role in the attenuation of M5-90.
     II. Immunologic mechanism of attenuation of M5-90 (murine transcriptome DGE analysis)
     Brucella species (spp.) reside in professional and non-professional phagocytes; in particular, macrophages are a major target in infected mammals. In comparison with other pathogenic bacteria, Brucella lack classical virulence factors, and their virulence is associated with their capacity to invade and propagate within host cells. The molecular mechanisms that cause M5-90 attenuation, particularly the alterations in pathogenicity between virulent strains of B. melitensis, remain poorly understood. In this study, we employed the Illumina Genome Analyzer platform to perform Digital Gene Expression (DGE) analysis of the peritoneal macrophage genome-wide transcriptome response to B. melitensis infection. A total of 1019 differentially expressed transcripts were identified in the macrophages four hours after infection with the different B. melitensis strains, with genes involved in the lysosome and SNARE interactions in vesicular transport being highly represented. Many proteins of the MAPK, Jak–STAT and TLR signaling pathways, along with the renal cell carcinoma and some other associated signaling pathways, were built in the protein–protein interaction networks (Signal-net). The key genes were some apoptosis-related genes, like Mapk3, Traf6, Chuk, Kras, Jak1 and Ptpn6. The regulation of these genes resulted in anti-apoptotic effects, especially M5-90 with weaker anti-apoptotic ability than M28. Our data provide new insight into the molecular attenuation mechanism of strain M5-90 and may enable vaccine residual virulence to be reduced, enhancing vaccine efficacy.
引文
1.陈乃昌(1991).布氏菌羊种M5-90弱毒疫苗的研究.中国地方病防治杂志6(2), 65-68.
    2.陈伟业,胡森,黄克和,步志高(2006). IS711和omp2作为布氏杆菌种属及种株间分子鉴别诊断标记的研究.中国预防兽医学报(06), 676-680.
    3.高永辉,任昶,应天翼,王希良(2006).感染布氏杆菌后的THP21细胞的蛋白质组学研究.微生物学报46( 4), 629-634.
    4.顾超慧(2009).羊种布鲁氏菌强毒株16M与疫苗株M5差异蛋白质组学分析. [D]内蒙古农业大学.
    5.胡森(2009).马耳他布鲁氏菌M5-90 bp26基因缺失疫苗株的构建及安全性和免疫原性评估. [D]东北农业大学.
    6.胡森,步志高(2003).布氏杆菌病概况及其研究进展.畜牧兽医科技信息12(1), 9-11.
    7.卢景良,李节堂,王振生(1984).羊型布氏杆菌单克隆抗体的研究I.M281D2C-1杂交瘤株的建立.家畜传染病4, 134-137.
    8.孟宪邑(2008).大肠杆菌EF-Tu多蛋白复合物诱导THP-1细胞免疫应答的研究. [D].厦门大学.
    9.尚德秋(2000).中国布鲁氏菌病防治科研50年.中华流行病学杂志21(1), 55-57.
    10.施宏武,赫崇礼,陈乃昌,武志强,刘玉梅,胡振武,王志国,郝福文,刁富杰,段志昌,王维生,郭志勤,王金堂(1988).布氏杆菌羊种M5-90菌苗对山西土种黄牛二年免疫期试验.中国预防兽医学报(02),11-11.
    11.王方昆(2007). H9N2亚型猪流感病毒M、NS、NP基因的原核表达和ELISA检测技术的研究. [D]山东农业大学.
    12.王方昆,袁秀芳,刘思当,张存,徐丽华,王成(2008).重组NP蛋白抗原检测SIV抗体间接ELISA方法的建立.浙江农业学报. 20(6), 408-413.
    13.王加兰,胡森,高红霞,郑孝辉,步志高(2009).光滑型布鲁杆菌抗体竞争ELISA检测方法的建立.中国兽医科学39(09), 803-809.
    14.王玉飞,陈泽良,黄留玉(2007).布鲁氏菌胞内生存机制研究进展.微生物学通报34(6), 1218-1221.
    15.肖昆(2007).大肠杆菌EF-Tu多蛋白复合体的研究. [D].厦门大学.
    16.张洪丽(2008 ).羊种布鲁氏菌强毒株16M与疫苗株M5差异蛋白质组学分析. [D]南京农业大学.
    17.赵忠鹏,吴朔,罗德炎,王希良,祝庆余(2007).羊种布鲁氏菌疫苗株M5和强毒株16M的比较蛋白组学研究.中国人畜共患病学报23(12), 1172-1176.
    18.周冰,曹诚,刘传暄(2007).翻译延伸因子1A的研究进展.生物技术通讯18(2), 281-284.
    19. Adachi, N., Matsumoto, S., Tokuhisa, M., Kobayashi, K., and Yamada, T. (2000). Antibodies against mycobacterial antigens in the synovial fluid of patients with temporomandibular disorders. J Dent Res 79(10), 1752-7.
    20. Aderem, A. (2003). Phagocytosis and the inflammatory response. J Infect Dis 2(187), 340-345.
    21. Al Dahouk, S., Jubier-Maurin, V., Scholz, H. C., Tomaso, H., Karges, W., Neubauer, H., and Kohler, S. (2008). Quantitative analysis of the intramacrophagic Brucella suis proteome reveals metabolic adaptation to late stage of cellular infection. Proteomics 8(18), 3862-70.
    22. Alton, G. ( 1990). Brucella melitensis. In: K. Nielsen and J. R. Duncan (eds.), Animal Brucellosis. CRC Press, Boca Raton, 383-409.
    23. Altschul, S. F., Madden, T. L., Schaffer, A. A., Zhang, J., Zhang, Z., Miller, W., and Lipman, D. J. (1997). Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25(17), 3389-402.
    24. Andrews, S. C. (1998). Iron storage in bacteria. Adv Microb Physiol 40, 281-351.
    25. Araujo, F. R., Costa, C. M., Ramos, C. A., Farias, T. A., Souza, II, Melo, E. S., Elisei, C., Rosinha, G. M., Soares, C. O., Fragoso, S. P., and Fonseca, A. H. (2008). IgG and IgG2 antibodies from cattle naturally infected with Anaplasma marginale recognize the recombinant vaccine candidate antigens VirB9, VirB10, and elongation factor-Tu. Mem Inst Oswaldo Cruz 103(2), 186-90.
    26. Arellano-Reynoso, B., Lapaque, N., Salcedo, S., Briones, G., Ciocchini, A. E., Ugalde, R., Moreno, E., Moriyon, I., and Gorvel, J. P. (2005). Cyclic beta-1,2-glucan is a Brucella virulence factor required for intracellular survival. Nat Immunol 6(6), 618-25.
    27. Audic, S., and Claverie, J. M. (1997). The significance of digital gene expression profiles. Genome Res 7(10), 986-95.
    28. Audic, S., Lescot, M., Claverie, J. M., and Scholz, H. C. (2009). Brucella microti: the genome sequence of an emerging pathogen. BMC Genomics 10, 352.
    29. B?hmea, L., and Rudel, T. (2009). Host cell death machinery as a target for bacterial pathogens. Micro Infect 11(13), 1063-1070.
    30. Bandara, A. B., Contreras, A., Contreras-Rodriguez, A., Martins, A. M., Dobrean, V., Poff-Reichow, S., Rajasekaran, P., Sriranganathan, N., Schurig, G. G., and Boyle, S. M. (2007). Brucella suis urease encoded by ure1 but not ure2 is necessary for intestinal infection of BALB/c mice. BMC Microbiol 7, 57.
    31. Bandara, A. B., Schurig, G. G., Sriranganathan, N., Prasad, R., and Boyle, S. M. (2009). The putative penicillin-binding proteins 1 and 2 are important for viability, growth and cell morphology of Brucella melitensis. Vet Microbiol 133(4), 387-93.
    32. Barrionuevo, P., Cassataro, J., Delpino, M. V., Zwerdling, A., Pasquevich, K. A., Garcia Samartino, C., Wallach, J. C., Fossati, C. A., and Giambartolomei, G. H. (2008). Brucella abortus inhibits major histocompatibility complex class II expression and antigen processing through interleukin-6 secretion via Toll-like receptor 2. Infect Immun 76(1), 250-62.
    33. Bellaire, B. H., Roop, R. M., 2nd, and Cardelli, J. A. (2005). Opsonized virulent Brucella abortus replicates within nonacidic, endoplasmic reticulum-negative, LAMP-1-positive phagosomes in human monocytes. Infect Immun 73(6), 3702-13.
