社交网络中信息传播模式及话题趋势预测研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
摘要:在Web2.0技术和信息网络技术的共同推动下,社交网络应用蓬勃发展,用户规模与日俱增。在社交网络中,作为自媒体的用户可以随时随地采用多种接入方式参与交互。这种新型、灵活、快捷的交互模式极大地缩短了舆论产生、发酵、扩散的时间;同时,参与主体的高度能动性、自组织性、异质性,社会舆论对网络舆论的非线性映射作用等特点,均使得社交网络中的舆论信息传播演化的复杂性和随机性陡增。而传统的舆论模型和研究方法难以准确描述用户微观交互行为,更难以解释网络舆论传播和演化的宏观过程。鉴于此,本文使用交叉学科的思想和方法,对社交网络信息传播模式、影响力用户拓扑分析与挖掘、话题发现及趋势预测等问题进行了深入研究,力图发现和还原社交网络中信息传播的微观与宏观规律,建立能够刻画这些规律的数学模型,并寻找可以促进或抑制信息传播的相关策略。论文的工作有助于了解社交网络中舆论演化的过程,加深对网络上的复杂群体行为的认识,也为复杂系统的理论研究提供一些探索性的结果。
     论文的研究工作得到了国家自然科学基金项目(No.61172072、61271308)、北京市自然科学基金项目(No.4112045)和高等学校博士学科点专项科研基金(No.20100009110002)的支持,主要工作和创新点包括以下几个方面:
     1.研究基于强弱关系理论的社交网络信息传播模型。该模型以传染病动力学经典模型SIR为基础,将节点间信息传播概率视作边连接权重的函数,之后结合强弱关系理论和复杂网络理论建立了用于刻画网络中节点状态随时间演化特性的平均场微分方程组。在真实网络中仿真发现:优先选择弱关系并不能有效的提高信息传播效率,但是去掉弱关系后,无论网络拓扑结构还是信息传播均大受影响;信息传播过程中最大传播节点密度对于节点免疫概率和兴趣衰减概率的变化非常敏感,且拟合了三者之间的函数关系;异质型节点在同样的信息传播机制下会呈现出类似于同质的变化趋势。该模型及其性质有助于进一步深刻认识社交网络中信息传播行为,为进一步研究网络舆论传播提供基础。
     2.建立基于社会记忆性和优先选择性的社交网络信息传播模型。该模型认为社会加强因子(社会舆论参与度)、人际加强因子(传播链路权重)以及记忆效应因子(个体接触信息次数)均会影响个体对于信息的决策过程,从而影响信息扩散。通过在两个真实网络中的仿真得知:网络拓扑特征会影响信息传播强度和范围;社会舆论参与度越高,信息在网络中成功扩散的几率就越大;在平均度和聚类系数较大的网络中,免疫节点起到信息防火墙的作用,在一定程度上抑制信息扩散;社会舆论参与度越大,个体平均接触信息次数越少。模型较好地还原了社交网络中信息交互的基本特征,为进一步研究网络舆论传播提供理论基础和形式参考。
     3.分析社交网络节点中心性特征并提出用户影响力度量方法。在实证分析两个真实社交网络中四类节点中心性指标分布以及指标之间的相关性的基础上,提出一种新的用于区分节点影响力的基于边权重的局域型指标(LW指标)。该指标强调节点的影响力由邻居的数量和质量共同决定,并且其时间复杂度远低于紧密度和介数。之后借助SIR信息传播模型验证LW指标的有效性,在两个真实网络中的仿真表明:LW指标在挖掘影响力较大节点方面的性能优于度、紧密度和介数;相比于k核数,LW指标区分粒度更细,实用性更强。该方法可为社交网络广告营销、用户兴趣推荐、网络舆情分析等应用领域提供理论支撑。
     4.研究社交网络中话题发现和趋势预测方法。设计一套轻型的网络热点话题发现系统,并提出基于BPNN的网络话题发展趋势预测算法。通过对真实网络话题时间序列的预测发现,本模型相比于ARIMA预测模型在还原话题发展趋势以及预测准确度方面均有更优的表现。在此基础上,采用小波降噪、BPNN网络结构优化和学习率自适应调整策略等对模型进行优化,测试表明改进模型的预测性能有了大幅度提升。最后,建立基于BPNN和ARIMA的自适应社交网络话题发展趋势预测模型,提高了预测模型的适用范围。这些方法对网络舆论的监测及预警具有一定的实际应用价值。
Driven by the fast development of the Web2.0and information network technology, huge numbers of individuals who have been attracted by various popular applications, are crowding into the social networks. As a self-media, users in social networks can participate in the interactions with other individuals anytime, anywhere and by utilizing any access methods. This new, flexible, fast interactive mode can greatly shorten the evolution time in which public opinion is generated, fermented, and disseminated. At the same time, participants have the highly dynamic, self-organization, and heterogeneity characteristics, and social opinion may influence network opinion with the nonlinear mapping relationship. All of above negative factors make the dissemination and evolution process of network opinion becoming more randomly and complicatedly. However, the traditional models and research methods of public opinion are difficult to accurately describe not only the microscopic interaction behavior between users but also the macroscopic phenomenon of dissemination and evolution. In view of this, we use the interdisciplinary ideas and methods to study information dissemination mode in social networks, influential users mining, topic detection and trends forecasting issues, trying to find and restore the information dissemination in social networks, to establish mathematical models which can characterize these laws, and to find relevant strategies which can promote or inhibit information dissemination. Our work may help to understand the evolution process of public opinion in social networks, to understand the complex group behavior deeply, and also provide some of exploratory theoretical results for the study of complex systems.
