MePEG-PLGA纳米粒长循环机制及载TNF-α拮抗肽性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近年来,高分子纳米载药系统作为多肽、蛋白质药物载体展示了良好的临床应用前景,成为药学领域的研究热点。但是,有关高分子纳米载药系统长循环机制的一些基础科学问题尚待深入研究。本文采用开环聚合法合成了不同分子量的单甲氧基聚乙二醇-聚乳酸羟基乙酸(MePEG-PLGA)两嵌段共聚物,通过自乳化溶剂扩散法(SESD)制备了不同表面特性和粒径MePEG-PLGA纳米粒(MePEG-PLGA-NPs),较系统的研究了血清蛋白吸附、调理作用与MePEG-PLGA-NPs表面MePEG修饰、粒径之间的关系,巨噬细胞吞噬与MePEG-PLGA-NPs表面MePEG修饰、粒径以及血清蛋白吸附、调理作用之间的关系,以阐明高分子纳米载药系统长循环机制。同时,制备了载TNF-α拮抗肽(TNF-BP)的MePEG-PLGA-NPs,并对其载药性能、体外药物释放行为和生物活性等方面进行了研究。主要研究工作如下:
     (1)采用开环聚合法合成了MePEG-PLGA两嵌段共聚物,利用凝胶渗透色谱(GPC)测定聚合物分子量,利用FT-IR、~1H-NMR表征共聚物的分子结构。结果表明:合成的聚合物分子量为38000Da,图谱证实合成的MePEG-PLGA两嵌段共聚物,纯度较高。以合成的MePEG-PLGA为原料,通过SESD法制备MePEG-PLGA-NPs,以纳米粒粒径和表面Zeta电位为衡量指标,对影响纳米粒特性的处方进行优化,得到制备纳米粒的优化处方:乳化剂为0.2%Tween 80(w/v),有机相中MePEG-PLGA浓度为8.0 mg/mL,有机相与外水相体积比为1:6。在该处方下,制备的纳米粒粒径为80.2±7.7 nm,表面Zeta电位为-24.55±3.50 mV,透射电镜(TEM)和原子力显微镜(AFM)观察到纳米粒形态规整,分散性能好,具有很好的稳定性。
     (2)以不同MePEG-PLGA聚合物为材料制备一系列MePEG-PLGA-NPs,利用BCA蛋白试剂盒分析、SDS-PAGE和ELISA等技术系统研究了纳米粒表面MePEG链长、含量及粒径对MePEG-PLGA-NPs吸附血清蛋白和激活补体的影响。研究表明:纳米粒表面MePEG修饰后并随其链长增加,颗粒表面BSA、IgG和血清总蛋白吸附量减少;MePEG含量由2.5%增至10.0%时,IgGn及附量逐渐下降,而BSA和血清总蛋白在MePEG含量为7.5%时,吸附量最低,随MePEG含量进一步增加吸附量略有升高。纳米粒MePEG修饰后,补体消耗减弱,MePEG含量为5.0-7.5%时,补体消耗程度最低。通过检测补体活化片段(iC3b和C4d),也证实MePEG修饰能降低纳米粒激活补体的程度,并揭示了纳米粒以经典和旁路两种途径激活补体。MePEG-PLGA-NPs的粒径也影响着血清蛋白在其表面的吸附、调理作用,随着粒径由73.6 nm增至405.1nm,血清蛋白吸附和补体激活增强,当纳米粒粒径大于405.1 nm时,蛋白吸附和补体激活不再有明显变化。
     (3)利用SESD法制备尼罗红(nile red)标记纳米粒,采用荧光分光光度计和荧光显微镜分析巨噬细胞吞噬特性,研究了纳米粒表面MePEG修饰、粒径和血清蛋白吸附、调理对小鼠腹腔巨噬细胞体外吞噬MePEG-PLGA-NPs的影响。研究发现:巨噬细胞吞噬纳米粒包括不依赖血清介导的吞噬和依赖血清介导的吞噬,MePEG修饰对不依赖血清介导吞噬的影响不明显,而对依赖血清介导吞噬的影响是通过调控IgG、补体(经典和旁路途径)参与的调理作用来实现,随着MePEG链长和含量增加,调理作用对巨噬细胞吞噬的影响逐渐减弱,且细胞吞噬率逐渐降低,当MePEG含量超过7.5%时,MePEG链抑制巨噬细胞吞噬纳米粒的作用不再有明显变化。颗粒粒径在纳米和亚微米范围内,随着粒径增大,不依赖血清介导的吞噬逐渐降低,而依赖血清介导的吞噬增强,这两方面作用使得微粒粒径约为400 nm时,最易被巨噬细胞吞噬。
     (4)以MePEG-PLGA-NPs为载体,通过静电吸附作用负载TNF-BP,探讨了乳化剂种类、乳化剂浓度、聚合物浓度、投药量和载药介质等因素对MePEG-PLGA-NPs载药性能的影响,并对负载TNF-BP纳米粒释药性能和生物活性进行了研究。结果表明:在优化条件下纳米粒的载药量为1.36±0.05%,包封率为54.40±1.56%。MePEG-PLGA-NPs载药量高,药物释放速率快;释放介质的离子强度低,药物释放速率减慢。MTT检测结果证实纳米粒释放的TNF-BP仍具有较高的生物活性。
     本文研究结果表明,通过SESD可制得具有良好稳定性的MePEG-PLGA-NPs,纳米粒表面MePEG修饰主要通过调控调理素(IgG和补体)和去调理素(BSA)在纳米粒表面的吸附影响依赖血清介导的细胞吞噬特性,因而对巨噬细胞吞噬纳米粒产生影响;粒径对不依赖血清介导和依赖血清介导的巨噬细胞吞噬均有影响。MePEG-PLGA-NPs具有良好的载TNF-BP性能及一定的缓释作用,释放后药物的生物活性较好。本文研究结果一定程度上揭示了纳米载药系统长循环机制,并为制备具有长循环特性的载多肽蛋白药物纳米载药系统提供实验依据。在本文研究基础上,有必要对长循环纳米载药系统在体内的药物动力学与组织分布规律以及相关药效作进一步研究。