    34. Benjamini, B. Y., and Yekutieli, D. (2001). The control of the false discovery rate in multiple testingunder dependency. Ann Stat 29(4), 1165-1188.
    35. Billard, E., Cazevieille, C., Dornand, J., and Gross, A. (2005). High susceptibility of human dendritic cells to invasion by the intracellular pathogens Brucella suis, B. abortus, and B. melitensis. Infect Immun 73(12), 8418-24.
    36. Boehm, J. S., Zhao, J. J., Yao, J., Kim, S. Y., Firestein, R., Dunn, I. F., Sjostrom, S. K., Garraway, L. A., Weremowicz, S., Richardson, A. L., Greulich, H., Stewart, C. J., Mulvey, L. A., Shen, R. R., Ambrogio, L., Hirozane-Kishikawa, T., Hill, D. E., Vidal, M., Meyerson, M., Grenier, J. K., Hinkle, G., Root, D. E., Roberts, T. M., Lander, E. S., Polyak, K., and Hahn, W. C. (2007). Integrative Genomic Approaches Identify IKBKE as a Breast Cancer Oncogene. Cell 129(6), 1065-1079.
    37. Boone, H. W. (1905). Malta fever in China. China Med. Mission 9, 167-173.
    38. Bowden, R. A., Cloeckaert, A., Zygmunt, M. S., Bernard, S., and Dubray, G. (1995). Surface exposure of outer membrane protein and lipopolysaccharide epitopes in Brucella species studied by enzyme-linked immunosorbent assay and flow cytometry. Infect Immun 63(10), 3945-52.
    39. Brooks-Worrell, B. M., and Splitter, G. A. (1992). Sodium dodecyl sulfate- and salt-extracted antigens from various Brucella species induce proliferation of bovine lymphocytes. Infect Immun 60(5), 2136-8.
    40. Buddle, M. B. (1956). Studies on Brucella ovis (n.sp.), a cause of genital disease of sheep in New Zealand and Australia. J Hyg (Lond) 54(3), 351-64.
    41. Campos, M. A., Rosinha, G. M., Almeida, I. C., Salgueiro, X. S., Jarvis, B. W., Splitter, G. A., Qureshi, N., Bruna-Romero, O., Gazzinelli, R. T., and Oliveira, S. C. (2004). Role of Toll-like receptor 4 in induction of cell-mediated immunity and resistance to Brucella abortus infection in mice. Infect Immun 72(1), 176-86.
    42. Cardoso, P. G., Macedo, G. C., Azevedo, V., and Oliveira, S. C. (2006). Brucella spp noncanonical LPS: structure, biosynthesis, and interaction with host immune system. Microb Cell Fact 5, 13.
    43. Cariaga-Martinez, A. E., Lorenzati, M. A., Riera, M. A., Cubilla, M. A., Rossa, A. D. L., Giorgio, E. M., Tiscornia, M. M., Gimenez, E. M., Rojas, M. E., Chaneton, B. J., Rodríguez, D. I., and Zapata, P. D. (2009). Tumoral Prostate Shows Different Expression Pattern of Somatostatin Receptor 2 (SSTR2) and Phosphotyrosine Phosphatase SHP-1 (PTPN6) According to Tumor Progression. Advances in Urology Article ID 723831, 8 pages,doi:10.1155/2009/723831.
    44. Caro-Hernandez, P., Fernandez-Lago, L., de Miguel, M. J., Martin-Martin, A. I., Cloeckaert, A., Grillo, M. J., and Vizcaino, N. (2007). Role of the Omp25/Omp31 family in outer membrane properties and virulence of Brucella ovis. Infect Immun 75(8), 4050-4061.
    45. Caron, E., Gross, A., Liautard, J. P., and Dornand, J. (1996). Brucella species release a specific, protease-sensitive, inhibitor of TNF-alpha expression, active on human macrophage-like cells. J Immunol 156(8), 2885-93.
    46. Cascales, E., and Christie, P. J. (2003). The versatile bacterial type IV secretion systems. Nat Rev Microbiol 1(2), 137-49.
    47. Castresana, J. (2000). Selection of conserved blocks from multiple alignments for their use inphylogenetic analysis. Mol Biol Evol 17(4), 540-52.
    48. Celli, J., de Chastellier, C., Franchini, D. M., Pizarro-Cerda, J., Moreno, E., and Gorvel, J. P. (2003). Brucella evades macrophage killing via VirB-dependent sustained interactions with the endoplasmic reticulum. J Exp Med 198(4), 545-56.
    49. Celli, J., and Gorvel, J. P. (2004). Organelle robbery: Brucella interactions with the endoplasmic reticulum. Curr Opin Microbiol 7(1), 93-7.
    50. Chaves-Olarte, E., Guzman-Verri, C., Meresse, S., Desjardins, M., Pizarro-Cerda, J., Badilla, J., Gorvel, J. P., and Moreno, E. (2002). Activation of Rho and Rab GTPases dissociates Brucella abortus internalization from intracellular trafficking. Cell Microbiol 4(10), 663-76.
    51. Christie, P. J. (2004). Type IV secretion: the Agrobacterium VirB/D4 and related conjugation systems. Biochim Biophys Acta 1694(1-3), 219-34.
    52. Christie, P. J., Atmakuri, K., Krishnamoorthy, V., Jakubowski, S., and Cascales, E. (2005). Biogenesis, architecture, and function of bacterial type IV secretion systems. Annu Rev Microbiol 59, 451-85.
    53. Cloonan, N., and Grimmond, S. M. (2008). Transcriptome content and dynamics at single-nucleotide resolution. Genome Biol 9(9), 234.
    54. Connolly, J. P., Comerci, D., Alefantis, T. G., Walz, A., Quan, M., Chafin, R., Grewal, P., Mujer, C. V., Ugalde, R. A., and DelVecchio, V. G. (2006). Proteomic analysis of Brucella abortus cell envelope and identification of immunogenic candidate proteins for vaccine development. Proteomics 6(13), 3767-80.
    55. Copin, R., De Baetselier, P., Carlier, Y., Letesson, J. J., and Muraille, E. (2007). MyD88-dependent activation of B220-CD11b+LY-6C+ dendritic cells during Brucella melitensis infection. J Immunol 178(8), 5182-91.
    56. Corbel, M. J. (1997). Brucellosis: an overview. Emerg Infect Dis 3(2), 213-21.
    57. Cosivi, O., and Corbel, M. J. (1998). WHO consultation on the development of new/improved brucellosis vaccines. 17 December 1997, Geneva, Switzerland. Biologicals 26(4), 361-3.
    58. Covert, J., Mathison, A. J., Eskra, L., Banai, M., and Splitter, G. (2009). Brucella melitensis, B. neotomae and B. ovis elicit common and distinctive macrophage defense transcriptional responses. Exp Biol Med (Maywood) 234(12), 1450-67.
    59. Crasta, O. R., Folkerts, O., Fei, Z., Mane, S. P., Evans, C., Martino-Catt, S., Bricker, B., Yu, G., Du, L., and Sobral, B. W. (2008). Genome sequence of Brucella abortus vaccine strain S19 compared to virulent strains yields candidate virulence genes. PLoS ONE 3(5), e2193.
    60. Darling, A. C., Mau, B., Blattner, F. R., and Perna, N. T. (2004). Mauve: multiple alignment of conserved genomic sequence with rearrangements. Genome Res 14(7), 1394-403.
    61. De Schrijver, J., De Leeneer, K., Lefever, S., Sabbe, N., Pattyn, F., Van Nieuwerburgh, F., Coucke, P., Deforce, D., Vandesompele, J., Bekaert, S., Hellemans, J., and Van Criekinge, W. Analysing 454 amplicon resequencing experiments using the modular and database oriented Variant Identification Pipeline. BMC Bioinformatics 11(1), 269.
    62. Deak, M., Clifton, A. D., Lucocq, L. M., and Alessi, D. R. (1998). Mitogen- and stress-activated protein kinase-1 (MSK1) is directly activated by MAPK and SAPK2/p38, and may mediate activation of CREB. EMBO J 17(15), 4426-41.
    63. Delcher, A. L., Harmon, D., Kasif, S., White, O., and Salzberg, S. L. (1999). Improved microbial gene identification with GLIMMER. Nucleic Acids Res 27(23), 4636-41.