     The work of the dissertation is supported by the National Natural Science Foundation of China (No.61172072,61271308), Beijing Natural Science Foundation (No.4112045), and the Specialized Research Fund for the Doctoral Program of Higher Education of China (No.20100009110002). Main contributions of the dissertation are as follows:
     1. We propose an epidemic model for information dissemination in social networks based on the theory of tie-strength. The model considers infectious probability as a function of the ties strength, and then establishes the dynamic evolution equations which describe the evolution process of different types of nodes. Moreover, we investigate numerically the behavior of the model on a real scale-free social site with the exponent γ=2.2. We verify that the strength of ties plays a critical role in the rumor diffusion process. Specially, selecting weak ties preferentially cannot make rumor spread faster and wider, but the efficiency of diffusion will be greatly affected after removing them. Another significant finding is that the maximum number of spreaders is very sensitive to the immune probability P and the decay probability v. We show that a smaller μ or v leads to a larger spreading of the rumor, and their relationships can be described as the function ln(max(S))=Av+B, in which the intercept B and the slope A can be fitted perfectly as power-law functions of μ. Our findings may offer some useful insights, helping guide the application in practice and reduce the damage brought by the rumor.
     2. We establish an information dissemination model based on social memory and tie-strength. The model considers that the social reinforcement factor (social participation of public opinion), the memory effect factor (the number of contacting information for individuals) as well as interpersonal relationship (strength of dissemination ties) will affect the decision-making process of the individual, and then affects the information coverage. Some simulations on two real social sites can prove the following conclusions. Firstly, network topology characteristics will affect the strength and coverage of the information dissemination. Secondly, the higher degree of public opinion participation can lead to greater chance for information spreading in the network. Thirdly, the immune node plays the role of information firewall in the network with higher average degree and clustering coefficient. Finally, the average number of contacting information for individuals will decrease with the increasing participation of the publis opinion. The model can restore the basic characteristics of the information exchange in the social networks, and provide a theoretical basis for further study.
     3. We study the nodes centricity characteristics and identify influential nodes for spreading dynamics. First, we analyze the distribution of four kinds of centrality indicators and their correlations in two typical social sites. Then, we propose a new centricity indicator based on the theory of ties strength, which is named as local weight indicator (LW). The indicator emphasizes the node influence is jointly determined by the quantity and quality of neighbors, and the complexity of LW is far lower than the closeness and betweenness. Moreover, LW has a finer-grained distinction than k-core indicator. We use SIR model to evaluate the performance of LW indicator in two real social sites. Simulations show that our method can well identify the influencial nodes. The method can provide theoretical support for some applications.
     4. We study the method of hot topic detection and the algorithm of topics'growth trends prediction in social networks. First we design a lightweight system to detecte hot topics, and then put forward a prediction method based on the BPNN. The results of empirical tests show that our approach is more effective than existing method ARIMA in the aspect of forecasting growth trends. Moreover, we apply wavelet denoising method, BPNN network structure optimization and adaptive learning rate adjustment strategies to improve the above model. Results show that the predicting performance of the optimized model has been improved significantly. Finally, we establish of a self-adaptive forecasting model based on the BPNN and ARIMA in social networks, which can expand the scope of its applications. These methods may help people to master the growth trends through public monitoring and early warning.
引文
[1]中国互联互联网信息中心(CNNIC).第31次中国互联网络发展状况统计报告[R].2013.http://www.cnnic.net.cn/hlwfzyj/hlwxzbg/hlwtjbg/201207/t20120723_32497.htm
    [2]霍兰,周晓牧等译.隐秩序——适应性造就复杂性[M].上海:上海科技教育出版社,2000.
    [3]S. Wolfram. Cellular automata as simple self-organizing systems [J]. Caltech preprint,1982, 1-12.
    [4]苏凤环,自组织临界性理论与元胞自动机模型的研究[D].四川,西南交通大学博士论文,2006.
    [5]吴青峰,孔令江,刘慕仁.元胞自动机舆论传播模型中人员个性的影响[J].广西师范大学学报(自然科学版),2004,22(4):5-9.
    [6]肖海林,邓敏艺,孔令江,刘慕仁.元胞自动机舆论模型中人员移动对传播的影响[J].系统工程学报,2005,20(3):225-231.
    [7]方薇,何留进,孙凯,赵鹏.采用元胞自动机的网络舆情传播模型研究[J].计算机应用2010,30(3):751-755.
    [8]范玉顺,曹军威.多代理系统:理论、方法与应用[M].北京:清华大学出版社,2002.
    [9]B. Horling, V. Lesser. A survey of multi-agent organizational paradigms [J]. The Knowledge Engineering Review,2004,19 (4):281-316.
    [10]黄楠,刘斌.多Agent技术综述[J].微处理机,2010,4(2):1-4.
