水稻耐盐性的遗传分析及耐盐相关基因的克隆
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
盐胁迫损害植物质膜的正常功能,造成植物气孔关闭,光合降低,能耗增加,养分离子吸收不平衡。植物耐盐机理主要有渗透调节、拒盐机理、盐的区隔化、钾离子运输调控系统、水通道蛋白和光合途径改变等几种假说,其耐盐性遗传是受主基因+多基因混合遗传模型的控制,目前已从许多植物中分离了一些盐胁迫诱导的基因及基因上游序列,有些耐盐基因已被成功转入植物中,提高了植物的耐盐性。
     水稻是中度盐敏感作物,要提高水稻在盐渍土上的生产力,培育耐盐性水稻品种是一项经济而有效的措施。本研究以太湖流域地方品种韭菜青(P_1)和菲律宾国际水稻研究所育成的籼稻品种IR26(P_2)的重组自交系(RILs)群体的248个家系为材料,进行水稻耐盐性的遗传研究及耐盐相关基因的克隆。结果如下:
     1。水稻苗期耐盐性的遗传分析
     在0.5%和0.7%的NaGl胁迫下,对水稻苗期盐害级别、相对株高、相对茎叶干重、相对根干重和根系Na~+/K~+等5个耐盐相关性状进行遗传分析。结果表明:在二种浓度NaCl胁迫下,两亲本的耐盐能力存在显著差异,韭菜青的耐盐能力显著高于IR26。遗传分析表明,在0.5%和0.7%NaCl胁迫下盐害级别的遗传符合两对抑制作用主基因模型(B-1-9)、相对苗高符合两对互补作用主基因+多基因混合遗传模型(E-1-7)、相对茎叶干重和相对根干重符合两对连锁累加作用主基因+多基因混合遗传模型(E-2-6)、根系Na~+/K~+符合三对加性-上位性作用主基因+多基因混合遗传模型(G-1)。在0.5%的NaGl胁迫下,控制盐害级别、相对苗高、相对茎叶干重、相对根干重和根系Na~+/K~+5个性状的主基因+多基因共同解释的遗传率分别为32.7%、55.8%、90.2%、87.5%、79.1%。在0.7%的NaCl胁迫下,这些性状的主基因+多基因共同解释的遗传率分别为42.3%、60.8%、61.9%、65.8%、79.0%。
     2.耐盐性QTLs的检测
     在构建了一个由94个SSR标记组成的分子遗传图谱基础上,对盐害级别,相对苗高,相对茎叶干重,相对根干重和根系Na~+/K~+等5个水稻苗期耐盐相关性状的QTL进行定位。结果显示,在0.5%和0.7%的NaCl胁迫下,5个耐盐相关性状共检测到22
Salt stress damages the functions of plasma membrane and induces stoma-closing, photosynthesis-decreasing, over energy-consuming and unbalance of inorganic ion absorbing in plants. Plant salt tolerance was genetically controlled by mixed inheritance mode with major plus polygenes. Many salt-inducible genes have been cloned, and there are some hypotheses on molecular mechanisms of salt-stress tolerance, such as osmotic adjustment, salt-resistence, compartmentation, regulated potassium transport system, regulated water channel and converted photosynthesis pathway. Some salt-inducible genes have been transformed into plants, and it was evidenced that exogenous gene can enforce the ability to tolerate salt stress.
    Rice is grown widely in the world with moderate sensitivity to salinity. The most effective approach to improve rice salt tolerance is breeding salt tolerance varieties. In order to breed salt tolerance cultivars genetic analysis and relative gene cloning for salt tolerance in rice must be studied. A recombinant inbred lines(RILs) population of 248 lines derived from a cross of Jiucaiqing(japonica)/IR26(indica) by the single seed descent method was used to conduct genetic analysis and relative gene cloning for salt tolerance in rice. The main results are followings:
    1. Genetic analysis for salt tolerance in rice seedlings
    The salinity tolerance rating, relative plant height, relative dry weight of shoot, relative dry weight of root and Na~+/K~+ of root were evaluated under 0.5% and 0.7% NaCl stress, then genetic analysis of these traits were identified. Jiucaiqing and IR26 with various salt tolerance were identified under two NaCl concentrations, the salt tolerance of Jiucaiqing is better than IR26. The genetic analysis results showed that salinity tolerance rating, relative plant height, relative dry weight of shoot and relative dry weight of root, Na~+/K~+ of root were genetically controlled by genetic mode of two inhibiting effect major genes(B-l-9), two complementary effect major genes plus polygenes (E-1-7) , two linkage additive effect major genes plus polygenes (E-2-6) , three additive epistasis major genes plus
引文
1. Ahmad K, Henikoff S, et al. The histone variant H3.3 marks active chromatin by replication independent nucleosome assembly. Mol Cell, 2002, 9:1191-1200
    2. Akbar M, Khush GS. Genetics of salt tolerance in rice. Rice Genetics Proceeding of International Rice Genetics Symposium, IRRI, 1985, 5:399-409
    3. Alberico GJ, Cramer GR, et al. Is the salt tolerance of maize related to sodium exclusion? I. Preliminary screening of seven cultivars. J Plant Nutr. 1993,15:2289-2303
    4. Allakhverdiev SI, Nishiyama Y, Suzuki I, et al. Genetic engineering of the unsaturation of fatty acids in membrane lipids alters the tolerance of Synechocystis to salt stress. PNAS, 1999, 96(10):5862-5867
    5. Amaya I, Botella MA, de la Calle M, et al. Improved germination under osmotic stress of tobacco plants overexpressing a cell wall peroxidase. FEBS Lett, 1999,457(1):80-84
    6. Anderson J A, Huprikar S S, Kochian L V, et al. Functional expression of a probable Arabidopsis thaliana potassium channel in Saccharomyces cerevisiae. Proc Natl Acad Sci USA, 1992, 89: 3736-3740
    7. Anna Campalans, Ramon Messeguer, Adela Goday, et al. Plant responses to drought, from ABA sigal transduction events to the action of the induced proteins. Plant Physiol Biochem, 1999, 37:327-340
    8. Apse MP, Aharon GS, Snedden WA, et al. Salt tolerance conferred by overexpression of a vacuolar Na~+/H~+ antiport in Arabidopsis. Science, 1999, 285:1256-1258
    9. Ascenzi R, Gantt JS, et al. A drought-stress-inducible histone gene in Arabidopsis thaliana is a member of a distinct class of plant linker histone variants. Plant Mol Biol, 1997,34:629-641.