Recently,nano drug delivery systems (NDDS) that are made up of biodegradablematerials have been the hotspot research in modern pharmacy.However,to date,somemechanisms involved in the long-circulating NDDS have not been fully understood.Inthis study,a series of methoxypolyethyleneglycol modified poly (D,L-lactide-co-glycolide) nanoparticles (MePEG-PLGA-NPs) were prepared by the spontaneousemulsification solvent diffusion (SESD) method,and the correlations among the surfaceproperty and size of nanoparticles,opsonization by serum protein and phagocytic uptakewere studied to illustrate the long-circulating mechanisms for MePEG-PLGA-NPs.Tumornecrosis factor alpha blocking peptide (TNF-BP) was loaded on MePEG-PLGA-NPs byelectrostatic interaction,and TNF-BP loading capacity,bioactivity and the in vitro drugrelease were studied.The research was mainly concerned with the following aspects.
     (1) MePEG-PLGA copolymer was synthesized by ring-opening polymerization.Themolecular weight (MW) of the MePEG-PLGA copolymer was determined by GPCchromatograph.The structure of copolymer was confirmed by the Fourier transforminfrared spectrum (FT-IR) and ~1H-NMR spectrum.The results showed that the MW of thecopolymer was about 38000 Da.The blank MePEG-PLGA-NPs were prepared by theSESD method,and the NPs were characterized in terms of particle size,zeta potential andmorphology.The main preparation parameters were optimized in order to obtain theMePEG-PLGA-NPs with the desired characteristics.It obtained the optimal conditions forpreparation of nanoparticles that the emulsifier was Tween 80 (0.2%),the concentration ofcopolymer in the organic phase was 8.0 mg/ml,and the volume ratio of organic phase toaqueous phase was 1:6.Average size and zeta potential of optimized MePEG-PLGA-NPswere 80.2±7.7 nm and -24.55±3.50 mV,respectively.The morphology ofMePEG-PLGA-NPs was examined by transmission electron microscope (TEM) andatomic force microscope (AFM),and it appeared that the nanoparticles were spherical inshape with smooth surface and without any aggregation or adhesion.