    [11]Wikipedia [EB/OL]. (2012). Monte Carlo method: http://en.wikipedia.org/wiki/Monte_Carlo_method
    [12]尹增谦,管景峰,张晓宏,曹春梅.蒙特卡罗方法及应用[J].物理与工程,2002,12(3):45-49.
    [13]盛昭瀚,姚洪兴,王海燕,陈国华.混沌动力系统的重构预测与控制[M].北京:中国经济出版社,2003.
    [14]汪小帆,李翔,陈关荣.复杂网络理论及其应用[M].北京:清华大学出版社,2006.
    [15]P. Erdos and A. Renyi. On the evolution of random graphs [J]. Publ. Math. Inst. Hung. Acad. Sci.,1960,5:17-60.
    [16]D. J. Watts and S. H. Strogatz. Collective dynamics of'small-world'networks [J]. Nature, 1998,393 (6684):440-442.
    [17]A. L. Barabasi and R. Albert. Emergence of scaling in random networks [J]. Science,1999, 286 (5439):509-512.
    [18]W. S. McCulloch and W. H. Pitts. A logical calculus of ideas immanent in nervous activity [J]. Bulletin of Math. Biophsics,1943,5:115-133.
    [19]D. O. Hebb, The organization of Behavior [M]. John Wiley & Sons. New York,1949.
    [20]M. Minsky and S. Papert. Perceptron:An Introduction to Computation Geometry [M]. Mit Press, Cambridge. Massachusetts.1969.
    [21]T. K. Kohonen. Cognitron:A Self-Organization Multilayered Neural Network [J]. Biol. Cyber, 1975,20:121-136.
    [22]T. K. Kohonen. Sefl-Organization and Associative Memory [M]. New York. Spring-Verlag, 1988.
    [23]J. J. Hopfield. Neural network and physical systems with emergent collective computational abilities [J]. Proc. Natl. Acad. Sci. USA,1982,79:1552-2558.
    [24]D. E. Rumelhart. Parallel Distributed Processing [M], Volume 1 and vlume 2. MIT Press, Cambridge.1986.
    [25]B.D. Ripley. Pattern Recognition and Neural Networks [M], Cambridge University Press, 1996.
    [26]A. Tarraf and M. Meyers. Neural Network-Based Voice Quality Measurement Technique [C]. Proceedings of the Fourth IEEE Sysposium on Computers and Communications,1998.
    [27]F. L. Lewis, K. Liu, and A. Yesildirek. Neural net robot controller with guaranteed tracking performance [J]. IEEE Trans. Neural Networks,1995,703-710.
    [28]B. T. Thumati and S. Jagannathan. A multilayer neural network based identification and control scheme for a class of nonlinear discrete-time systems with asymptotic stability guarantees[C], Control and Automation,2009. MED'09.540-545.
    [29]李双成,郑度.人工神经网络模型在地学研究中的应用进展[J].地球科学进展.2003,18(1):68-76.
    [30]Z. Liao and J. Wang. Forecasting model of global stock index by stochastic time effective neural network [J]. Expert Systems with Applications,2010,37 (1):834-841.
    [31]D. Silva, F. J. Meza, and E. Varas. Estimating reference evapotranspiration (ETo) using numerical weather forecast data in central Chile [J]. Journal of Hydrology,2010,382 (1-4): 64-71.
    [32]L. H. Feng and J. Lu. The practical research on flood forecasting based on artificial neural networks [J]. Expert Systems with Applications,2010,37 (4):2974-2977.
    [33]V. M. Eguiluz and K. Klemm. Epidemic Threshold in Structured Scale-Free Networks [J], Phys. Rev. Lett.,89 (2002):108701.
    [34]Z. H. Liu and B. Hu. Epidemic spreading in community networks [J], Europhys. Lett.,72 (2005):315.
    [35]N. T. J. Bailey. The mathematical theory of infectious diseases and its applications [M]. New York:Hafher Press,1975.
    [36]R. M. Anderson and R. M. May. Infectious diseases of humans:dynamics and control [M]. Oxford:Oxford University Press,1992.
    [37]A. Vazquez. Polynomial Growth in Branching Processes with Diverging Reproductive Number [J], Phys. Rev. Lett.,96 (2006):038702.
    [38]T. Zhou, J. Liu, W. Bai, G. Chen and B. Wang. Behaviors of susceptible-infected epidemics on scale-free networks with identical infectivity [J], Phys. Rev. E,74 (2006) 056109.
    [39]M. Kuperman and G. Abramson. Small World Effect in an Epidemiological Model [J], Phys. Rev. Lett.,86 (2001):2909-2912.
    [40]G. Yan, Z. Q. Fu, J. Ren and W. X. Wang. Collective synchronization induced by epidemic dynamics on complex networks with communities [J], Phys. Rev. E,75 (2007) 016108.
    [41]A. Grabowski and R. A. Kosinski. Epidemic spreading in a hierarchical social network [J], Phys. Rev. E,70 (2004) 031908.
    [42]V. Colizza, A. Barrat, M. Barthelemy and A. Vespignani. Epidemic predictability in meta-population models with heterogeneous couplings:the impact of disease parameter values [J], Inter. J. of Bif. Chaos,200717(7):2491-2500.