    64. Delrue, R. M., Deschamps, C., Leonard, S., Nijskens, C., Danese, I., Schaus, J. M., Bonnot, S., Ferooz, J., Tibor, A., De Bolle, X., and Letesson, J. J. (2005). A quorum-sensing regulator controls expression of both the type IV secretion system and the flagellar apparatus of Brucella melitensis. Cell Microbiol 7(8), 1151-61.
    65. DelVecchio, V. G., Kapatral, V., Redkar, R. J., Patra, G., Mujer, C., Los, T., Ivanova, N., Anderson, I., Bhattacharyya, A., Lykidis, A., Reznik, G., Jablonski, L., Larsen, N., D'Souza, M., Bernal, A., Mazur, M., Goltsman, E., Selkov, E., Elzer, P. H., Hagius, S., O'Callaghan, D., Letesson, J. J., Haselkorn, R., Kyrpides, N., and Overbeek, R. (2002). The genome sequence of the facultative intracellular pathogen Brucella melitensis. Proc Natl Acad Sci U S A 99(1), 443-8.
    66. Deqiu, S., Donglou, X., and Jiming, Y. (2002). Epidemiology and control of brucellosis in China. Vet Microbiol 90(1-4), 165-82.
    67. Descargues, P., Sil, A. K., and Karin, M. (2008). IKKalpha, a critical regulator of epidermal differentiation and a suppressor of skin cancer. EMBO J 27(20), 2639-47.
    68. Dornand, J., Gross, A., Lafont, V., Liautard, J., Oliaro, J., and Liautard, J. P. (2002). The innate immune response against Brucella in humans. Vet Microbiol 90(1-4), 383-94.
    69. Dozot, M., Boigegrain, R. A., Delrue, R. M., Hallez, R., Ouahrani-Bettache, S., Danese, I., Letesson, J. J., De Bolle, X., and Kohler, S. (2006). The stringent response mediator Rsh is required for Brucella melitensis and Brucella suis virulence, and for expression of the type IV secretion system virB. Cell Microbiol 8(11), 1791-802.
    70. Drazek, E. S., Houng, H. S., Crawford, R. M., Hadfield, T. L., Hoover, D. L., and Warren, R. L. (1995). Deletion of purE attenuates Brucella melitensis 16M for growth in human monocyte-derived macrophages. Infect Immun 63(9), 3297-301.
    71. Edgar, R. C. (2004). MUSCLE: a multiple sequence alignment method with reduced time and space complexity. BMC Bioinformatics 5, 113.
    72. Edmonds, M. D., Cloeckaert, A., Booth, N. J., Fulton, W. T., Hagius, S. D., Walker, J. V., and Elzer, P. H. (2001). Attenuation of a Brucella abortus mutant lacking a major 25 kDa outer membrane protein in cattle. Am J Vet Res 62(9), 1461-6.
    73. Edmonds, M. D., Cloeckaert, A., and Elzer, P. H. (2002a). Brucella species lacking the major outer membrane protein Omp25 are attenuated in mice and protect against Brucella melitensis and Brucella ovis. Vet Microbiol 88(3), 205-221.
    74. Edmonds, M. D., Cloeckaert, A., Hagius, S. D., Samartino, L. E., Fulton, W. T., Walker, J. V., Enright, F. M., Booth, N. J., and Elzer, P. H. (2002b). Pathogenicity and protective activity in pregnant goats of a Brucella melitensis Deltaomp25 deletion mutant. Res Vet Sci 72(3), 235-9.
    75. Eisen, M. B., Spellman, P. T., Brown, P. O., and Botstein, D. (1998). Cluster analysis and display of genome-wide expression patterns. Proc Natl Acad Sci U S A 95(25), 14863-8.
    76. Enright, F. M. (1990). The pathogenesis and pathobiology of Brucella infection in domestic animals. In: Nielsen,K., Duncan, B. (Eds.). Animal Brucellosis. Boca Raton, FL, CRC Press, 301-320.
    77. Erbay, E., Cao, H., and Hotamisligil, G. S. (2007). Adipocyte/macrophage fatty acid binding proteins in metabolic syndrome. Curr Atheroscler Rep 9(3), 222-9.
    78. Eschenbrenner, M., Horn, T. A., Wagner, M. A., Mujer, C. V., Miller-Scandle, T. L., and DelVecchio, V. G. (2006). Comparative proteome analysis of laboratory grown Brucella abortus 2308 and Brucella melitensis 16M. J Proteome Res 5(7), 1731-40.
    79. Eschenbrenner, M., Wagner, M. A., Horn, T. A., Kraycer, J. A., Mujer, C. V., Hagius, S., Elzer, P., and DelVecchio, V. G. (2002). Comparative proteome analysis of Brucella melitensis vaccine strain Rev 1 and a virulent strain, 16M. J Bacteriol 184(18), 4962-70.
    80. Eskra, L., Mathison, A., and Splitter, G. (2003). Microarray analysis of mRNA levels from RAW264.7 macrophages infected with Brucella abortus. Infect Immun 71(3), 1125-33.
    81. Ferjoux, G., Bousquet, C., Cordelier, P., Benali, N., Lopez, F., Rochaix, P., Buscail, L., and Susini, C. (2000). Signal transduction of somatostatin receptors negatively controlling cell proliferation. J Physiol Paris 94(3-4), 205-10.
    82. Fernandez-Prada, C. M., Zelazowska, E. B., Nikolich, M., Hadfield, T. L., II, R. M. R., Robertson, G. L., and Hoover, D. L. (2003). Interactions between Brucella melitensis and Human Phagocytes: Bacterial Surface O-Polysaccharide Inhibits Phagocytosis, Bacterial Killing, and Subsequent Host Cell Apoptosis Infect Immun 71( 4), 2110-2119.
    83. Fernandez, E. J., and Lolis, E. (2002). Structure, function, and inhibition of chemokines. Annu Rev Pharmacol Toxicol 42, 469-99.
    84. Foghsgaard, L., Wissing, D., Mauch, D., Lademann, U., Bastholm, L., Boes, M., Elling, F., Leist, M., and Jaattela, M. (2001). Cathepsin B acts as a dominant execution protease in tumor cell apoptosis induced by tumor necrosis factor. J Cell Biol 153(5), 999-1010.
    85. Foster, J. T., Beckstrom-Sternberg, S. M., Pearson, T., Beckstrom-Sternberg, J. S., Chain, P. S., Roberto, F. F., Hnath, J., Brettin, T., and Keim, P. (2009). Whole-genome-based phylogeny and divergence of the genus Brucella. J Bacteriol 191(8), 2864-70.
    86. Foulongne, V., Bourg, G., Cazevieille, C., Michaux-Charachon, S., and O'Callaghan, D. (2000). Identification of Brucella suis genes affecting intracellular survival in an in vitro human macrophage infection model by signature-tagged transposon mutagenesis. Infect Immun 68(3), 1297-303.
    87. Fretin, D., Fauconnier, A., Kohler, S., Halling, S., Leonard, S., Nijskens, C., Ferooz, J., Lestrate, P., Delrue, R. M., Danese, I., Vandenhaute, J., Tibor, A., DeBolle, X., and Letesson, J. J. (2005). The sheathed flagellum of Brucella melitensis is involved in persistence in a murine model of infection. Cell Microbiol 7(5), 687-98.
    88. Fugier, E., Pappas, G., and Gorvel, J. P. (2007). Virulence factors in brucellosis: implications foraetiopathogenesis and treatment. Expert Rev Mol Med 9(35), 1-10.
    89. Gamazo, C., Winter, A. J., Moriyon, I., Riezu-Boj, J. I., Blasco, J. M., and Diaz, R. (1989). Comparative analyses of proteins extracted by hot saline or released spontaneously into outer membrane blebs from field strains of Brucella ovis and Brucella melitensis. Infect Immun 57(5), 1419-26.
    90. Gardy, J. L., Laird, M. R., Chen, F., Rey, S., Walsh, C. J., Ester, M., and Brinkman, F. S. (2005). PSORTb v.2.0: expanded prediction of bacterial protein subcellular localization and insights gained from comparative proteome analysis. bioinformatics 21(5), 617-23.
    91. Gee, J. M., Kovach, M. E., Grippe, V. K., Hagius, S., Walker, J. V., Elzer, P. H., and Roop, R. M. (2004). Role of catalase in the virulence of Brucella melitensis in pregnant goats. Vet Microbiol 102(1-2), 111-115.