     (2) A series of MePEG-PLGA-NPs were prepared.The influences of MePEG chain length,MePEG content and particle size on serum protein adsorption and complementactivation were investigated systematically,and their capacity for adsorbing albumin andthe serum total proteins was measured by a bicinchoninic acid (BCA) protein assay.Theadsorption of serum total IgG was investigated by enzyme-linked immunosorbent assay(ELISA).The results showed that the longer MePEG chains grafted on NPs surfaces,thelower the protein adsorption including albumin,immunoglobulin G (IgG) and the serumtotal protein adsorption.With the contents of MePEG on NPs surfaces increased from2.5% to 10.0%,a reduction of IgG adsorption was observed.BSA and serum total proteinadsorption were reduced with the increase of MePEG content on NPs surfaces up to 7.5%(w/w),but further increase led to a slight increase of adsorption.Complement activityperformed by hemolytic CH_(50) test indicated that PLGA-NPs with MePEG content withinthe range of 5.0-7.5 % induces the lowest of complement consumption.Complementfragments (iC3b and C4d) in serum analyzed by ELISA demonstrated that the MePEGcoating could reduce the complement activation via both the classical and the alternativepathways.For the different size of MePEG-PLGA-NPs,protein adsorption andcomplement activation were increased along with the particle size increased from 73.6 to405.1 nm.However,no significant difference could be observed when particle size above405.1 nm.
     (3) To study the influence of MePEG modification,particle size and opsonization byserum proteins on uptake efficiency of MePEG-PLGA-NPs by phagocytes,nilered-labeledNPs were prepared by SESD method.The uptake efficiency of NPs by murine peritonealmacrophages (MPM) was measured by fluorescence spectrometer and fluorescentmicroscope.Phagocytic uptake of MePEG-PLGA-NPs by MPM involvedserum-independent and serum-dependent phagocytosis.Only serum-dependentphagocytosis was significantly prevented by MePEG modification on PLGA-NP surfaces,and this effect was mainly ascribed to the reduction of IgG adsorption and complementactivation.The surface modification of PLGA-NPs with higher amount and longer chainof MePEG can efficiently inhibit opsonization by serum and subsequently reduce theuptake by phagocytes.However,the inhibition of phagocytic uptake of NPs by MePEGchain was not obviously enhanced when MePEG_(5000) content above 7.5%.The particle sizeis another critical parameter for the uptake of NPs by phagocytes.Serum-independent phagocytosis decreased and serum-dependent phagocytosis increased with the increase ofparticle size,which contributed to the highest uptake for the MePEG-PLGA-NPs with sizeabout 400 nm.
     (4) Tumor necrosis factor alpha blocking peptide (TNF-BP) was loaded onMePEG-PLGA-NPs by electrostatic interaction,and the influences of some factors onentrapment efficiency and drug loading such as the type of emulsifiers,the emulsifierconcentration,the polymer concentration,TNF-BP concentration,the pH and ionicstrength of incubation medium were studied.The results showed that the average drugloading and entrapment efficiency for the optimized NPs were 1.36±0.05% and 54.40±1.56 %,respectively.In vitro release studies showed that the more TNF-BP loaded on NPs,the easier the peptides released,and the peptide release became slower for NPs in lowerionic strength medium.It was confirmed that most of TNF-BP remained active afterreleased in phosphate buffer solution by means of MTT.
     This study demonstrated that MePEG on PLGA-NPs surfaces only significantlyinhibit serum-dependent phagocytosis,which was mainly ascribed to the reduction of IgGadsorption and complement activation.Serum-independent phagocytosis was decreasedand serum-dependent phagocytosis was increased with the increase of particle size.ForTNF-BP,it was shown that MePEG-PLGA-NPs possessed good drug loading,controlledrelease and stability.In the present study,it illustrated the long-circulating mechanisms ofthe NDDS to some extent,and it can also provide new information for the design of moreefficient NDDS for peptides and proteins in medical applications.Based on the presentwork,it is necessary to investigate the pharmacokinetics and tissue distribution oflong-circulating NDDS and in vivo efficacy assessment in the future.