    [43]N. M. Ferguson, M. J. Keeling, W. J. Edmunds, R. Gani, B. T. Grenfell, B. M. Anderson and S. Leach. Planning for smallpox outbreaks [J], Nature,425 (2003) 681-685.
    [44]D. A. Cummings, R. A. Irizarry, N. E. Huang, T. P. Endy, A. Nisalak, K. Ungchusak and D. S. Burke. Travelling waves in the occurrence of dengue haemorrhagic fever in Thailand [J], Nature,427 (2004) 344-347.
    [45]L. Stone, R. Olinky and A. Huppert. Seasonal dynamics of recurrent epidemics [J], Nature, 446 (2007) 533-536.
    [46]R. P. Satorras and A. Vespignani. Epidemic dynamics and endemic states in complex networks [J]. Phys. Rev. E,63 (2001) 066117.
    [47]R. P. Satorras and A. Vespignani, in Handbook of Graphs and Networks:From the Genome to Internet, Ed. By S. Bornholdt and H. G. Schuster. Berlin:Wiley-VCH,2002:113-132.
    [48]Y. Moreno, R. P. Satorras and A. Vespignani. Epidemic outbreaks in complex heterogeneous networks [J], The European Physical Journal B,2002 (26):521-529.
    [49]X. Wu and Z. Liu, "How community structure influences epidemic spread in social networks," PhysicaA:Statistical Mechanics and its Applications, vol.387, pp.623-630,2008.
    [50]D. M. Skowronski, C. Astell, R. C. Brunham, D. E. Low, M. Petric, R. L. Roper, P. J. Talbot, T. Tarn, and L. Babiuk, Annu. Rev. Med.56,357 (2005).
    [51]J. Mossong, N. Hens, M. Jit, P. Beutels, K. Auranen, R. Mikolajczyk, M. Massari, S. Salmaso, G Scalia Tomba, J. Wallinga, J. Heijne, M. Sadkowska-Todys, M. Rosinka, and W. J. Edmunds, PloS Med.5, e74 (2008).
    [52]H. P. Duerr, M. Schwehtn, C.C. Leary, S. J. De Vlas and M. Eichner, The impact of contact structure on infectious disease control:influenza and antiviral agents [J], Epidemiol. Infect. 135,1124(2007).
    [53]F. Ball and P. Neal. Network epidemic models with two levels of mixingMath [J], Math. Biosci.,2008 (212):69-87.
    [54]A. Agrawal, D. Kapur, and J. McHale. How do spatial and social proximity influence knowledge flows? Evidence from patent data [J], J. Urban Econ.64,258 (2008).
    [55]S. F. Reardon and G Firebaugh. Response:Segregation and Social Distance—A Generalized Approach to Segregation Measurement [J], Sociol. Methodol., (2002) 32(1):85-101.
    [56]E. Estrada, F. K. Mutombo, and A. V. Colmeiro. Epidemic spreading in networks with nonrandom long-range interactions [J], Physical Review E,84 (2011) 036110.
    [57]M. E. J. Newman. Spread of epidemic disease on networks [J], Phys. Rev. E 66016128 (2002).
    [58]B. Golub and M. O. Jackson. Using selection bias to explain the observed structure of Internet diffusions [J], Proc. Natl. Acad. Sci. USA 107,10833 (2010).
    [59]D. Wang, Z. Wen, H. Tong, C. Y. Lin, C. Song, and A.-L. Barab'asi. Information spreading in context [C], in Proceedings of the 20th International Conference on World Wide Web, Vol. 735 (ACM, New York,2011).
    [60]G. Pickard, I. Rahwan,W. Pan,M. Cebrian, R. Crane, A.Madan, and A. Pentland. Time Critical Social Mobilization:The DARPA Network Challenge Winning Strategy, e-print arXiv: 1008.3172vl [cs.CY] (2010).
    [61]A. V. Banerjee. The Economics of Rumours [J], Review of Economic Studies,199360(2): 309-327.
    [62]Klaus Dietz, Epidemics and Rumours:A Survey [J], Journal of the Royal Statistical Society. Series A (General),1967,130(4):505-528.
    [63]D.J. Daley, D.G Kendal. Stochastic rumours [J], IMA J. Appl. Math., (1965) 1 (1):42-55.
    [64]D.J. Daley and J. Gani. Epidemic Modelling [M], Cambridge University Press, Cambridge, UK,2000.
    [65]D.P. Maki. Mathematical Models and Applications, with Emphasis on Social, Life, and Management Sciences [M], Prentice-Hall, Englewood Cliffs, NJ,1973.
    [66]D. Zanette. Dynamics of rumor propagation on small-world networks [J]. Physical Review E, 2002,65 (4) 041908.
    [67]Y. Moreno, M. Nekovee and A. Vespignani. Efficiency and reliability of epidemic data dissemination in complex networks [J], Phys. Rev.E 69 (2004) 055101R.
    [68]Y. Moreno, M. Nekovee, and A. F. Pacheco. Dynamics of rumor spreading in complex networks [J], Physical Review E,2004,69(6) 066130.
    [69]J. Zhou, Z. H. Liu, and B. W. Li. Influence of network structure on rumor propagation [J], Physics Letters A,2007,368(6):458-463.