    92. Giambartolomei, G. H., Zwerdling, A., Cassataro, J., Bruno, L., Fossati, C. A., and Philipp, M. T. (2004). Lipoproteins, Not Lipopolysaccharide, Are the Key Mediators of the Proinflammatory Response Elicited by Heat-Killed Brucella abortus. The Journal of Immunology 173(7), 4635-4642
    93. Gibby, I. W., and Gibby, A. M. (1964). Population Dynamics of Brucella on Solid Media. Appl Microbiol 12, 442-446.
    94. Golding, B., Scott, D. E., Scharf, O., Huang, L. Y., Zaitseva, M., Lapham, C., Eller, N., and Golding, H. (2001). Immunity and protection against Brucella abortus. Microbes Infect 3(1), 43-8.
    95. Gorvel, J. P., and Moreno, E. (2002). Brucella intracellular life: from invasion to intracellular replication. Vet Microbiol 90(1-4), 281-297.
    96. Gouaze, V., Andrieu-Abadie, N., Cuvillier, O., Malagarie-Cazenave, S., Frisach, M. F., Mirault, M. E., and Levade, T. (2002). Glutathione peroxidase-1 protects from CD95-induced apoptosis. J Biol Chem 277(45), 42867-74.
    97. Gross, A., Bouaboula, M., Casellas, P., Liautard, J. P., and Dornand, J. (2003). Subversion and utilization of the host cell cyclic adenosine 5'-monophosphate/protein kinase A pathway by Brucella during macrophage infection. J Immunol 170(11), 5607-14.
    98. Gross, A., Spiesser, S., Terraza, A., Rouot, B., Caron, E., and Dornand, J. (1998). Expression and bactericidal activity of nitric oxide synthase in Brucella suis-infected murine macrophages. Infect Immun 66(4), 1309-16.
    99. Gross, A., Terraza, A., Marchant, J., Bouaboula, M., Ouahrani-Bettache, S., Liautard, J. P., Casellas, P., and Dornand, J. (2000a). A beneficial aspect of a CB1 cannabinoid receptor antagonist: SR141716A is a potent inhibitor of macrophage infection by the intracellular pathogen Brucella suis. J Leukoc Biol 67(3), 335-44.
    100. Gross, A., Terraza, A., Ouahrani-Bettache, S., Liautard, J. P., and Dornand, J. (2000b). In vitro Brucella suis infection prevents the programmed cell death of human monocytic cells. Infect Immun 68(1), 342-51.
    101. Graves R. R. (1943). The Story of John M. Buck‘s and Matilda‘s Contribution to the Cattle Industry. J Am Vet Med Assoc 102, 193-195.
    102. Guerin, S., Baron, M. L., Valero, R., Herrant, M., Auberger, P., and Naquet, P. (2002). RelB reduces thymocyte apoptosis and regulates terminal thymocyte maturation. Eur J Immunol 32(1), 1-9.
    103. Guicciardi, M. E., Deussing, J., Miyoshi, H., Bronk, S. F., Svingen, P. A., Peters, C., Kaufmann, S. H., and Gores, G. J. (2000). Cathepsin B contributes to TNFTNF-α-mediated hepatocyte apoptosis by promoting mitochondrial release of cytochrome c. J Clin Invest 106(9), 1127-1137.
    104. Guindon, S., and Gascuel, O. (2003). A simple, fast, and accurate algorithm to estimate large phylogenies by maximum likelihood. Syst Biol 52(5), 696-704.
    105. Guo, F. B., Ou, H. Y., and Zhang, C. T. (2003). ZCURVE: a new system for recognizing protein-coding genes in bacterial and archaeal genomes. Nucleic Acids Res 31(6), 1780-9.
    106. Guzman-Verri, C., Manterola, L., Sola-Landa, A., Parra, A., Cloeckaert, A., Garin, J., Gorvel, J. P., Moriyon, I., Moreno, E., and Lopez-Goni, I. (2002). The two-component system BvrR/BvrS essential for Brucella abortus virulence regulates the expression of outer membrane proteins with counterparts in members of the Rhizobiaceae. Proc Natl Acad Sci U S A 99(19), 12375-80.
    107. Hacker, J., Blum-Oehler, G., Muhldorfer, I., and Tschape, H. (1997). Pathogenicity islands of virulent bacteria: structure, function and impact on microbial evolution. Mol Microbiol 23(6), 1089-97.
    108. Haine, V., Sinon, A., Van Steen, F., Rousseau, S., Dozot, M., Lestrate, P., Lambert, C., Letesson, J. J., and De Bolle, X. (2005). Systematic targeted mutagenesis of Brucella melitensis 16M reveals a major role for GntR regulators in the control of virulence. Infect Immun 73(9), 5578-86.
    109. Halling, S. M., Peterson-Burch, B. D., Bricker, B. J., Zuerner, R. L., Qing, Z., Li, L. L., Kapur, V., Alt, D. P., and Olsen, S. C. (2005). Completion of the genome sequence of Brucella abortus and comparison to the highly similar genomes of Brucella melitensis and Brucella suis. J Bacteriol 187(8), 2715-26.
    110. Hamilton, T. A., Ohmori, Y., Tebo, J. M., and Kishore, R. (1999). Regulation of macrophage gene expression by pro- and anti-inflammatory cytokines. Pathobiology 67(5-6), 241-4.
    111. He, Y., Reichow, S., Ramamoorthy, S., Ding, X., Lathigra, R., Craig, J. C., Sobral, B. W., Schurig, G. G., Sriranganathan, N., and Boyle, S. M. (2006). Brucella melitensis triggers time-dependent modulation of apoptosis and down-regulation of mitochondrion-associated gene expression in mouse macrophages. Infect Immun 74(9), 5035-46.
    112. Hegedus, Z., Zakrzewska, A., Agoston, V. C., Ordas, A., Racz, P., Mink, M., Spaink, H. P., and Meijer, A. H. (2009). Deep sequencing of the zebrafish transcriptome response to mycobacterium infection. Mol Immunol 46(15), 2918-30.
    113. Hernandez-Castro, R., Verdugo-Rodriguez, A., Puente, J. L., and Suarez-Guemes, F. (2008). The BMEI0216 gene of Brucella melitensis is required for internalization in HeLa cells. Microb Pathog 44(1), 28-33.
    114. Hill, R. A., and Cook, D. R. (1994). Protein profiles of Brucella suis and Brucella abortus in isoelectric focusing and sodium dodecyl sulphate-polyacrylamide gel electrophoresis. Vet Microbiol 39(1-2), 25-32.
    115. Hoen, P. A. C. t., Ariyurek, Y., Thygesen, H. H., Vreugdenhil, E., Vossen, R. H. A. M., Menezes, R. X. d., Boer, J. M., Ommen, G.-J. B. v., and Dunnen, J. T. d. (2008). Deep sequencing-based expression analysis shows major advances in robustness, resolution and inter-lab portability over five microarray platforms. Nucleic Acids Res 36(21), e141.
    116. Hooper, S. D., and Bork, P. (2005). Medusa: a simple tool for interaction graph analysis. bioinformatics 21(24), 4432-3.
    117. Hornback, M. L., and Roop, R. M., 2nd (2006). The Brucella abortus xthA-1 gene product participates in base excision repair and resistance to oxidative killing but is not required for wild-type virulence in the mouse model. J Bacteriol 188(4), 1295-300.
    118. Hughes, J. P., Staton, P. C., Wilkinson, M. G., Strijbos, P. J., Skaper, S. D., Arthur, J. S., and Reith, A. D. (2003). Mitogen and stress response kinase-1 (MSK1) mediates excitotoxic induced death of hippocampal neurones. J Neurochem 86(1), 25-32.
    119. Huse, S. M., Huber, J. A., Morrison, H. G., Sogin, M. L., and Welch, D. M. (2007). Accuracy and quality of massively parallel DNA pyrosequencing. Genome Biol 8(7), R143.
    120. Irizarry, R. A., Warren, D., Spencer, F., Kim, I. F., Biswal, S., Frank, B. C., Gabrielson, E., Garcia, J. G., Geoghegan, J., Germino, G., Griffin, C., Hilmer, S. C., Hoffman, E., Jedlicka, A. E., Kawasaki, E., Martinez-Murillo, F., Morsberger, L., Lee, H., Petersen, D., Quackenbush, J., Scott, A., Wilson, M., Yang, Y., Ye, S. Q., and Yu, W. (2005). Multiple-laboratory comparison of microarray platforms. Nat Methods 2(5), 345-50.