    10. Banuls J, Ratajczak R, Luttge U, et al. NaCl-stress enhances proteolytic turnover of the tonoplast H~+-ATPase of Citrus sinensis: appearance of a 35 kDa polypeptide still exhibiting ATP-hydrolysis activity. Plant Cell Environ, 1995,18:1341-1344
    11. Ben-Hayyin G, Ran U, et al. Salt-induced cooperativity in ATPase activity of plasma membrane-enriched fractions from cultured citrus cells: kinetics and evidence. Physiol Plant, 1990, 80:210
    12. Blumwald E, Poole R J, et al. Na~+/H~+ antiport in isolated tonoplast vesicles from storage tissue of Beta vulgaris. Plant Physiol, 1985, 78:163—167
    13. Blumwald E. Sodium transport and salt tolerance in plants. Curr Opin Cell Biol, 2000,12:431-434.
    14. Bordas M, Montesinos C, Dabauza M, et al. Transfer of the yeast salt tolerance gene HAL1 to Cucumis melon L. cultivars and in vitro evaluation of salt tolerance. Transgenic Res, 1997, 6(1):41-50
    15. Borrell A, Cutanda MC, Lumbreras V, et al. Arabidopsis thaliana atrab28: a nuclear targeted protein related to germination and toxic cation tolerance. Plant Mol Biol, 2002, 50(2):249-259
    16. Boyer JS. Plant productivity and environment. Science, 1982, 218: 443-44817. Brauer D, Conner De N, Tu S I, et al. Effects of pH on proton transport by vacuolar pumps from maize roots. Physiol Plant, 1992, 86:63-70
    18. Braun Y, Hassidim M, Lerner H R, et al. Studies on H~+-translocation ATPase in plants of varying resistance to salinity. Plant Physiol, 1986, 81:1050-1056
    19. Bray EA, Shih TY, Moses MS, et al. Water-deficit induction of a tomato H1 histone requires abscisic acid. Plant Growth Regul, 1999, 29:35-46
    20. Briskin D P, Reynolds-Niesman 1, et al. Determination of H~+-ATP stoichiometry for the plasma membrane H~+-ATP from Red Beet (Beta vulgaris L) storage tissue. Plant Physiology, 1991, 195:242-250
    21. Causse MA, Futon TM, Cho YG et al. Saturated molecular map of the rice genome based on an interspecific backcross population. Genetics, 1994, 138:1251-1274
    22. Chaboute ME, Chaubet N, Gigot C, et al. Histones and histone genes in higher plants: structure and genomic organization. Biochimie, 1993, 75: 523-531
    23. Chattopadhyay M K, Gupta S, Sengupta D N, et al. Expression of arginine decarboxylase in seedlings of indica rice(Oryza sativa L.) cultivars as affected by salinity stress. Plant Mol Biol, 1997, 34:477-483
    24. Chaubet N, Clement B, Gigot C, et al. Genes encoding a histone H3.3-like variant in Arabidopsis contain intervening sequences. J Mol Biol, 1992,225: 569-574
    25. Chaubet-Gigot N, Kapros T, Flenet M, et al. Tissue dependent enhancement of transgene expression by introns of replacement histone H3 genes of Arabidopsis. Plant Mol Biol ,2001, 45: 17-30.
    26. Cheeseman JM. Mechanisms of salinity tolerance in plants. Plant Physiol, 1988,87:547-550
    27. Clipson NJW, Flowers TJ, et al. Salt tolerance in the halophyte Suaeda maritime L. Dum. The effect of salinity on the concentration of sodium in the xylem. New Phytol, 1987,105:359~366
    28. Cohen A, Bray EA, et al. Characterization of three mRNAs that accumulate in wilted tomato leaves in response to elevated levels of endogenous abscisic acid. Planta, 1990,182:27~33
    29. Counillon L, Franchi A, Pouyssegur J, et al. A point mutation of the Na+/H+ exchanger gene (NHE1) and amplification of the mutated allele confer amiloride resistance upon chonic acidosis. Proc Natl Acad Sci USA , 1993, 90:4508-4512
    30. Counillon L, Pouysstgur J, Reithmeie A F, et al. The Na~+/H~+ exchanger NHE-1 possesses N- and O-Linked glycosylation restricted to the first N-terminal rxtracellular domain. Biochemistry, 1994, 33:10463-10469.
    31. Cramer GR, Alberico GJ, Schmidt C, et al. Salt tolerance is not associated with the sodium accumulation of two maize hybrids. Aust J Plant Physiol, 1994, 21:675-692
    32. Dopont F M. Salt-induced changes in ion transport: Regulation of primary pumps and secondary transporters. In: Clarkson D T. Transport and Receptor Protein of Plant Membranes. New York: Plenum Press, 1992. 91-100
    33. Dvorak J, Noaman MM, Goyal S, et al. Enhancement of the salt tolerance of Triticum Aestivum L. Chromosome 4D by homoeologous recombination. Theor Appl Genet, 1994, 88:872-877
    34. Epstein E. How calcium enhances plant salt tolerance.Science, 1998, 280:1906-1907
    35. Eva Soderman, Mattias Hjellstrom, Jan Fahleson, et al. The HD-ZIP gene ATHB6 in arabidopsis in developing leaves, root and carpels and up-regulated by water deficit conditions. Plant Molecular??Biology, 1999, 40: 1073-1083
    36. Flowers T J, Troke P F, Yeo A R, et al. The mechanisms of salt tolerance in halophytes. Annu Rev Plant Physiol, 1977, 28: 89-121
    37. Foolad MR, Jones RA, et al. Mapping salt-tolerance genes in tomato(Lycopersicon esculentum) using trait-based marker analysis. Theor Appl Genet, 1993, 87: 184-192
    38. Fu HH, Luan S, et al. AtKUP1: a dual-affinity K~+ transport frown Arabidopsis. Plant Cell, 1998, 10: 63-73