    [70]M. Nekovee, Y. Moreno, G. Bianconi, and M. Marsili. Theory of rumour spreading in complex social networks [J], Physica A,2007,374(1):457-470.
    [71]D. Trpevski, K. S. Tang, and L. Kocarev. Model for rumor spreading over networks [J], Physical Review E,201081(5) 056102.
    [72]M. Y. Cha, A. Mislove, and K. P. Gummadi. A measurement-driven analysis of information propagation in the flickr social network [C], in Proceedings of the 18th international conference on World Wide Web, WWW'09, pp 721-730,2009.
    [73]Y. Jaewon and L. Jure. Modeling information diffusion in implicit networks [C], in Proceedings of the 2010 IEEE international conference on data mining, ICDM'10, pp 599-608,2010.
    [74]D. Gruhl, R. Guha, D. L. Nowell, and A. Tomkins. Information Diffusion through Blogspace [C], in Proceedings of the 13th international conference on Word ide Web, pp:491-501,2004.
    [75]J. C. Zhao, J. J. Wu, X. Feng, H. Xiong, and K. Xu. Information propagation in online social networks:a tie-strength perspective [J], Knowledge and Information Systems, vol.32, pp. 589-608,2011.
    [76]M. Faloutsos, P. Faloutsos, and C. Faloutsos. On Power-Law relationships of the Internet topology[J], ACM SIGCOMM Computer Communication Keview,1999,29(4):251-262.
    [77]S. Staniford, V. Paxson, and N. Weaver. How to own the Internet in your spare time [C], in Proceedings of the 11th USENIX Security Symposium,2002,149-167.
    [78]G Serazzi and S. Zanero. Computer virus propagation models [J], Performance Tools and Applications to Networked Systems,2004,2965:26-50.
    [79]C. C. Zou, D. Towsley, and W. Gong. Email virus propagation modeling and analysis [J]. Technical Report TR-CSE-0304,University of Massachusetts, Amherst,2003,
    [80]杨春霞,胡丹婷,胡森,微博病毒传播模型研究[J],计算机工程,201238(15):100-103
    [81]A. L. Hill, D. G Rand, M. A. Nowak, N, A, Christakis. Infectious Disease Modeling of Social Contagion in Networks [J], PLoS Comput. Biol.,2010,6(11):e1000968.
    [82]D. M. Romero, B. Meeder, and J. Kleinberg. Differences in the mechanics of information diffusion across topics:idioms, political hashtags, and complex contagion on twitter [C], in Proc.20th Int. Conf. WWW,2011, pp:695-704.
    [83]P. S. Dodds and D. J. Watts. Universal Behavior in a Generalized Model of Contagion [J], Phys. Rev. Lett.2004 (92) 218701.
    [84]D. Centola, V. M. Eguiluz, and M. W. Macy. Cascade dynamics of complex propagation [J], PhysicaA,2007,374(1):449-456.
    [85]M. Medo, Y. C. Zhang, and T. Zhou. Adaptive model for recommendation of news [J],2009 Eur. Phys. Lett.8838005.
    [86]G Cimini, M. Medo, T. Zhou, D. Wei and Y. C. Zhang. Heterogeneity, quality, and reputation in an adaptive recommendation model [J], Eur. Phys. J. B,2011,80(2):201-208.
    [87]D. Wei, T. Zhou, G Cimini, P. Wu, W. Liu, and Y. C. Zhang. Effective mechanism for social recommendation of news [J], Physica A,2011,390(11):2117-2126.
    [88]P. L. Prapivsky, S. Redner and D. Volovik.2011 arXiv:1104.4107.
    [89]M. S. Granovetter. The Strength of Weak Ties [J]. American Journal of Sociology,197378(6): 1360-1380.
    [90]Valery Yakubovich. Weak Ties, Information, and Influence:How Workers Find Jobs in a Local Russian Labor Market [J], American Sociological Review,200570(3):408-421.
    [91]J. D. Montgomery. Job Search and Network Composition:Implications of the Strength of Weak Ties Hypothesis [J]. American Sociological Review,1992,57(5):586-596.
    [92]C. Henning and M. Lieberg. Strong ties or weak ties? Neighbourhood networks in a new perspective [J], Scandinavian Housing and Planning Research 1996,13(1):3-26.
    [93]M. S. Granovetter. The Strength of Weak Ties:A Network Theory Revisited [J]. Sociological Theory, Vol.1 (1983), pp.201-233.
    [94]A. L. Kavanaugh, D. D. Reese, J. M. Carroll, and M. B. Rosson, Weak Ties in Networked Communities [J]. The Information Society,2005,21(2):119-131.
    [95]M. T. Harson. The Search-Transfer Problem:The Role of Weak Ties in Sharing Knowledge across Organization Subunits [J]. Administrative Science Quarterly,1999,44(1):82-111.
    [96]N. E. Friedkin. Information flow through strong and weak ties in intraorganizatinal social networks [J], Social Networks,1982,3(4):273-285.
    [97]G Weimann. The strength of weak conversational ties in the flow of information and influence [J], Social Networks,1983,5(3):245-267.
    [98]D. Centola and M. Macy. Complex contagions and the weakness of long ties [J], American Journal of Sociology,2007,113(3):702-734.