    121. Jansen, R., Greenbaum, D., and Gerstein, M. (2002). Relating whole-genome expression data with protein-protein interactions. Genome Res 12(1), 37-46.
    122. Jones, S. M., and Winter, A. J. (1992). Survival of virulent and attenuated strains of Brucella abortus in normal and gamma interferon-activated murine peritoneal macrophages. Infect Immun 60(7), 3011-4.
    123. Jumas-Bilak, E., Michaux-Charachon, S., Bourg, G., O'Callaghan, D., and Ramuz, M. (1998). Differences in chromosome number and genome rearrangements in the genus Brucella. Mol Microbiol 27(1), 99-106.
    124. Junior, D. S., Araujo, F. R., Almeida Junior, N. F., Adi, S. S., Cheung, L. M., Fragoso, S. P., Ramos, C. A., Oliveira, R. H., Santos, C. S., Bacanelli, G., Soares, C. O., Rosinha, G. M., and Fonseca, A. H. Analysis of membrane protein genes in a Brazilian isolate of Anaplasma marginale. Mem Inst Oswaldo Cruz 105(7), 843-9.
    125. Junttila, M. R., Li, S.-P., and Westermarck, J. (2008). Phosphatase-mediated crosstalk between MAPK signaling pathways in the regulation of cell survival The FASEB Journal 22(4), 954-965.
    126. Kanehisa, M., Goto, S., Kawashima, S., Okuno, Y., and Hattori, M. (2004). The KEGG resource for deciphering the genome. Nucleic Acids Res 32(Database issue), D277-80.
    127. Kaufmann, A. F., Meltzer, M. I., and Schmid, G. P. (1997). The economic impact of a bioterrorist attack: are prevention and postattack intervention programs justifiable? Emerg Infect Dis 3(2), 83-94.
    128. Kim, J. G., Keshava, C., Murphy, A. A., Pitas, R. E., and Parthasarathy, S. (1997). Fresh mouse peritoneal macrophages have low scavenger receptor activity. Journal of Lipid Research 38, 2207-2215.
    129. Kim, S., Watarai, M., Kondo, Y., Erdenebaatar, J., Makino, S., and Shirahata, T. (2003). Isolation and characterization of mini-Tn5Km2 insertion mutants of Brucella abortus deficient in internalization and intracellular growth in HeLa cells. Infect Immun 71(6), 3020-7.
    130. Ko, J., and Splitter, G. A. (2003). Molecular host-pathogen interaction in brucellosis: current understanding and future approaches to vaccine development for mice and humans. Clin Microbiol Rev 16(1), 65-78.
    131. Kohler, S., Foulongne, V., Ouahrani-Bettache, S., Bourg, G., Teyssier, J., Ramuz, M., and Liautard, J. P. (2002). The analysis of the intramacrophagic virulome of Brucella suis deciphers the environment encountered by the pathogen inside the macrophage host cell. Proc Natl Acad Sci U S A 99(24), 15711-6.
    132. Lamontagne, J., Butler, H., Chaves-Olarte, E., Hunter, J., Schirm, M., Paquet, C., Tian, M., Kearney, P., Hamaidi, L., Chelsky, D., Moriyon, I., Moreno, E., and Paramithiotis, E. (2007). Extensive cell envelope modulation is associated with virulence in Brucella abortus. J Proteome Res 6(4), 1519-29.
    133. Lamontagne, J., Forest, A., Marazzo, E., Denis, F., Butler, H., Michaud, J. F., Boucher, L., Pedro, I., Villeneuve, A., Sitnikov, D., Trudel, K., Nassif, N., Boudjelti, D., Tomaki, F., Chaves-Olarte, E., Guzman-Verri, C., Brunet, S., Cote-Martin, A., Hunter, J., Moreno, E., and Paramithiotis, E. (2009). Intracellular adaptation of Brucella abortus. J Proteome Res 8(3), 1594-609.
    134. Lapaque, N., Moriyon, I., Moreno, E., and Gorvel, J. P. (2005). Brucella lipopolysaccharide acts as a virulence factor. Curr Opin Microbiol 8(1), 60-6.
    135. Lavigne, J. P., O'Callaghan, D., and Blanc-Potard, A. B. (2005a). Requirement of MgtC for Brucella suis intramacrophage growth: a potential mechanism shared by Salmonella enterica and Mycobacterium tuberculosis for adaptation to a low-Mg2+ environment. Infect Immun 73(5), 3160-3.
    136. Lavigne, J. P., Patey, G., Sangari, F. J., Bourg, G., Ramuz, M., O'Callaghan, D., and Michaux-Charachon, S. (2005b). Identification of a new virulence factor, BvfA, in Brucella suis. Infect Immun 73(9), 5524-9.
    137. Lim, C. E. (1925). Isolation of B. melitensis from patients in China, In: The Transactions of the 6th Congress of the Far Eastern Association of Tropical Medicine. . Tokyo, Japan (reprint).
    138. Lin, J., and Ficht, T. A. (1995). Protein synthesis in Brucella abortus induced during macrophage infection. Infect Immun 63(4), 1409-14.
    139. Liu, B., Park, E., Zhu, F., Bustos, T., Liu, J., Shen, J., Fischer, S. M., and Hu, Y. (2006). A critical role for I kappaB kinase alpha in the development of human and mouse squamous cell carcinomas. Proc Natl Acad Sci U S A 103(46), 17202-7.
    140. Loisel-Meyer, S., Jimenez de Bagues, M. P., Basseres, E., Dornand, J., Kohler, S., Liautard, J. P.,and Jubier-Maurin, V. (2006). Requirement of norD for Brucella suis virulence in a murine model of in vitro and in vivo infection. Infect Immun 74(3), 1973-6.
    141. Lopez, J. E., Palmer, G. H., Brayton, K. A., Dark, M. J., Leach, S. E., and Brown, W. C. (2007). Immunogenicity of Anaplasma marginale type IV secretion system proteins in a protective outer membrane vaccine. Infect Immun 75(5), 2333-42.
    142. Lowe, T. M., and Eddy, S. R. (1997). tRNAscan-SE: a program for improved detection of transfer RNA genes in genomic sequence. Nucleic Acids Res 25(5), 955-64.
    143. Luo, F., Ye, H., Hamoudi, R., Dong, G., Zhang, W., Patek, C. E., Poulogiannis, G., and Arends, M. J. (2010). K-ras exon 4A has a tumour suppressor effect on carcinogen-induced murine colonic adenoma formation. J Pathol 220(5), 542-50.
    144. Mackintosh, J. A., Choi, H. Y., Bae, S. H., Veal, D. A., Bell, P. J., Ferrari, B. C., Van Dyk, D. D., Verrills, N. M., Paik, Y. K., and Karuso, P. (2003). A fluorescent natural product for ultra sensitive detection of proteins in one-dimensional and two-dimensional gel electrophoresis. Proteomics 3(12), 2273-88.
    145. MacMicking, J., Xie, Q. W., and Nathan, C. (1997). Nitric oxide and macrophage function. Annu Rev Immunol 15, 323-50.
    146. Makowski, L., Brittingham, K. C., Reynolds, J. M., Suttles, J., and Hotamisligil, G. S. (2005). The fatty acid-binding protein, aP2, coordinates macrophage cholesterol trafficking and inflammatory activity. Macrophage expression of aP2 impacts peroxisome proliferator-activated receptor gamma and IkappaB kinase activities. J Biol Chem 280(13), 12888-95.
    147. Manterola, L., Moriyon, I., Moreno, E., Sola-Landa, A., Weiss, D. S., Koch, M. H., Howe, J., Brandenburg, K., and Lopez-Goni, I. (2005). The lipopolysaccharide of Brucella abortus BvrS/BvrR mutants contains lipid A modifications and has higher affinity for bactericidal cationic peptides. J Bacteriol 187(16), 5631-9.
    148. Marchler-Bauer, A., Anderson, J. B., Derbyshire, M. K., DeWeese-Scott, C., Gonzales, N. R., Gwadz, M., Hao, L., He, S., Hurwitz, D. I., Jackson, J. D., Ke, Z., Krylov, D., Lanczycki, C. J., Liebert, C. A., Liu, C., Lu, F., Lu, S., Marchler, G. H., Mullokandov, M., Song, J. S., Thanki, N., Yamashita, R. A., Yin, J. J., Zhang, D., and Bryant, S. H. (2007). CDD: a conserved domain database for interactive domain family analysis. Nucleic Acids Res 35(Database issue), D237-40.