    39. Fukuda A, Nakamura A, Tagin A, et al. Function, intracellular localization and the importance in salt tolerance of a vacuolar Na~+/H~+ antiporter from rice. Plant Cell Physiol, 2004, 45: 146-159
    40. Fukuda A, Nakamura A, Tanaka Y, et al. Molecular cloning_and expression of the Na~+/H~+ exchanger gene in Oryza sativa. Biochim Biophys Acta. 1999, 1446: 149-155
    41. Fukushima E, Arata Y, Endo T, et al. Improved salt tolerance of transgenic tobacco expressing apoplastic yeast-derived invertase. Plant Cell Physiol, 2001, 42(2): 245-249
    42. Garcia A B, Engler J A, Iyer S, et al. Effects of osmoprotectants on NaCl stress in rice. Plant Physiol, 1997, 115: 159-169
    43. Garg AK, Kim JK, Owens TG, et al. Trehalose accumulation in rice plants confers high tolerance levels to different abiotic stress. PNAS, 2002, 99(25): 15898-15903
    44. Gaxiola RA, Rao R, Sherman A, et al. The Arabidopsis thaliana proton transporters, AtNhx1 and Avpl, can function in cation detoxification in yeast. Proc Natl Acad Sci USA, 1999, 96: 1480-1485
    45. Gisbert C, Rus AM, Bolarin MC, et al. The yeast HAL1 gene improves salt tolerance of transgenic tomato. Plant Physiol, 2000, 123(1): 393-402
    46. Glenn EP. Salt tolerance and crop protein of Halophytes. Critical Reviews in Plant Science, 1999, 18(2): 227-255
    47. Glenn EP, Watson MC, O'Leary JW, et al. Comparison of salt tolerance and osmotic adjustment of low-sodium and high-sodium subspecies of the C_4 halophyte, Atriplex canescens. Plant Cell Environ, 1992, 15: 711-718
    48. Goff S A, Ricke D, Lan T H, et al. A Draft sequence of the rice genome(Oryza sativa L. ssp. Japonica), Science, 2002, 296: 92-100
    49. Gomez-Gadenas A, Verhey S D, Holappa L D, et al. An ABA-induced protein kinase, PKABA1, mediates ABA-suppressed gene expression in barley aleurone layers. Proc Ncad Sci, 1999, 196: 1767-1772
    50. Gorham J. Salt tolerance in the Triticae: K~+/Na~+ discrimination in some perennial wheat grasses and their amphiploids with wheat. J Exp Bot, 1994, 45: 441-447
    51. Greenway H, Munns R. Mechanisms of salt tolerant on non-halophytes. Annu Rev Plant Physiol, 1980, 31: 149-190
    52. Gregorio GB, Senadhira D et al. Genetic analysis of salinity tolerance in rice(Oryza sativa L.). Theor Appl Genet, 1993, 86: 333-338
    53. Grieve C M, Francois L E, Maas E V, et al. Salinity affects the timing of phasic development in spring wheat. Crop Sci, 1994, 34: 1544-1549
    54. Grieve C M, Lesch S M, Maas E V, et al. Leaf and spimordia initiation in salt-stressed wheat. Crop Sci, 1993, 33: 1286-1292
    55. Gulati A, Jaiwal PK, et al. Comparative salt response of callus cultures of Vigna radiata L. wilzek??to various osmotic and ionic stress. J Plant Physiol, 1992, 141: 120
    56. Hai Lan, Piao Kyeong, Tae Pih, et al. An Arabidopsis GSK3/shaggy-like gene that complements yeast salt stress-sensitive mutants is induced by NaCl and abscisic acid. Plant Physiol, 1999, 119: 1527-1534
    57. Hailing Jin, Cathie Martin, et al. Multifunctionality and driversity within the plant MYB-gene family. Plant Molecular Biology, 1999, 41: 577-585
    58. Hajibagheri MA, Yeo AR, Flowers TJ, et al. Salinity resistance in Zea mays: fluxes of potassium, sodium and chloride, cytoplasmic concentrations and microsomal membrane lipids. Plant Cell Environ. 1989, 12: 753-757
    59. Hall JL, et al. Evidence for the cytoplasmic locating of betaine in leaf cells of Suaeda maritime. planta, 1978, (140); 59-62
    60. Hamada A, Hibino T, Nakamura T, et al. Na~+/H~+ antiporter from Synechocystis species PCC 6803, homologous to SOS1, contains an aspartic residue and long C-terminal tail important for the carder activity. Plant Physiol, 2001, 125: 437-446.
    61. Hamada A, Shono M, Xia T, et al. Isolation and characterization of a Na~+/H~+ antiporter gene from the halophyte Atriplex gmelini. Plant Molecular Biology, 2001, 46: 35-42
    62. Hanson A.D., May A.M, et al. Betaine synthesis in chenopods: Localization in chlorplasts. Pro. Natl. Acad. Sci. USA, 1985, 82(1): 3678
    63. Hayashi H, Alia Mustardy L, Deshnium P, et al. Transformation of Arabidopsis thaliana with the codA gene for choline oxidase, accumulation of glycinebetaine and enhanced tolerance to salt and cold stress. Plant J, 1997, 12: 132-142
    64. He PM, Zhang DB, Liang WQ, et al. Expression of choline oxidase gene(codA) enheances salt tolerance of the tobacco. Acta Biochim Biophys Sin, 2001, 33(5): 519-524
    65. Heather Kninght, Emma L, Veale Gareth, et al. The sfr6 mutation in Arabidopsis suppresses low-temperature induction of genes dependent on the CRT/DRE sequence motif. Plant Cell, 1999, 11: 875-886
    66. Hedrich R, shroeder JL, et al. The physiology of ion channels and electrogenic pumps in higher plants. Ann Rev Plant Physiol, 1989, 40: 539-556
    67. Hinkley C, Perry M, et al. Histone H2B gene transcription during Xenopus early development requires functional cooperation between proteins bound to the CCAAT and octamer motifs. Mol Cell Biol, 1992, 12: 4400-4411.