    [99]E. Bakshy, I. Rosenn, C. Marlow, and L. Adamic, The role of social networks in information diffusion, in Proceedings of the 21st international conference on World Wide Web,519-528, ACM New York, USA,2012.
    [100]R. K Pan and J Saramaki. The strength of strong ties in scientific collaboration networks [J], Europhysics Letters,201297(1).
    [101]J. C. Zhao, J. J. Wu and K. Xu. Weak ties:Subtle role of information diffusion in online social networks [J], Physical Review E,2010,82(016105).
    [102]J. P. Onnela, J. Saramakl, J. Hyvonen, G. Szabo, D. Lazre, K. Kaski, J. kertesz, and A. L. Barabasi. Structure and tie strengths in mobile communication networks [J], Proceedings of the National Academy of Sciences,2007,104(18):7332-7336,.
    [103]J. P. Onnela, J. Sarammkl, J. Hyvonen, G Szab6, M. A. de Menezes, K. kaski, A. L. Barabasi, and J. kertesz. Analysis of a large-scale weighted network of one-to-one human communication [J], New Journal of Physics,2007,9(179).
    [104]L. Y. Lii and T. Zhou. Link Prediction in Weighted Networks, the Role of Weak Ties, Europhysics Letters,2010,89(1).
    [105]M. Kitsak, L.K. Gallos, S. Havlin, F. Liljeros, L. Muchnik, H.E. Stanley, and H.A. Makse. Identification of influential spreaders in complex networks, Nature Physics,2010,6 (11) 888-893.
    [106]G. Ghoshal and A. L. Barabasi. Ranking stability and super-stable nodes in complex networks [J], Nature communications 2011,2(394):1-7.
    [107]D. Kempe, J. M. Kleinberg, and E. Tardos. Maximizing the spread of influence through a social network [C], in Proceedings of the 9th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, pages 137-146,2003.
    [108]M. Kimura and K. Saito. Tractable models for information diffusion in social networks [C], in ECMLPKDD2006.
    [109]J. Leskovec, A. Krause, C. Guestrin, C. Faloutsos, J. Van Briesen, and N. S. Glance, Cost-effective outbreak detection in networks [C], in KDD 2007.
    [110]W. Chen, Y. Wang, and S. Yang, Efficient influence maximization in social networks [C], in KDD 2009.
    [111]W. Chen, C. Wang, and Y. Wang, Scalable influence maximization for prevalent viral marketing in large scale social networks [C], in KDD 2010.
    [112]D. Chen, L.L.M.-S. Shang, Y.-C. Zhang, T. Zhou, Identifying influential nodes in complex networks [J], Physica A,2012,391 (4):1777-1787.
    [113]X. Huang, I. Vodenska, F. Wang, S. Havlin, and H.E. Stanley. Identifying influential directors in the United States corporate governance network [J], Physical Review E 84 (2011) 046101.
    [114]D.R. Wuellner, S. Roy, R.M. D'Souza, Resilience and rewiring of the passenger airline networks in the United States [J], Physical Review E,82 (5) (2010) 056101.
    [115]R. Albert, H. Jeong, A. L. Barabasi, Error and attack tolerance of complex networks [J], Nature,406 (6794) (2000) 14.
    [116]F. Radicchi, S. Fortunato, B. Markines, A. Vespignani, Diffusion of scientific credits and the ranking of scientists, Physical Review E,80 (2009) 056103.
    [117]P. Chen, H. Xie, S. Maslov, S. Redner, Finding scientific gems with Google's pagerank algorithm [J], Journal of Informetrics 1 (1) (2007) 8-15.
    [118]F. Radicchi, Who is the best player ever? A complex network analysis of the history of professional tennis [J], PLoS ONE 6 (2) (2011) e17249.
    [119]L. Ltt, Y. C. Zhang, C.H. Yeung, T. Zhou, Leaders in social networks, the delicious case [J], PLoS ONE 6 (6) (2011) e21202.
    [120]J. Nail. The consumer advertising backlash, May 2004. Forrester Research and Intelliseek Market Research Report
    [121]I. R. Misner. The World's best known marketing secret:Building your business with word-of-mouth marketing. BardPress,2nd edition,1994
    [122]J. Allan, J. G Carbonell, G. Doddington, J. Yamron, and Y. Yang. Topic detection and tracking pilot study final report [C]. Proceedings of the Broadcast News Transcription and Understanding Workshop,1998.
    [123]C. C. Chen, Y. T. Chen, and M. C. Chen. An aging theory for event life-cycle modeling [J]. IEEE Transactions on Systems, Man and Cybernetics, Part A:Systems and Humans,2007,37 (2):237-248.
    [124]K. Y. Chen, L. Luesukprasert, and S. T. Chou. Hot topic extraction based on timeline analysis and multi-dimensional sentence modeling [J]. IEEE Transactions on Knowlege and Data Engineering,2007,19 (8):1016-1025.
    [125]R. K. Pon, A. F. Cardenas, D. J. Buttler, and T. J.Critchlow. Measuring the interestingness of articles in a limited user environment [J]. Information Processing & Management,2011,47 (1):97-116.