    149. Margulies, M., Egholm, M., Altman, W. E., Attiya, S., Bader, J. S., Bemben, L. A., Berka, J., Braverman, M. S., Chen, Y. J., Chen, Z., Dewell, S. B., Du, L., Fierro, J. M., Gomes, X. V., Godwin, B. C., He, W., Helgesen, S., Ho, C. H., Irzyk, G. P., Jando, S. C., Alenquer, M. L., Jarvie, T. P., Jirage, K. B., Kim, J. B., Knight, J. R., Lanza, J. R., Leamon, J. H., Lefkowitz, S. M., Lei, M., Li, J., Lohman, K. L., Lu, H., Makhijani, V. B., McDade, K. E., McKenna, M. P., Myers, E. W., Nickerson, E., Nobile, J. R., Plant, R., Puc, B. P., Ronan, M. T., Roth, G. T., Sarkis, G. J., Simons, J. F., Simpson, J. W., Srinivasan, M., Tartaro, K. R., Tomasz, A., Vogt, K. A., Volkmer, G. A., Wang, S. H., Wang, Y., Weiner, M. P., Yu, P., Begley, R. F., and Rothberg, J. M. (2005). Genome sequencing in microfabricated high-density picolitre reactors. Nature 437(7057), 376-80.
    150. Maria-Pilar, J. d. B., Dudal, S., Dornand, J., and Gross, A. (2005). Cellular bioterrorism: how Brucella corrupts macrophage physiology to promote invasion and proliferation. Clin Immun 114(3), 227-238.
    151. Marquis, H., and Ficht, T. A. (1993). The omp2 gene locus of Brucella abortus encodes two homologous outer membrane proteins with properties characteristic of bacterial porins. Infect Immun 61(9), 3785-90.
    152. Martin-Martin, A. I., Caro-Hernandez, P., Sancho, P., Tejedor, C., Cloeckaert, A., Fernandez-Lago, L., and Vizcaino, N. (2009). Analysis of the occurrence and distribution of the Omp25/Omp31 family of surface proteins in the six classical Brucella species. Vet Microbiol. 137(1-2),74-82.
    153. Mekalanos, J. J. (1992). Environmental signals controlling expression of virulence determinants in bacteria. J Bacteriol 174(1), 1-7.
    154. Moreno, E., and Moriyon, I. (2002). Brucella melitensis: a nasty bug with hidden credentials for virulence. Proc Natl Acad Sci U S A 99(1), 1-3.
    155. Morozova, O., and Marra, M. A. (2008). Applications of next-generation sequencing technologies in functional genomics. Genomics 92(5), 255-64.
    156. Morris, J. A. (1973). The use of polyacrylamide gel electrophoresis in taxonomy of Brucella. J. Gen. Microbiol. 76, 231-237.
    157. Morrissy, A. S., Morin, R. D., Delaney, A., Zeng, T., McDonald, H., Jones, S., Zhao, Y., Hirst, M., and Marra, M. A. (2009). Next-generation tag sequencing for cancer gene expression profiling. Genome Res 19(10), 1825-35.
    158. Murphy, E. A., Parent, M., Sathiyaseelan, J., Jiang, X., and Baldwin, C. L. (2001). Immune control of Brucella abortus 2308 infections in BALB/c mice. FEMS Immunol Med Microbiol 32(1), 85-8.
    159. Nasim, A., and Brychcy, T. (1979). Genetic effects of acridine compounds. Mutat Res 65(4), 261-88.
    160. Nieves, W., Heang, J., Asakrah, S., Honer zu Bentrup, K., Roy, C. J., and Morici, L. A. Immunospecific responses to bacterial elongation factor Tu during Burkholderia infection and immunization. PLoS ONE 5(12), e14361.
    161. Nishi, T., and Forgac, M. (2002). The vacuolar (H+)-ATPases—nature's most versatile proton pumps. Nat Rev Mol Cell Biol 3(2), 94-103.
    162. O'Callaghan, D., Cazevieille, C., Allardet-Servent, A., Boschiroli, M. L., Bourg, G., Foulongne, V., Frutos, P., Kulakov, Y., and Ramuz, M. (1999). A homologue of the Agrobacterium tumefaciens VirB and Bordetella pertussis Ptl type IV secretion systems is essential for intracellular survival of Brucella suis. Mol Microbiol 33(6), 1210-20.
    163. Oliveira, S. C., de Oliveira, F. S., Macedo, G. C., de Almeida, L. A., and Carvalho, N. B. (2008). The role of innate immune receptors in the control of Brucella abortus infection: toll-like receptors and beyond. Microbes Infect 10(9), 1005-9.
    164. Opal, S. M., and DePalo, V. A. (2000). Anti-inflammatory cytokines. Chest 117(4), 1162-72.
    165. Paulley, J. T., Anderson, E. S., and Roop, R. M., 2nd (2007). Brucella abortus requires the hemetransporter BhuA for maintenance of chronic infection in BALB/c mice. Infect Immun 75(11), 5248-54.
    166. Paulsen, I. T., Seshadri, R., Nelson, K. E., Eisen, J. A., Heidelberg, J. F., Read, T. D., Dodson, R. J., Umayam, L., Brinkac, L. M., Beanan, M. J., Daugherty, S. C., Deboy, R. T., Durkin, A. S., Kolonay, J. F., Madupu, R., Nelson, W. C., Ayodeji, B., Kraul, M., Shetty, J., Malek, J., Van Aken, S. E., Riedmuller, S., Tettelin, H., Gill, S. R., White, O., Salzberg, S. L., Hoover, D. L., Lindler, L. E., Halling, S. M., Boyle, S. M., and Fraser, C. M. (2002). The Brucella suis genome reveals fundamental similarities between animal and plant pathogens and symbionts. Proc Natl Acad Sci U S A 99(20), 13148-53.
    167. Pei, J., and Ficht, T. A. (2004). Brucella abortus rough mutants are cytopathic for macrophages in culture. Infect Immun 72(1), 440-50.
    168. Pei, J., Turse, J. E., Wu, Q., and Ficht, T. A. (2006). Brucella abortus rough mutants induce macrophage oncosis that requires bacterial protein synthesis and direct interaction with the macrophage. Infect Immun 74(5), 2667-75.
    169. Pizarro-Cerda, J., Meresse, S., Parton, R. G., van der Goot, G., Sola-Landa, A., Lopez-Goni, I., Moreno, E., and Gorvel, J. P. (1998). Brucella abortus transits through the autophagic pathway and replicates in the endoplasmic reticulum of nonprofessional phagocytes. Infect Immun 66(12), 5711-24.
    170. Porte, F., Liautard, J. P., and Kohler, S. (1999). Early acidification of phagosomes containing Brucella suis is essential for intracellular survival in murine macrophages. Infect Immun 67(8), 4041-7.
    171. Porte, F., Naroeni, A., Ouahrani-Bettache, S., and Liautard, J. P. (2003). Role of the Brucella suis lipopolysaccharide O antigen in phagosomal genesis and in inhibition of phagosome-lysosome fusion in murine macrophages. Infect Immun 71(3), 1481-90.
    172. Posadas, D. M., Martin, F. A., Sabio y Garcia, J. V., Spera, J. M., Delpino, M. V., Baldi, P., Campos, E., Cravero, S. L., and Zorreguieta, A. (2007). The TolC homologue of Brucella suis is involved in resistance to antimicrobial compounds and virulence. Infect Immun 75(1), 379-89.
    173. Pruitt, K. D., Tatusova, T., and Maglott, D. R. (2007). NCBI reference sequences (RefSeq): a curated non-redundant sequence database of genomes, transcripts and proteins. Nucleic Acids Res 35(Database issue), D61-5.
    174. Rafie-Kolpin, M., Essenberg, R.C., Wyckoff III, J.H. (1996). Identification and comparison of macrophageinduced proteins and proteins induced under various stress conditions in Brucella abortus. Infect. Immun. 64, 5274-5283.
    175. Rajashekara, G., Covert, J., Petersen, E., Eskra, L., and Splitter, G. (2008). Genomic island 2 of Brucella melitensis is a major virulence determinant: functional analyses of genomic islands. J Bacteriol 190(18), 6243-52.