    68. Hong S W, Jon J H, Kwak J M, et al. Identificaton of receptor like protein kinases gene rapidly induced by ABA, dehydration, high salt, and cold treatments in Arabidopsis theliana. Plant Physiol, 1997, 113: 1203-1212
    69. Hynng-in choi, Jungohee Hong, Jin-ok Ha, et al. ABFs, a family of ABA-responsive element binding factors. Biol Chemi, 2000, 275: 1723~1730
    70. Igarashi Y, Yoshiba Y, Sanada Y, et al. Characterization of the gene for △~1-pyrroline-5-carboxylate synthetase and correlation between the expression of the gene and salt tolerance in Oryza sativa L. Plant Mol Biol, 1997, 33: 857-865
    71. Imai R, et al. A lea-class gene of tomato confers salt and freezing tolerance when overexpressed in Saccharomyces cerevisisae. Gene, 1996, 170: 243-248
    72. Ishitani M, Liu J P, Halfter U, et al. SOS3 function in plant salt tolerance requires N-myristorylation??and calcium binding. Plant Cell, 2000, 12: 1667-1677
    73. Ishitani M, Nakamura T, Han SY, et al. Expression of the betaine aldehyde dehydrogenase gene in barley in response to osmotic stress and abscisic acid. Plant Mol Biol, 1995, 27(2): 307-315
    74. Ishitani M, Xiong L, Stevenson B, et al. Genetic analysis of osmotic and cold stress signal transduction in Arabidopsis: Interactions and convergence of abscisic acid-dependent and abscisic acid-independent pathways. Plant Cell, 1997, 9: 1935-1949
    75. Jang IC, Oh SJ, Seo JS, et al. Expression of a bifunctional fusion of the Escherichia coli genes for trehalose-6-phosphate synthase and trehalose-6-phosphate phosphatase in transgenic rice plants increases trehalose accumulation and abiotic stress tolerance without stunting growth. Plant Physiol, 2003, 131(2): 516-524
    76. Jeong MJ, Park SC, Kwon HB, et al. Isolation and characterization of the gene encoding glyceraldehydes-3-phosphate dehydrogenase. Biochera Biophys Res Commun, 2001,. 278(1): 192-196
    77. Jia Z, et al. Gene amplification at a locus encoding a putative Na~+/H~+ antiport confers sodium and lithium tolerance in fission yeast. EMBO, 1992, (11); 1631-1640
    78. Joaquin Medina, Monica Bargues, Javier Terol, et al. The Arabidopsis CBF gene family is composed of three genes encoding AP2 Domain-containing proteins whose expression is regulated by low temperature but not by abscisci acid or dehydration. Plant Physiol, 1999, 119: 463-469
    79. Johasson I, Karisson M, Shukla V K, et al. Water transport activity of the plasma membrane aquaporin RM28A is regulated by phospherylation. Plant Cell, 1998, 10: 451~459
    80. Jones MP. Genetic analysis of salt tolerance in mangrove swamp rice. Rice Genetics Proceeding of International Rice Genetics Symposium, IRRI, 1985, 5: 411—122
    81. Jore Kudla, Qlang, et al. Genes for calcineurin B-like proteins in Arabidopsis are differentially regulate by stress signals. Proc Natl Acad Sci USA, 1999, 96: 4718-4723
    82. Kanayama Y, Mori H, Imaseki H, et al. Nucleotide squence of a cDNA encoding NADP-sorbitol-6-phosphate dehydrogenase from apple. Plant Physiol, 1992, 100: 1607-1608
    83. Kanazin V, Blake T, Shioemaker RC, et al. Organization of the histone H3 genes in soybean, barley and wheat. Mol Gen Genet, 1996, 250: 137-147.
    84. Kapros T, Kelemen Z, Waterborg J.H, et al. Polypyrimidine/polypurine sequences modulate tissue specific control of a cell cycle variant alfalfa histone H3 gene promoter. Plant Sci, 2005, 168: 789-795.
    85. Kavikishor PB. Salt stress in cultured rice cells: effects of proline and abscisic acid. Plant Cell Envi., 1989, 12: 629
    86. Khatun S, Flowers TJ, et al. Effect of salinity on seed set in rice. Plant Cell Environ. 1995, 18: 61-87
    87. Kikuchi S, Satoh K, Nagata T, et al. A. Collection, mapping, and annotation of over 28, 000 cDNA clones from japonica rice. Science, 2003, 301: 376-379.
    88. Kim E, Kwak J M, Uozumi N, et al. AtKUP1: an Arabidopsis gene encoding high-affinity potassium transport activity. Plant Cell, 1998, 10: 51-62
    89. Kishor PBK, Hong Z, Miao GH, et al. Overexpression of △~1-pyrroline-5-carboxylate synthetase increases proline production and confers osmotolerance in transgenic plants. Plant Physiol, 1995, 108: 1387-139490. Krishnamurthy R, Bhagwat K A, et al. Polyamines as modulators of salt tolerance in rice cultivars. Plant Physiol, 1989, 91: 500-504
    91. Kumar A, Taylor M, MadAriff SA, et al. Potato plant expressing antisense and sense S-adenosylmethionine decarboxylase(SAMDC) transgense show altered levels of polyamines and ethylene: antisense plants display abnormal phenotype. Plant J, 1996, 9:147-158
    92. LaRosa P R, Hasegawa P M, Rhodes D, et al. Abscisic acid simulated osmotic adjustment and its involvement in adaptation of tobacco cell to NaCl. Plant physiol, 1987, 85:174-185
    93. Laybourn PJ, Kadonaga JT, et al. Role of nucleosomal cores and histone HI in regulation of transcription by RNA polymerase II. Science, 1991, 254: 238-245
    94. Lin J P, Zhu J K, et al. Proline accumulation and salt stress induced gene expression in a salt hypersensitive mutant of Arabidopsis. Plant Physiol, 1997,114:591-596
    95. Liu J, Huang S, Peng X, et al. Studies on high salt tolerance of transgenic tobacco. Chin Biotechnol, 1995, 11(4):275-280
    96. Liu J, Ishitani M, Halfter U, et al. The Arabidopsis thaliana SOS2 gene encodes a protein kinase that is required for salt tolerance. Proc NatlAcad Sci USA, 2000, 97:3730-3734
    97. Llorente F, Lopez-Cobollo RM, Catala R, et al. A novel cold-inducible gene from Arabidopsis, RCI3, encodes a peroxidase that constitutes a component for strss tolerance. Plant J, 2002, 32(1):13-24
    98. Locy R D, Chang C C, Nielsen B L, et al. Photosynthesis in salt-adapted heterotrophic tobacco cells and regenerated plants. Plant Physiol, 1996,110:321-368
    99. Low R, Rockel B, Krisch M, et al. Early salt stress effects on the differential expression of vacuolar H~+-ATPase genes in roots and leaves of Mesembryanthemum crystallinum. Plant Physiol, 1996, 110:259-265
    100. Lu Yuan-fang, et at. Effect of NaCI stress on water and phytosynthetis gas exchange of spinach leaves, plant physiology communications, 1999, 35(4)
    101. Mahadevan LC, Willis AC, Barratt MJ, et al Rapid histone H3 phosphorylation in response to growth factors, phorbol esters, okadaic acid, and protein synthesis inhibitors. Cell, 1991. 65:775-783.