    [126]Q. Li, J. Wang, Y. P. Chen, and Z. Lin. User comments for news recommendation in forum-based social media [J]. Information Sciences,2010,180 (24):4929-4939.
    [127]D. Lu and Q. Li. Exploiting semantic hierarchies for flickr group [J]. Active Media Technology,2010,6335:74-85.
    [128]R. A. Negoescu and D. Gatica-Perez. Modeling flickr communities through probabilistic topic-based analysis [J]. Ieee Transactions on Multimedia,2010,12 (5):399-416.
    [129]Y. Zhou, X. Guan, Q. Zheng, Q. Sun, and J. Zhao. Group dynamics in discussing incidental topics over online social networks [J]. Ieee Network,2010,24 (6):42-47.
    [130]S. Jamali and H. Rangwala. Digging Digg:Comment mining, popularity prediction, and social network analysis [C]. International Conference on Web Information Systems and Mining, Shanghai,2009,32-38.
    [131]X. Song, C. Y. Lin, B. L. Tseng, and M. T. Sun. Modeling and predicting personal information dissemination behavior [C]. Proceedings of the eleventh ACM SIGKDD international conference on Knowledge discovery in data mining, Chicago, Illinois, USA,2005,1-10.
    [132]Z. Hong, Z. Bing, and Z. Hua. Hot trend prediction of network forum topic based on wavelet multi-resolution analysis [J]. Computer Technology and Development,2009,19 (4):76-79.
    [133]V. G6mez, A. Kaltenbrunner, and V. Lopez. Statistical analysis of the social network and discussion threads in Slashdot [C]. Proceedings of the 17th international conference on World Wide Web, Beijing, China,2008,645-654.
    [134]G. Szabo and B. A. Huberman. Predicting the popularity of online content [J]. Communications of the ACM,2010,53 (8):80-88.
    [135]Y. M. Li and C. W. Chen. A synthetical approach for blog recommendation:Combining trust, social relation, and semantic analysis [J]. Expert Systems with Applications,2008,36 (3): 6536-6547.
    [136]Hui Cheng and Yun Liu. An online public forecast model based on time series [J], Journal of Internet Technology,2008,9(5):429-432.
    [137]Wikipedia [EB/OL]. (2012). Autoregressive integrated moving average: http://en.wikipedia.org/wiki/Autoregressive_integrated_moving_average
    [138]http://baike.soso.com/v15661.htm?ch=ch.bk.innerlink
    [139]R. Zafarani and H. Liu, (2009). Social Computing Data Repository at ASU [http://socialcomputing.asu.edu]. Tempe, AZ:Arizona State University, School of Computing, Informatics and Decision Systems Engineering.
    [140]M. Haris, Testing the Strength of Weak Ties Theory in Small Educational Social Networking Websites[C], in PROCEEDINGS OF THE 1T1200931ST INTERNATIONAL CONFERENCE ON INFORMATION TECHNOLOGY INTERFACES, pp.273-278,2009, Cavtat, CROATIA.
    [141]J. B. Holthoefer and Y. Moreno. Absence of influential spreaders in rumor dynamics [J]. PHYSICAL REVIEW E,2012; 85(2) 026116.
    [142]A. Mislove, M. Marcon, K. P. Gummadi, P. Druschel, B. Bhattacharjee. Measurement and analysis of noline social networks [C]. IMC'07 Proceedings of the 7th ACM SIGCOMM conference on Internet measurement, New York, NY, USA,2007.
    [143]F. Fu, L. H. Liu, and L. Wang. Empirical analysis of online social networks in the age of Web 2.0 [JJ. Physica A,2008,387(2-3):675-684.
    [144]L. Y. Lti, D. B. Chen, and T. Zhou. The small world yields the most effective information spreading [J], New Journal of Physics,2011,13(12):123005.
    [145]张彦超,刘云,张海峰,程辉,熊菲,基于在线社交网络的信息传播模型[J],物理学报,2011,60(5):050501.
    [146]L. J. Zhao, J. J. Wang, Y. C. Chen, J. J. Cheng, and H. G. Cui. SIHR rumor spreading model in social networks [J], Physica A,2012,391(7):2444-2453.
    [147]F. Xiong, Y. Liu, Z. J. Zhang, J. Zhu and Y. Zhang. An information diffusion model based on retweeting mechanism for online social media [J]. Physics Letters A,2012,376(30-31): 2103-2108.
    [148]F. Roshani and Y. Naimi. Effects of degree-biased transmission rate and nonlinear infectiviry on rumor spreading in complex social networks [J], PHYSICAL REVIEW E, vol.85,2012.
    [149]苑卫国,刘云,程军军,熊菲.微博双向“关注”网络节点中心性及传播影响力的分析[J],物理学报,2013,62(3)038901.
    [150]何大韧,刘宗华,汪秉宏.复杂系统与复杂网络[M],高等教育出版社,北京,2009.
    [151]R. Albert and A. L. Barabasi. Statistical mechanics of complex networks [J], Rev. Modem Phys.74 (2002) 47.
    [152]M.E.J. Newman. The structure and function of complex networks [J], SIAM Rev.45 (2003) 167.