    176. Rambow-Larsen, A. A., Rajashekara, G., Petersen, E., and Splitter, G. (2008). Putative quorum-sensing regulator BlxR of Brucella melitensis regulates virulence factors including the typeIV secretion system and flagella. J Bacteriol 190(9), 3274-82.
    177. Roberg, K. (2001). Relocalization of cathepsin D and cytochrome c early in apoptosis revealed by immunoelectron microscopy. Lab Invest 81(2), 149-58.
    178. Roberts, L., Adjei, P., and Gores, G. (1999). Cathepsins as effector proteases in hepatocyte apoptosis. Cell Biochem Biophys 30(1), 71-88.
    179. Roop, R. M., 2nd, Gaines, J. M., Anderson, E. S., Caswell, C. C., and Martin, D. W. (2009). Survival of the fittest: how Brucella strains adapt to their intracellular niche in the host. Med Microbiol Immunol 198(4), 221-38.
    180. Roop, R. M., 2nd, Gee, J. M., Robertson, G. T., Richardson, J. M., Ng, W. L., and Winkler, M. E. (2003). Brucella stationary-phase gene expression and virulence. Annu Rev Microbiol 57, 57-76.
    181. Roux, P. P., and Blenis, J. (2004). ERK and p38 MAPK-activated protein kinases: a family of protein kinases with diverse biological functions. Microbiol Mol Biol Rev 68(2), 320-44.
    182. Saldanha, A. J. (2004). Java Treeview--extensible visualization of microarray data. bioinformatics 17(20), 3246-3248.
    183. Sangari, F. J., Seoane, A., Rodriguez, M. C., Aguero, J., and Garcia Lobo, J. M. (2007). Characterization of the urease operon of Brucella abortus and assessment of its role in virulence of the bacterium. Infect Immun 75(2), 774-80.
    184. Santos, J. M., Verstreate, D. R., Perera, V. Y., and Winter, A. J. (1984). Outer membrane proteins from rough strains of four Brucella species. Infect Immun 46(1), 188-94.
    185. Sapra, R., Gaucher, S. P., Lachmann, J. S., Buffleben, G. M., Chirica, G. S., Comer, J. E., Peterson, J. W., Chopra, A. K., and Singh, A. K. (2006). Proteomic analyses of murine macrophages treated with Bacillus anthracis lethal toxin. Microb Pathog 41(4-5), 157-67.
    186. Saxena, V., Garg, S., Ranjan, S., Kochar, D., Ranjan, A., and Das, A. (2007). Analysis of elongation factor Tu (tuf A) of apicoplast from Indian Plasmodium vivax isolates. Infect Genet Evol 7(5), 618-26.
    187. Scholz, H. C., Hubalek, Z., Sedlacek, I., Vergnaud, G., Tomaso, H., Al Dahouk, S., Melzer, F., Kampfer, P., Neubauer, H., Cloeckaert, A., Maquart, M., Zygmunt, M. S., Whatmore, A. M., Falsen, E., Bahn, P., Gollner, C., Pfeffer, M., Huber, B., Busse, H. J., and Nockler, K. (2008). Brucella microti sp. nov., isolated from the common vole Microtus arvalis. Int J Syst Evol Microbiol 58(Pt 2), 375-82.
    188. Seleem, M. N., Boyle, S. M., and Sriranganathan, N. (2008a). Brucella: a pathogen without classic virulence genes. Vet Microbiol 129(1-2), 1-14.
    189. Seleem, M. N., Boyle, S. M., and Sriranganathan, N. (2009). Brucellosis: a re-emerging zoonosis. Vet Microbiol 140(3-4), 392-8.
    190. Seleem, M. N., Jain, N., Alqublan, H., Vemulapalli, R., Boyle, S. M., and Sriranganathan, N. (2008b). Activity of native vs. synthetic promoters in Brucella. FEMS Microbiol Lett 288(2), 211-5.
    191. Shang, D. Q., Li, L.Y., Cheng, R.Z. (1989). The investigation of Brucella canis in China. Chinese J. Epidemiol. 10, 24-30 (in Chinese).
    192. Sharma, J., Mishra, B. B., Li, Q., and Teale, J. M. (2011)TLR4-dependent activation of inflammatory cytokine response in macrophages by Francisella elongation factor Tu. Cell Immunol. doi:10.1016/j.cellimm.2011.03.023
    193. Shin, G. W., Nho, S. W., Park, S. B., Jang, H. B., Cha, I. S., Ha, M. A., Kim, Y. R., Dalvi, R. S., Joh, S. J., and Jung, T. S. (2009). Comparison of antigenic proteins from Lactococcus garvieae KG- and KG+ strains that are recognized by olive flounder (Paralichthys olivaceus) antibodies. Vet Microbiol 139(1-2), 113-20.
    194. Sieira, R., Comerci, D. J., Sanchez, D. O., and Ugalde, R. A. (2000). A homologue of an operon required for DNA transfer in Agrobacterium is required in Brucella abortus for virulence and intracellular multiplication. J Bacteriol 182(17), 4849-55.
    195. Siguier, P., Perochon, J., Lestrade, L., Mahillon, J., and Chandler, M. (2006). ISfinder: the reference centre for bacterial insertion sequences. Nucleic Acids Res 34(Database issue), D32-6.
    196. Sola-Landa, A., Pizarro-Cerda, J., Grillo, M. J., Moreno, E., Moriyon, I., Blasco, J. M., Gorvel, J. P., and Lopez-Goni, I. (1998). A two-component regulatory system playing a critical role in plant pathogens and endosymbionts is present in Brucella abortus and controls cell invasion and virulence. Mol Microbiol 29(1), 125-38.
    197. Sorrentino, A., Thakur, N., Grimsby, S., Marcusson, A., von Bulow, V., Schuster, N., Zhang, S., Heldin, C. H., and Landstrom, M. (2008). The type I TGF-beta receptor engages TRAF6 to activate TAK1 in a receptor kinase-independent manner. Nat Cell Biol 10(10), 1199-207.
    198. Sowa, B. A., Kelly, K. A., Ficht, T. A., and Adams, L. G. (1992). Virulence associated proteins of Brucella abortus identified by paired two-dimensional gel electrophoretic comparisons of virulent, vaccine and LPS deficient strains. Appl Theor Electrophor 3(1), 33-40.
    199. Spera, J. M., Ugalde, J. E., Mucci, J., Comerci, D. J., and Ugalde, R. A. (2006). A B lymphocyte mitogen is a Brucella abortus virulence factor required for persistent infection. Proc Natl Acad Sci U S A 103(44), 16514-9.
    200. Spirin, V., and Mirny, L. A. (2003). Protein complexes and functional modules in molecular networks. Proc Natl Acad Sci U S A 100(21), 12123-8.
    201. Sriranganathan N., S. M., Olsen SC,Samartino LE, Whatmore AM, Bricker B,O‘Callaghan , D, H.S., Crasta OR, Wattam RA, Purkayastha A, Sobral BW,Snyder EE, Williams K, Yu G- , X, F.T., Roop, CM, de Figueiredo P, Boyle SM,He, O, and Tsolis, RM. (2009). Genome Mapping and Genomics in Animal-Associated Microbes. Chapter 1, Brucella. Springer.
    202. Tabatabai, L. B., and Deyoe, B. L. (1984). Characterization of salt-extractable protein antigens from Brucella abortus by crossed immunoelectrophoresis and isoelectricfocusing. Vet Microbiol 9(6), 549-60.
    203. Taminiau, B., Daykin, M., Swift, S., Boschiroli, M. L., Tibor, A., Lestrate, P., De Bolle, X., O'Callaghan, D., Williams, P., and Letesson, J. J. (2002). Identification of a quorum-sensing signal molecule in the facultative intracellular pathogen Brucella melitensis. Infect Immun 70(6), 3004-11.
    204. Tamura, K., Dudley, J., Nei, M., and Kumar, S. (2007). MEGA4: Molecular Evolutionary GeneticsAnalysis (MEGA) software version 4.0. Mol Biol Evol 24(8), 1596-9.
    205. Tatusov, R. L., Galperin, M. Y., Natale, D. A., and Koonin, E. V. (2000). The COG database: a tool for genome-scale analysis of protein functions and evolution. Nucleic Acids Res 28(1), 33-6.