    102. Mass EV, Grieve CM, et al. Sodium-induced calciumd efficiency in salt-stressed corn. Plant Cell Environ, 1987,10:559-564
    103.Matsushita N, Matoh T, et al. Characterization of Na~+ exclusion mechanisms of salt-tolerant reed plants in comparison with salt-sensitive rice plants. Physiol Plant, 1991, 83:170-176
    104. McCouch SR, Xiuli Chen, Olivier Panaud et al. Microsatellite marker development, mapping and application in rice genetics and breeding, Plant Molecular Biology, 1997,35:88-99
    105. McCue K F. Drought and salt tolerance: towards understanding and application. Trends in Biotechnology, 1990, 8: 358-362
    106. McCue KF, Hanson AD, et al. Salt-inducible betaine aldehyde dehydrogenase from sugar beet: cDNA cloning and expression. Plant Mol Biol, 1992,18:1-11
    107. Mie Kasuga, Qiang Liu, Setsuko Miura, et al. Improving plant drought, salt, and freezing tolerance by gene transfer of a single stress-inducible transcription factor. Nat biotechnol, 1999, 17:287-291
    108. Mikami K, Sakamoto A, Iwabuchi M, et al. The HBP-1 family of wheat basic/leucine zipper proteins interacts with overlapping cis-acting hexamer motifs of plant histone genes. J Biol Chem??1994, 269: 9974-9985.
    109. Mikiko LK, Aurora L et al. Quantitative trait loci for component physiological traits determining salt tolerance in rice. Plant Physiol, 2001, 125: 406-422
    110. Minami M, Meshi T, Iwabuchi MS, et al. Phase-specific DNA-binding proteins interacting with the Hex and Oct motifs in type Ⅰ element of the wheat histone H3 promoter. Gene, 2000, 241: 333-339.
    111. Mizoguchi T, Ichimura K, Irie K, et al. Identification of possible MAPK kinase cascade in Arabjdopsis theliana. Based on parewise yeast two hybrid analysis and functional complementation test of yeast mutants. FEBS Lett, 1998, 43(7): 56-60
    112. Moeljopawiro S, H Ikehashi. Inheritance of salt tolerance in rice. Euphytica, 1981, 30: 291-230
    113. Moons A, Bauw G, Prinsen E, et al. Molecular and physiological responses to abscisic acid and salts in roots of salt-sensitive and salt-tolerant Indica rice varieties. Plant Physiol, 1995, 107: 177-186
    114. Munns R, Gardner A, Tonnet M L, et al. Growth and development in NaCl-treated plants. Ⅱ. Do Na~+ or Cl~-concentrations in dividing or expanding tissues determine growth in barley. Aust J Plant Physiol, 1988, 15: 529-540
    115. Nakamura T, Yokota S, Muramoto Y, et al. Expression of a betaine aldehyde dehydrogenase gene in rice, a glycinebetaine nonaccumulator, and possible localization of its protein peroxisomes. Plant J, 1997, 11: 1115-1120
    116. Niu X M, Damsz B, Kononowicz A K, et al. NaCl-induced alternation in both cell structure and tissue specific plasma membrane H~+-ATPase gene expression. Plant Physiol, 1996, 111: 679-689
    117. Niu X, Narasimhan M L, Salzman R A et al. NaCl regulation of plasma membrane H~+-ATPase gene expression in a glycophyte and a halophyte. Plant Physiol, 1993, 103: 713-718
    118. Ohta M, Hayashi Y, Nakashima A, et al. Introduction of a Na~+/H~+ antiporter gene from Atriplex gmelini confers salt tolerance to rice. FEBS Lett, 2002, 532(3): 279-282
    119. Old RW, Woodland HR. Histone genes: not so simple after all. Cell, 1984, 38: 624-626
    120. Pardo JM, Reddy MP, Yang S, et al. Stress signaling through Ca~(2+)/calmodulin-dependent protein phosphatase calcineurin mediates salt adaptation in plants. Proc Natl Acad Sci USA, 1998, 95: 9681-9686
    121. Peng ZG, Wu R, et al. A simple and rapid nucleotide sequencing strategy and its application in analyzing a rice histone 3 gene. Gene, 1986, 45: 247-252
    122. Piao HL, Lim JH, Kim SJ, et al. Constitutive over-expression of AtGSK1 induces NaCl stress responses in the absence of NaCl stress and results in enhanced NaCl tolerance in Arabidopsis. Plant J, 2001, 27(4): 305-314
    123. Porat R, Pavoncello D, Hayyim G B, et al. A heat treatment induced the expression of a Na~+/H~+ antiport gene (cNHX1) in citrus fruit. Plant Sci, 2002, 162: 957-963
    124. Prasad SR, Bagali PG, et al. Molecular mapping of quantitative trait loci associated with seedling tolerance to salt stress in rice. Current Science, 2000, 78: 162-164
    125. Prior C, Potier S, et al. Characterization of the NHA1 gene encoding a Na~+/H~+ antiporter of the yeast Saccharomyces cerevisiae. FEBS Lett, 1996, 387: 89-93
    126. Quintero F J, Ohta M, Shi H et al. Reconstitution in yeast of the Arabidopsis SOS signaling path way for Na~+ homeostasis. Proc Natl Acad Sci USA, 2002, 99(13): 9061-9066
    127. Ramagopal S. Salinity stress induced tissue-specific in barley seedling. Plant physiol, 1987,??84(2):324-331
    128. Rathinasabapathi B, McMue K F, Gage D A, et al. Metabolic engineering of glycine betaine synthesis: plant betaine aldehyde dehydrogenases lacking typical transit peptides are targeted to tobacco chloroplasts where they confer betaine aldehyde resistance. Planta, 1994,193:155-162
    129. Reece KS, Mcelroy D, Wu R. Genomic nucleotide sequence of four rice(Oryza sativa) actin genes, Plant Mol Biol, 1990,14:621-624
    130. Rhodes D, Hanson AD. Quaternary ammonium and tertiary sulfonium compounds in higher plants. Annu Rev Plant Physiol Plant Mol Biol, 1993,44:357-384
    131. Robertson AJ, Kapros T, Dudits D, et al. Identification of three highly expressed replacement histone H3 genes of alfalfa. DNA Seq,1996, 6:137-146.