    [153]S. Boccaletti, V. Latora, Y. Moreno, M. Chavez, and D. U. Hwang. Complex networks: Structure and dynamics [J], Phys. Rep.424 (2006) 175.
    [154]J. Zhang, C. S. Zhou, X. K. Xu, and M. Small. Mapping from structure to dynamics:a unified view of dynamical processes on networks [J], Phys. Rev. E 82 (2010) 026116.
    [155]A. Zeng and L. Y. Lti. Coarse graining for synchronization in directed networks [J], Phys. Rev. E 83 (2011) 056123.
    [156]A.E. Motter, Y. C. Lai, Cascade-based attacks on complex networks [J], Phys. Rev. E 66 (2002)065102.
    [157]T. Zhou, B. H. Wang, Catastrophes in scale-free networks [J], Chin. Phys. Lett.,2005,22(5): 1072-1075.
    [158]R. Pastor-Satorras and A. Vespignani. Immunization of complex networks [J], Phys. Rev. E 65 (2002)036104.
    [159]M. Zhao, T. Zhou, B.-H. Wang, W.-X. Wang, Enhanced synchronizability by structural perturbations [J], Phys. Rev. E 72 (2005) 057102.
    [160]L. Zemanova, C. Zhou, J. Kurths, Structural and functional clusters of complex brain networks [J], Physica D,2006,224 (1):202-212.
    [161]G Z. Lopez, C. S. Zhou, J. Kurths, Cortical hubs form a module for multisensory integration on top of the hierarchy of cortical networks [J], Front Neuroinform,2010,4 (1).
    [162]R. Zafarani and H. Liu, (2009). Social Computing Data Repository at ASU [http://socialcomputing.asu.edu]. Tempe, AZ:Arizona State University, School of Computing, Informatics and Decision Systems Engineering.
    [163]G Yan, T. Zhou, B. Hu, Z. Q. Fu, and B. H. Wang, Efficient routing on complex networks [J], Phys. Rev. E,73 (2006) 046108.
    [164]L.C. Freeman. A set of measures of centrality based on betweenness [J], Sociometry,1997,40 (1):35-41.
    [165]L.C. Freeman. Centrality in social networks conceptual clarification [J], Social Networks, 1979,1(3):215-239.
    [166]B. Bollobas. Graph Theory and Combinatorics [C], in Proceedings of the Cambridge Combinatorial Conference in Honor of P. Erd6s Vol.35 (Academic,1984).
    [167]S. B. Seidman. Network structure and minimum degree [J]. Social Networks,1983,5(3): 269-287.
    [168]Carmi, S., Havlin, S, Kirkpatrick, S., Shavitt, Y. & Shir, E. A model of Internet topology using k-shell decomposition. Proc. Natl Acad. Sci. USA 104,11150-11154 (2007).
    [169]Angeles-Serrano, M. & Bogufia, M. Clustering in complex networks. II. Percolation properties. Phys. Rev. E 74,056116 (2006).
    [170]A. Agresti, Analysis of Ordinal Categorical Data [M], Second Edition. New York, John Wiley & Sons. (2010).
    [171]Z. X. Zhang, C. Z. Sun, Neuro-Fuzzy and Soft Computing (in Chinese), Xi'an Jiaotong University Press, China,2000.
    [172]田景文,高美娟.人工神经网络算法研究及应用[M],北京理工大学出版社,北京,2006.
    [173]S. F. Ding, L. Xu, C. Y. Su, H. Zhu. Using Genetic Algorithms to Optimize Artificial Neural Networks [J], Journal of Convergence Information Technology,2010,5(8):54-62.
    [174]J. M. Cui. Traffic Prediction Based on Improved Neural Network [J], Journal of Convergence Information Technology,2010,5(9):85-89.
    [175]http://ictclas.org/index.html
    [176]邱立坤,程葳,龙志祎,孙娇华.面向BBS的话题挖掘初探[C],全国第八届计算机语言联合学术会议论文集,2005年8月,401-407.
    [177]J. C. Zhou, Q. S. Zhou, and P. Y. Han, Artificial neural networks, the sixth generation computation accomplishment [M], Scientific Popularization Publisher, China.1993.
    [178]R. P. Lippmann, An introduction to computing with neural nets [M], IEEE Computer Society Press, USA,1988.
    [179]C. S. Ratana and A. E. Smith. Estimation of all-terminal network reliability using an artificial neural network [J], Computers and Operations Research,2002,29(5):849-868.
    [180]G. M. Brion and S. Lingireddy. Artificial neural network modeling:A summary of successful applications relative to microbial water quality [J], Water Science and Technology,2003, 47(3):235-240.
    [181]R. H. Nielsen, Theory of the Back Propagation Neural Network [C], In Proceedings of the International Joint Conference on Neural Networks, IEEE Press, pp.121-125,1989.
    [182]C. K. Chui, An introduction to wavelets [M], New York:A2 Cadamec Press,1992.
    [183]周翠英,张亮,黄显艺,基于改进BP网络算法的隧洞围岩分类[J],地球科学——中国地质大学学报,vol.30, no.4, pp.480-486,2005.
    [184]胡郁葱,徐建闽,吴一民,钟慧玲,基于BP神经网络的车辆定位融合模型[J],华南理工大学学报(自然科学版),2004,32(2):46-49.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700