引文
[1]徐辉碧,杨祥良.纳米医药.北京:清华大学出版社,2004
    [2]Rieux AD,Fievez V,Garinot M,et al.Nanoparticles as potential oral delivery systems of proteins and vaccines:A mechanistic approach.Journal of Controlled Release,2006,116(1):1-27
    [3]Wang MH,Frishman LJ,Otteson DC.Intracellular delivery of proteins into mouse Mtiller glia cells in vitro and in vivo using Pep-1 transfection reagent.Journal of Neuroscience Methods,2009,177(2):403-419
    [4]杨祥良,曾繁典,徐辉碧.纳米药物.北京:清华大学出版社,2007
    [5]Kocbek P,Obermajer N,Cegnar M,et al.Targeting cancer cells using PLGA nanoparticles surface modified with monoclonal antibody.Journal of Controlled Release,2007,120(1-2):18-26
    [6]Son S J,Lee WR,Joung YK,et al.Optimized stability retention of a monoclonal antibody in the PLGA nanoparticles.International Journal of Pharmaceutics,2009,368(1-2):178-185
    [7]Galindo-Rodriguez SA,Allemann E,Fessi H,et al.Polymeric nanoparticles for oral delivery of drugs and vaccines:a critical evaluation of in vivo studies.Critical Reviews in Therapeutic Drug Carrier Systems,2005,22(5):419-464
    [8]Senior J,Radomsky M.可注射缓释制剂(Sustained-Release Injectable Products)(第1版).北京:化学工业出版社.2005
    [9]Goldberg M,Langer R,Jia XQ.Nanostructured materials for applications in drug delivery and tissue engineering.Journal of Biomaterials Science-Polymer Edition,2007,18(3):241-268
    [10]Langer R,Tirrell DA.Designing materials for biology and medicine.Nature,2004,428:487-492
    [11]Govender T,Riley T,Ehtezazi T et al.Defining the drug incorporation properties of PLA-PEG nanoparticles.International Journal of Pharmaceutics,2000,199(1):95-110
    [12] Guo CQ, Gemeinhart RA. Understanding the adsorption mechanism of chitosan onto poly(lactide-co-glycolide) particles. European Journal of Pharmaceutics and Biopharmaceutics, 2008, 70(2): 597-604
    [13] Panyam J, Dali MM, Sahoo SK, et al. Polymer degradation and in vitro release of a model protein from poly(D, L-lactide-co-glycolide) nano-and microparticles. Journal of Controlled Release, 2003, 92(1-2): 173-187
    [14] Pan Y, Zhao H, Xu H, et al. Effect of experimental parameters on the encapsulation of insulin-loaded poly(lactide-co-glycolide) nanoparticles prepared by a double emulsion method. Journal of Chinese Pharmaceutical Sciences, 2002, 11(1): 38-41
    [15] Chognot D, Leonard M, Six JL, et al. Surfactive water-soluble copolymers for the preparation of controlled surface nanoparticles by double emulsion/solvent evaporation. Colloids and Surfaces B: Biointerfaces, 2006, 51(1): 86-92
    [16] Rieux AD, Fievez V, Momtaz M, et al. Helodermin-loaded nanoparticles: Characterization and transport across an in vitro model of the follicle-associated epithelium. Journal of controlled release, 2007, 118 (3): 294-302
    [17] Li YP, Pei YY, Zhang XY, et al. PEGylated PLGA nanoparticles as protein cariers: synthesis, preparation and biodistribution in rats. Journal of Controlled Release, 2001, 71(2): 203-211
    [18] Csoka I, Eros I. Stability of multiple emulsions: I. Determination of factors influencing multiple drop breakdown. International Journal of Pharmaceutics, 1997, 156(1): 119-123
    [19] Lamprecht A, Ubrich N, Yamamoto H, et al. Design of rolipram-loaded anoparticles: comparison of two preparation methods. Journal of Controlled Release, 2001, 71(3): 297-306
    [20] Saxena V, Sadoqi M, Shao J. Indocyanine green-loaded biodegradable nanoparticles: preparation, physicochemical characterization and in vitro release. International Journal of Pharmaceutics, 2004, 278(2): 293-301
    [21] Kawashima Y, Yamamoto H, Takeuchi H, et al. Pulmonary delivery of insulin with nebulized DL-lactide/glycolide copolymer (PLGA) nanospheres to prolong hypoglycemic effect. Journal of Controlled Release, 1999, 62(1): 279-287