    206. Teixeira-Gomes, A. P., Cloeckaert, A., Bezard, G., Bowden, R. A., Dubray, G., and Zygmunt, M. S. (1997a). Identification and characterization of Brucella ovis immunogenic proteins using two-dimensional electrophoresis and immunoblotting. Electrophoresis 18(8), 1491-7.
    207. Teixeira-Gomes, A. P., Cloeckaert, A., Bezard, G., Dubray, G., and Zygmunt, M. S. (1997b). Mapping and identification of Brucella melitensis proteins by two-dimensional electrophoresis and microsequencing. Electrophoresis 18(1), 156-62.
    208. Teixeira-Gomes, A. P., Cloeckaert, A., and Zygmunt, M. S. (2000). Characterization of heat, oxidative, and acid stress responses in Brucella melitensis. Infect Immun 68(5), 2954-61.
    209. Tettelin, H., Radune, D., Kasif, S., Khouri, H., and Salzberg, S. L. (1999). Optimized multiplex PCR: efficiently closing a whole-genome shotgun sequencing project. Genomics 62(3), 500-7.
    210. Thakur, N., Sorrentino, A., Heldin, C. H., and Landstrom, M. (2009). TGF-beta uses the E3-ligase TRAF6 to turn on the kinase TAK1 to kill prostate cancer cells. Future Oncol 5(1), 1-3.
    211. Tsolis, R. M., Seshadri, R., Santos, R. L., Sangari, F. J., Lobo, J. M., de Jong, M. F., Ren, Q., Myers, G., Brinkac, L. M., Nelson, W. C., Deboy, R. T., Angiuoli, S., Khouri, H., Dimitrov, G., Robinson, J. R., Mulligan, S., Walker, R. L., Elzer, P. E., Hassan, K. A., and Paulsen, I. T. (2009). Genome degradation in Brucella ovis corresponds with narrowing of its host range and tissue tropism. PLoS ONE 4(5), e5519.
    212. Tumurkhuu, G., Koide, N., Takahashi, K., Hassan, F., Islam, S., Ito, H., Mori, I., Yoshida, T., and Yokochi, T. (2006). Characterization of biological activities of Brucella melitensis lipopolysaccharide. Microbiol Immunol 50(6), 421-7.
    213. Ugalde, R. A. (1999). Intracellular lifestyle of Brucella spp. Common genes with other animal pathogens, plant pathogens, and endosymbionts. Microbes Infect 1(14), 1211-9.
    214. Unlu, M., Morgan, M. E., and Minden, J. S. (1997). Difference gel electrophoresis: a single gel method for detecting changes in protein extracts. Electrophoresis 18(11), 2071-7.
    215. Verstreate, D. R., Creasy, M.T., Caveney, N.T., Baldwin, C.L., Blab, M.W., Winter, A.J. (1982). Outermembrane proteins of Brucella abortus: isolation and characterization. Infect Immun 35, ,979-989.
    216. Verstreate, D. R., and Winter, A. J. (1984). Comparison of sodium dodecyl sulfate-polyacrylamide gel electrophoresis profiles and antigenic relatedness among outer membrane proteins of 49 Brucella abortus strains. Infect Immun 46(1), 182-7.
    217. Wagner, M. A., Eschenbrenner, M., Horn, T. A., Kraycer, J. A., Mujer, C. V., Hagius, S., Elzer, P., and DelVecchio, V. G. (2002). Global analysis of the Brucella melitensis proteome: Identification of proteins expressed in laboratory-grown culture. Proteomics 2(8), 1047-60.
    218. Wang, Q. Q., Liu, F., Chen, X. S., Ma, X. J., Zeng, H. Q., and Yang, Z. M. Transcriptome profiling of early developing cotton fiber by deep-sequencing reveals significantly differential expression ofgenes in a fuzzless/lintless mutant. Genomics 96(6), 369-376.
    219. Wang, Z., Gerstein, M., and Snyder, M. (2009). RNA-Seq: a revolutionary tool for transcriptomics. Nat Rev Genet 10(1), 57-63.
    220. Wattam, A. R., Williams, K. P., Snyder, E. E., Almeida, N. F., Jr., Shukla, M., Dickerman, A. W., Crasta, O. R., Kenyon, R., Lu, J., Shallom, J. M., Yoo, H., Ficht, T. A., Tsolis, R. M., Munk, C., Tapia, R., Han, C. S., Detter, J. C., Bruce, D., Brettin, T. S., Sobral, B. W., Boyle, S. M., and Setubal, J. C. (2009). Analysis of ten Brucella genomes reveals evidence for horizontal gene transfer despite a preferred intracellular lifestyle. J Bacteriol 191(11), 3569-79.
    221. Wei, Z., and Li, H. (2007). A Markov random field model for network-based analysis of genomic data. bioinformatics 23(12), 1537-44.
    222. Wenxing Liu, Sen Hu, Zujian Qiao, Weiye Chen, Lintao Liu, Fangkun Wang, Ronghong Hua, Zhigao Bu, and Li, X. Expression, purification, and improved antigenic specificity of a truncated recombinant bp26 protein of Brucella melitensis M5-90: a potential antigen for differential serodiagnosis of brucellosis in sheep and goats. Biotech App Biochem 58(1), 32-38.
    223. Wilhelm, B. T., Marguerat, S., Watt, S., Schubert, F., Wood, V., Goodhead, I., Penkett, C. J., Rogers, J., and Bahler, J. (2008). Dynamic repertoire of a eukaryotic transcriptome surveyed at single-nucleotide resolution. Nature 453(7199), 1239-1243.
    224. Wu, C., Sun, M., Liu, L., and Zhou, G. W. (2003). The function of the protein tyrosine phosphatase SHP-1 in cancer. Gene 306, 1-12.
    225. Wu, Q., Pei, J., Turse, C., and Ficht, T. A. (2006). Mariner mutagenesis of Brucella melitensis reveals genes with previously uncharacterized roles in virulence and survival. BMC Microbiol 6, 102.
    226. Xiao, S., Jia, J., Mo, D., Wang, Q., Qin, L., He, Z., Zhao, X., Huang, Y., Li, A., Yu, J., Niu, Y., Liu, X., and Chen, Y. (2010). Understanding PRRSV infection in porcine lung based on genome-wide transcriptome response identified by deep sequencing. PLoS ONE 5(6), e11377.
    227. Xu, Y., Josson, S., Fang, F., Oberley, T. D., St Clair, D. K., Wan, X. S., Sun, Y., Bakthavatchalu, V., Muthuswamy, A., and St Clair, W. H. (2009). RelB enhances prostate cancer growth: implications for the role of the nuclear factor-kappaB alternative pathway in tumorigenicity. Cancer Res 69(8), 3267-71.
    228. Yi, M., Horton, J. D., Cohen, J. C., Hobbs, H. H., and Stephens, R. M. (2006). WholePathwayScope: a comprehensive pathway-based analysis tool for high-throughput data. BMC Bioinformatics 7, 30.
    229. Zang, Y., Beard, R. L., Chandraratna, R. A., and Kang, J. X. (2001). Evidence of a lysosomal pathway for apoptosis induced by the synthetic retinoid CD437 in human leukemia HL-60 cells. Cell Death Differ 8(5), 477-85.
    230. Zapata, P. D., Colas, B., Lopez-Ruiz, P., Ropero, R. M., Martin, R. M., Rodriguez, F. J., Gonzalez, F. J., Lopez, J. I., and Angulo, J. C. (2004). Phosphotyrosine phosphatase SHP-1, somatostatin and prostate cancer. Actas Urol Esp 28(4), 269-85.
    231. Zhang, J. D., and Wiemann, S. (2009). KEGGgraph: a graph approach to KEGG PATHWAY in Rand bioconductor. bioinformatics 25(11), 1470-1.
    232. Zhu, F., Park, E., Liu, B., Xia, X., Fischer, S. M., and Hu, Y. (2009). Critical role of IkappaB kinase alpha in embryonic skin development and skin carcinogenesis. Histol Histopathol 24(2), 265-71.
    233. Zwerdling, A., Delpino, M. V., Barrionuevo, P., Cassataro, J., Pasquevich, K. A., Garc Samartino, C., Fossati, C. A., and Giambartolomei, G. H. (2008). Brucella lipoproteins mimic dendritic cell maturation induced by Brucella abortus. Micro Infect 10(12-13), 1346-1354.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700