    132. Rosario Gil-Mascarell, Jose M Lopez-Coronado, Jose M Belles, et al. The Arabidopsis HAL2-like gene family includes a novel sodium-sensitive phosphatase. Plant J, 1999,17:373-383
    133. Roy M, Wu R, et al. Arginine decarboxylase transgene expression and analysis of environmental stress tolerance in transgenic rice. Plant Sci, 2001,160(5):869-875
    134. Rus A, Yokoi S, Sharkhuu A, et al. AtHKTl is a salt tolerance determinant that controls Na~+ entry into plant roots. Proc NatlAcad Sci USA, 2001, 98:14150-14155
    135. Russell B L, Rathinasabapathi B, Hanson A D, et al. Osmotic stress induces expression of choline monooxygenase in sugar beet and amaranth. Plant Physiol, 1998,116:859-865
    136. Rygol J, Zimmermann U, et al. Radial and axial turgor pressure measurements in individual root cells of Msembryanthemum crystallinum grown under various saline conditions. Plant Cell Environ. 1990,13:15-26
    137. Sakamoto A, Minami M, Huh GH, et al. The putative zinc-finger protein WZF1 interacts with a cis-acting element of wheat histone genes. Eur J Biochem, 1993, 217:1049-1056
    138. Sakamoto A, Murata A, Murata N, et al. Metabolic engineering of rice leading to biosynthesis of glycinebetaine and tolerance to salt and cold. Plant Mol Biol, 1998,38(6):1011~1019
    139. Sambrook J, Fritsch EF, Maniatis T, et al. Molecular Cloning: A Laboratory Manual, Ed 2. Cold Spring Harbar Laboratory Press, NY, 1989
    140. Schultz TF, Spiker S, Quatrano RS, et al. Histone H1 enhances the DNA binding activity of the transcription factor EmBP-1. J Biol Chem, 1996, 271: 25742-25745.
    141. Scippa GS, Grifths A, Chiatante D, et al. The H1 histone variant of tomato, H1-S, is targeted to the nucleus and accumulates in chromatin in response to water-deficit stress. Planta, 2000, 211: 173-181.
    142. Sentenac H, Bonneaud N, Minet M, et al. Cloning and expression in yeast of a plant potassium ion transport system. Science, 1992, 256:663-665
    143. Serrano R, Gaxiola R, et al. Microbial models and salt-stress tolerance in plants. Crit Rev Plant Sci, 1994,13:121-138
    144. Shen B, Jensen R G, Bohner H J, et al. Increased resistance to oxidative stress in transgenic plants by targeting mannitol biosynthesis to chloroplasts. Plant Physiol, 1997,113:1177-1183
    145. Shen YG, Du BX, Zhang WK, et al. AhCMO, regulated by stresses in Atriplex hortensis, can improve drought tolerance in transgenic tobacco. Theor Appl Genet, 2002,105(6-7):815-821
    146. Sheveleva E V, Marquez S, Chamar W, et al. Sorbitol-6-phosphate dehydrogenase expression in transgenic tobacco. Plant Physiol, 1998, 117:831-839147. Sheveleva E, Chmara W, Bohner H J, et al. Increased salt and drought tolerance by D-ononitol production in transgenic Nicotiana tabacum L. Plant Physiol, 1997, 115: 1211-1219
    148. Shi H, Ishitani M, Kim C, et al.The Arobidopsis thaliana salt tolerance gene SOS1 encodes a putative Na~+/H~+ antiporter. Proc Natl Acad Sci USA, 2000, 97: 6896-6901
    149. Shi H, Lee BH, Wu SJ, et al. Overexpression of a plasma membrane Na~+/H~+ antiporter gene improves salt tolerance in Arabidopsis thaliana. Nat Biotechnol, 2003, 21(1): 81-85
    150. Shi H, Zhu J K, et al. SOS4, Apyridoxal kinase gene, is required for root hair development in Arabidopsis. Plant Physiol, 2002, 129: 585-593
    151. Shinozaki K, Yamaguchi-Shinozaki K. Gene expression and signal transduction in water-stress response. Plant Physiol, 1997, 115: 327-334
    152. Shinozaki K, Yamuchi-Shinozaki K. Molecular responses to dehydration and low temperature: Differences and cross-talk between two stress signaling pathways. Curr Opin Plant Biol, 2000, 3: 217-223
    153. Singh N K, Bracker C A, Hasegawa P M, et al. Characterization of osmotin: a thaumatin-like protein associated with osmotic adaptation in plant cell. Plantphysiol, 1987, 85: 529-536
    154. Singh N K, Handa A K, Hasegawa P M, et al. Proteins associated with adaptation of cultured tobacco cell to NaCl. Plant physiol, 1985, 79: 126-137
    155. Sugihara L, Hanagata N, Dubinsky Z, et al. Molecular characterization of cDNA encoding oxygen evolving enhancer protein Ⅰ inceased by salt treatment in the mangrove Bruguiera gymnorrhiza. Plant Cell physiol, 2000, 41: 1279-1285
    156. Susan Y, Fujimoto, Masaru Ohta, et al. Arabidopsis ethylene responsive element binding factors act as transcriptional activators or repressors of GCC box-mediated gene expression. Plant Cell, 2000, 12: 393-404
    157. Takahashi S, Katagifi T, et al. Arabidopsis gene encoding a Ca~(2+)-binding protein is induced by abscisic acid during dehydration. Plant Cell Physiol, 2000, 41: 898-903
    158. Tarczynske MC, et al. Expression of a bacterial mild gene in transgenic tobacco leads to production and accumulation of mannito. Proc NatlAcad Sci USA, 1992, 89: 2600-2604
    159. Tarczynski M C, Jense R G, Bohner H J.et al. Stress protection of transgenic tobacco by production of osmolyte mannitol. Science, 1993, 259: 508-510