    [22] Goppert TM, Miiller RH. Protein adsorption patterns on poloxamer- and poloxamine-stabilized solid lipid nanoparticles(SLN).European Journal of Pharmaceutics and Biopharmaceutics,2005,60(3):361-372
    [23]Gan Q,Wang T.Chitosan nanoparticle as protein delivery carrier-Systematic examination of fabrication conditions for efficient loading and release.Colloids and Surfaces B:Biointerfaces,2007,59(1):24-34
    [24]Foss AC,Goto T,Morishita M,et al,Development of acrylic-based copolymers for oral insulin delivery.European Journal of Pharmaceutics and Biopharmaceutics,2004,57(2):163-169
    [25]Damge C,Vranckx H,Balschmidt P,et al.Poly(alkyl cyanoacrylate) nano spheres for oral administration of insulin.Journal of Pharmaceutical Sciences,1997,86(12):1403-1409
    [26]赵锋,陈小平.溶剂对无表面活性剂法制备诺氟沙星PLGA毫微粒及其对释药的影响.国外医学药学分册,2001,28(2):126-130
    [27]Li YP,Pei YY,Zhou ZH,et al.PEGylated polycyanoacrylate nanoparticles as tumor necrosis factor-α carriers.Journal of Controlled Release,2001,71(3):287-296
    [28]Xie SY,Wang SL,Zhao BK,et al.Effect of PLGA as a polymeric emulsifier on preparation of hydrophilic protein-loaded solid lipid nanoparticles.Colloids and Surfaces B:Biointerfaces,2008,67(2):199-204
    [29]Packhaeuser CB,Kissel T.On the design of in situ forming biodegradable parenteral depot systems based on insulin loaded dialkylaminoalkyl-amine-poly(vinyl alcohol)-g-poly(lactide-co-glycolide) nanoparticles.Journal of Controlled Release,2007,123(2):131-140
    [30]Sinha VR,Trehan A.Biodegradable microspheres for protein delivery.Journal of Controlled Release,2003,90(3):261-280
    [31]Carpenter JF,Pikal MJ,Chang BS,et al.Rational design of stable lyophilized protein formulations:some practical advice.Pharmaceutical Research,1997,14(8):969-975
    [32]Diwan M,Park TG.Stabilization of recombinant interferon-α by PEGylation for encapsulation in PLGA microspheres.International Journal of Pharmaceutics,2003, 252(1-2):111-122
    [33]Charman SA,Mason KL,Charman WN.Techniques for assessing the effects of pharmaceutical excipients on the aggregation of porcine growth hormone.Pharmaceutical Research,1993,10(7):954-962
    [34]钟延强,吴诚.一种干扰素长效注射微球制剂的制备方法.中国专利:1634570A.2005-07-06
    [35]尹宗宁,陆彬.注射用胰岛素缓释纳米囊的研究.中国医药工业杂志,2000,31(8):349-351
    [36]尹宗宁,陆彬,王伟.皮下注射胰岛素纳米囊对糖尿病大鼠的影响.中国药学杂志,2000,35(1):182-20
    [37]徐雄良,段友容,符壶等.静脉注射用胰岛素三嵌段共聚物纳米粒的制备.华西药学杂志,2006,21(4):321-324
    [38]Alexis F,Pridgen E,Molnar LK,et al.Factors Affecting the clearance and biodistribution of polymeric nanoparticles.Molecular Pharmaceutics,2008,5(4):505-515
    [39]Hans ML,Lowman AM.Biodegradable nanoparticles for drug delivery and targeting.Current Opinion Solid State & Materials Science,2002,6(4):319-327
    [40]Soppimath KS,Aminabhavi TM,Kulkarni AR,et al.Biodegradable polymeric nanoparticles as drug delivery devices.Journal of Controlled Release,2001.70(1-2):1-20
    [41]Frank M,Fries L.The role of complement in inflammation and phagocytosis.Immunology Today,1991,12(9):322-326
    [42]Yao K J,Shen SC,Yun JX,et al.Protein adsorption in supermacroporous cryogels with embedded nanoparticles.Biochemical Engineering Journal,2007,36(2):139-146
    [43]Moghimi SM,Hunter AC.Poloxamers and poloxamines in nanoparticle engineering and experimental medicine.Trends in Biotechnology,2000,18(10):412-420
    [44]Csaba N,S(?)nchez A,Alonso MJ.PLGA:Poloxamer and PLGA:Poloxamine blend nanostructures as carriers for nasal gene delivery.Journal of Controlled Release,2006,113(2):164-172
    [45] Stolnik S. The effect of surface coverage and conformation of poly (ethylene oxide) (PEO) chains of poloxamer 407 on the biological fate of model colloidal drug carriers. Biochimica et Biophysica Acta, 2001, 1514(2): 261-279