    160. Tester M, Davenport R. Na~+ tolerance and Na~+ transport in high plants. Annals Bot, 2003, 91: 503-527.
    161. Tokunori Hobo, Mihoko Asada, Yasuo Kowyama, et al. ACGT-containing abscisic acid response element and coupling elememnt 3 are functionally equivalent. Plant Journal, 1999, 19(6): 679-689
    162. Urao T, Katagiri T. Two genes that encode Ca~(2+) dependent protein kinase are induced by drought and high salt stress in Arabidopsis theliana. Mol Genet, 1994, 244: 331-340
    163. Urao T, Yakubo B, Yamaguchi S K, et al. Stress-responsive expression of genes for two-component response regulator-like proteins in Arabidopsis thalinan. FEBS Letters, 1998, 427(2): 175~178
    164. Van der Meer I M, Koop A J, et al. Cloning of the fructan biosynthesis pathways of Jerusalem artichoke. Plant J, 1998, 15: 489-500
    165. Veena, Reddy VS, Sopory SK, et al. Glyoxalase Ⅰ from Brassica juncea: molecular cloning, regulation and its over expression confer tolerance in transgenic tobacco under stress. Plant J, 1999, 17(4): 385-395166. Vernon D M, Tarczynske M C, Jensen R G et al. Cyclitol production in transgenic tobacco. Plant J, 1993, 4:199-205
    167. Volkmar KM, Hu Y, Steppuhn H. Physiological responses of plants to salinity:a review. Can J Plant Sci. 1998, 78:19-27
    168. Waden R, Cordeiro A, Tiburcio A F. Polyamines: small molecules triggering pathways in plant growth and development. Plant Physiol, 1997,113:1009-1013
    169. Wang X, Wen Q, You A, et al. Cloning and characterization of rice RH3 gene induced by brown planthopper. Chin Sci Bull, 2003,48:1976-1981.
    170. Waterborg JH, Robertson AJ. Common features of analogous replaceament histone H3 genes in animals and plants. J Mol Evol, 1996, 43:194-206.
    171. Weretilmyk EA, Hanson AD. Molecular cloning of a plant betaine-aldehyde dehydrogenase, an enzyme implicated in adaptation to salinity and drought. Proc Natl Acad Sci USA, 1990, 87: 2745-2749
    172. Wimmers L E, Ewing N N, Bennett A B, et al. Higher plant Ca~(2+)-ATPase: primary structure and regulation of mRNA abundance by salt. Proc Natl Acad Sci USA, 1992, 89:9205-9209
    173. Winicov I. Alfinl transcription factor overexpression enhances plant root growth under normal and saline conditions and improves salt tolerance in alfalfa. Planta, 2000, 210(3):416-422
    174. Wood AJ, Saneoke H, Rhodes D, et al. Betaine aldehyde dehydrogenase in sorghum molecular cloning and expression of two related genes. Plant Physiol, 1996,110:1301-1308
    175. Wu SC, Vegh Z, Wang XM, et al. The nucleotide sequences of two rice histone H3 genes. Nucleic Acids Res 1989,17: 3297
    176. Wu SJ, Lei D, Zhu JK, et al. SOS1, a genetic locus essential for salt tolerance and potassium acquisition. Plant Cell, 1996, 8:617-627
    177. Xu D P, Duan X, Wang B, et al. Expression of a late embryogenesis abundant protein gene, HVA1, from barley confers tolerance to water deficit and salt stress in transgenic rice. Plant Physiol, 1996, 110: 249-257
    178. Xu Q, Fu H, Gupta R, et al. Molecular characterization of a protein tyrosine phosphatase encoded by a stress-responsive gene in Arabidopsis. Plant Cell, 1998, 10:849-858
    179. Yamada A, Saitoh T, Mimura T, et al. Expression of mangrove allene oxide cyclase enhances salt tolerance in Escherichia coli, yeast, and tobacco cells. Plant Cell Physiol, 2002, 43(8):903-910
    180. Yamada S M, Karsuhara M W, Lelly W, et al. A family of transcripts encoding water channel protein: tissue specific expression in the common ice plant. Plant Cell, 1995, 7:1129-1142
    181. Yamaguchi-Shinozaki K, Koizumi K, Urao S, et al. Molecular cloning and characterization of 9 cDNAs for genes that are responsive to desiccation in Arabidopsis thaliana: sequence analysis of one cDNA clone encodes a putative transmembrane channel protein. Plant Cell Physiol, 1992, 33:217-224
    182. Yamaguchi-Shinozaki K, Shinozaki K. Improving plant drought, salt and freezing tolerance by gene transfer of a single stress-inducible transcription factor. Novartis Found Symp, 2001, 236:176-186
    183. Yang SX, Zhao YX, Zhang Q, et al. HAL1 mediate salt adaptation in Arabidopsis thaliana. Cell Res, 2001,11(2):142-148
    184. Yao M Z, Wang J F, Chen H Y, et al. Inheritance and QTL mapping of salt tolerance in rice. Rice??Science, 2005, 12(1): 25-32
    185. Yilmaz JL, Bulow L, et al. Enhanced stress tolerance in Escherichia coli and Nicotiana tabacum expressing a betaine aldehyde dehydrogenase/choline dehydrogenase fusion protein. Biotechnol Prog, 2002, 18(6): 1176-1182
    186. Yoshida S, Forno DA, Cock JH, et al. Laboratory manual for physiological studies of rice. The International Rice Research Institute, Los Banos, The Philippines. 1975
    187. Zentella R A. Selaginell lepidoghylla trehalose-6-phosphate synthase complements growth and stress-tolerance defects in a yeast tps1 mutant. Plant Physiol, 1999, 119: 1473-1482
    188. Zhang HX, Blumwald E, et al. Transgenic salt-tolerant tomato plants accumulate salt in foliage but not in fruit. Nat Biotechnol, 2001b, 19: 765-768
    189. Zhang HX, Hodson JN, Williams JP, et al. Engineering salt-tolerant Brassica plants: characterization of yield and seed oil quality in transgenic plants with increased vacuolar sodium accumulation. PNAS, 2001a, 98(22): 12832-12836
    190. Zhang J S, Gu J, Liu F H, et al. A gene encoding a truncated large subunit of Rubisco is transcribed and salt-inducible in rice. Theor Appl Genet, 1995, 91: 361-366
    191. Zhao Ke-Fu, Li Jun. Effects of salinity on the contents of osmotica of monocotyledonous halophytes and their contribution to osmotic adjustment. Acta Botanica Sinica, 1999, 41(12): 1287-1292
    192. Zhu JK. Plant salt tolerance. Trends plant sci, 2001, 6: 66-67
    193. Zhu JK. Salt and drought stress signal transduction in plants. Annu Rev Plant Biol, 2002, 53: 247-273
    194. Zhu JK, et al. Genetic analysis of salt tolerance in Arabidopsis thaliana: evidence of a critical role for potassium nutrition. Plant Cell, 1998, 10: 1181-1192
    195. Zhu JK, Hans JB, et al. Plant cellular and molecular responses to high salinity. Plant Mol Bio, 2000a, 51: 463-499
    196. Zhu JK. Genetic analysis of plant salt tolerance using Arabidopsis. Plant Physiol, 2000, 124: 941-948
    197. Zimmermann S, Talke I, Ehrhardt T, et al. Characterization of SKT1, an inwardly rectifying potassium channel from potato, by heterologous expression in insect cell. Plant Physiol, 1998, 116: 879-890
    198.陈受宜,王阁,劳为德等。黑麦和水稻与脯氨酸合成有关的基因片段的克隆和鉴定。中国科学(B辑),1991,(2):139-145
    199.丁海媛,张耕耘,郭岩等。运用RAPD分析标记水稻耐盐突变系的耐盐主效基因,科学通报,1997,43:418-421
    200.盖钧镒,章元明,王建康。植物数量性状遗传体系。北京:科学出版社,2003
    201.龚继明,何平,钱前等。水稻耐盐性OTL的定位。科学通报,1998,43:1847-1850
    202.顾兴友,梅曼彤,严小龙等。水稻耐盐性状位点的初步检测。中国水稻科学,2000,14(2):65-70
    203.郭岩,张莉,肖岗等。BADH基因在水稻中的表达及转基因植株的耐盐性研究。中国科学(C辑),1997,27(2):151-155
    204.郭北海,张艳敏,李洪杰等。甜菜碱醛脱氢酶(BAOH)基因转化小麦及其表达。植物学报,2000,42(3):279-283205.郭房庆,汤章城。NaCl胁迫下小麦突变体和野生型叶片中的一些有机质累积和基因表达差异。植物生理学报,1999,25:263-268
    206.何小红,徐辰武,蒯建敏等。数量性状基因作图精度的主要影响因子。作物学报,2001,27 (4):469-475
    207.何正权。应用转基因技术提高稻谷耐贮藏特性的研究。浙江大学博士学位论文,2003
    208.华栋,耿德贵。盐度对盐生杜氏藻叶绿体超微结构的影响。徐州师范大学学报,1999,17(4):54-56
    209.梁峥,马德钦,汤岚等。菠菜甜菜碱醛脱氢酶基因在烟草中的表达。生物工程学报,1997,13:236~240
    210.林鸿宣,柳原城司,庄杰云等。应用分子标记检测水稻耐盐性的QTL。中国水稻科学,1998,12(2):72-78
    211.刘娥娥,王振镒,贾敬芬。小麦耐盐细胞系耐盐性分析。西北植物学报,1999,19(4):592-597
    212.刘强,赵南明,K.Yamaguch-Shinozaki等。DREB转录因子在提高植物抗逆性中的作用。科学通报,2000,45(1):11-16
    213.刘岩,王国英,刘俊君等。大肠杆菌gutD基因转入玉米及耐盐转基因植株的获得。中国科学(C辑),1998,28(6):543-547
    214.刘风华,郭岩,谷东梅等。转甜菜碱醛脱氢酶基因植物的耐盐性研究。遗传学报,1997,(24):54-58
    215.刘风华,孙仲序,崔德才等。细菌mtlD基因的克隆及在转基因八里庄杨中的表达。遗传学报,2000,27(5):428-433
    216.刘俊君,彭学贤,王海云等。转基因烟草的甘露醇合成和耐盐性。生物工程学报,1996,12(2):206-210
    217.刘强,张贵友,陈受宜。植物转录因子的结构与调控作用。科学通报,2000,45:1465-1474
    218.陆静梅,朱俊义,李建东等。松嫩平原4种盐生植物根的结构研究。生态学报,1998,18(3):335-337
    219.吕慧颖,李银心,陈华等。番杏Na~+/H~+逆向转运蛋白基因的克隆及特性分析。高技术通讯,2004,11:26-31
    220.马焕成,王沙生。胡杨膜系统的盐稳定性及盐胁迫下的代谢调节。西南林学院学报,1998,18(1):15-23
    221.宁顺斌,宋运淳,王玲等。胁迫诱导的植物细胞凋亡-植物耐盐的可能生理机制。实验生物学报,2000,33(3):245-251
    222.汪沛洪。植物多胺代谢的酶类与胁迫反应。植物生理学通讯,1990,1:1-7
    223.王慧中,黄大年,鲁瑞芳等。转mtlD/gutD双价基因水稻的耐盐性。科学通报,2000,145(7):724-729
    224.王希庆,陈柏君,印莉萍。植物中的MYB转录因子。生物技术通报,2003,22~25
    225.夏朝晖,陈珈。胁迫反应中的液泡膜H~+-ATPase。植物生理学通讯,1998,34:168-174
    226.杨洪强,梁小娥。蛋白激酶与植物逆境信号转导。植物生理学通讯,2001,37(3):185~191
    227.杨敏文。快速测定植物叶片叶绿素含量方法的探讨。光谱实验室,2002,19(4):478-481
    228.杨庆利,王建飞,丁俊杰等。7个水稻品种苗期耐盐性的遗传分析。南京农业大学学报,2004,27(4):6~10
    229.姚明哲,王建飞,陈宏友等。太湖流域粳稻地方品种韭菜青的苗期耐盐性遗传分析。中国水稻科学,2004,18(6):503-506230.张慧,董伟,周峻马等。果聚糖蔗糖转移酶基因的克隆及耐盐转基因烟草的培育。生物工程学报,1998,14:741-745
    231.张新春,庄炳昌,李自超。植物耐盐研究进展。玉米科学,2002,10(1):50-56
    232.张劲松,谢灿,吴晓雪等。烟草两组分信号系统基因NTHK2。科学通报,2000,45(20):2190~2195
    233.张平宇,王颖,卢青等。大米草盐胁迫蛋白的表达及cDNA文库的构建。草业学报,1998,7:67-74
    234.赵恢武,陈杨坚,胡鸢雷等。干旱诱导性启动子驱动的海藻糖-6-磷酸合酶基因载体的构建及转基因烟草的耐旱性。植物学报,2000,42(6):616-619
    235.赵可夫,范海,Harris PJC等。盐胁迫下外源ABA对玉米幼苗耐盐性的影响。植物学报,1995,37(4):295~300
    236.赵可夫,李法曾。中国盐生植物。北京:科学出版社,1999

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700