    [46] Tobio M, Sanchez A, Vila A, et al. The role of PEG on the stability in digestive fluids and in vivo fate of PEG-PLA nanoparticles following oral administration. Colloids and Surfaces B: Biointerfaces, 2000, 18(3-4): 315-323
    [47] Gryparis EC, Hatziapostolou M, Papadimitriou E, et al. Anticancer activity of cisplatin-loaded PLGA-mPEG nanoparticles on LNCaP prostate cancer cells. European Journal of Pharmaceutics and Biopharmaceutics, 2007, 67(1): 1-8
    [48] Sahoo SK, Panyam J, Prabha S, et al. Residual polyvinyl alcohol associated with poly (D, L-lactide-co-glycolide) nanoparticles affects their physical properties and cellular uptake. Journal of Controlled Release, 2002, 82(1): 105-114
    [49] Madani F, Bessodes M, Lakrouf A, et al. PEGylation of microspheres for therapeutic embolization: Preparation, characterization and biological performance evaluation. Biomaterials, 2007, 28(6): 1198-1208
    [50] Mosqueira VC, Legrand P, Morgat JL, et al. Biodistributiion of long-circulating PEG-grafted nanocapsules in mice: effects of PEG chain length and density. Pharmaceutical Research, 2001, 18(10): 1411-1419
    [51] Shehata T, Ogawara K, Higaki K, et al. Prolongation of residence time of liposome by surface-modification with mixture of hydrophilic polymers. International Journal of Pharmaceutics, 2008, 359(1-2): 272-279
    [52] Singh N, Cui XF, Boland T, et al. The role of independently variable grafting density and layer thickness of polymer nanolayers on peptide adsorption and cell adhesion. Biomaterials, 2007, 28(5): 763-771
    [53] Pourcelle V, Devouge S, Garinot M, et al. PCL-PEG-Based Nanoparticles Grafted with GRGDS Peptide: Preparation and Surface Analysis by XPS. Biomacromolecules, 2007, 8(12): 3977-3983
    [54] Choi I, Kang SK, Lee JJ, et al. In situ observation of biomolecules patterned on a PEG-modified Si surface by scanning probe lithography. Biomaterials, 2006, 27(26): 4655-4660
    [55] Brigger I, Chaminade P, Desmaele D, et al. Near infrared with principal component analysis as a novel analytical approach for nanoparticle technology. Pharmacological Research, 2000, 17(9): 1124-1132
    [56] Scholes PD, Coombes AGA, Illum L, et al. Davies. Detection and determination of surface levels of poloxamer and PVA surfactant on biodegradable nanospheres using SSIMS and XPS. Biomaterials, 2007, 28(5): 763-771
    [57] Stolnik S, Dunn SE, Garnett MC, et al. Surface modification of poly(lactide-co- glycolide) nanospheres by biodegradable poly(lactide)-poly(ethylene glycol) copolymers. Pharmaceutical Research, 1994, 11(12): 1800-1808
    [58] Peracchia MT, Harnisch S, Pinto-Alphandary H, et al. Visualization of in vitro protein-rejecting properties of PEGylated stealth polycyanoacrylate nanoparticles. Biomaterials, 1999,20(14): 1269-1275
    [59] Gombotz WR, Guanghui W, Horbett TA, et al. Protein adsorption to poly(ethylene oxide) surfaces. Journal of Biomedical Materials Research part b-applied biomaterials, 1991, 25(12): 1547-1562
    [60] Fang F, Szleifer I. Kinetics and thermodynamics of protein adsorption: a generalized molecular theoretical approach. Biophysical Journal, 2001, 80(6): 2568-89
    [61] Malmsten M, Emoto K, Alstine JMV. Effect of chain density on inhibition of protein adsorption by poly(ethylene glycol) based coatings. Journal of Colloid and Interface Science, 1998, 202(2): 507-517
    [62] Gref R, Luck M, Quellec P, et al. 'Stealth' corona-core nanopacticles surface modified by polyethylene glycol (PEG): influences of the corona (PEG chain length and surface density) and of the core composition on phagocytic uptake and plasma protein adsorption. Colloids and Surfaces B: Biointerfaces, 2000, 18(3-4): 301-313
    [63] Ishida T, Ichihara M, Wang XY, et al. Injection of PEGylated liposomes in rats elicits PEG-specific IgM, which is responsible for rapid elimination of a second dose of PEGylated liposomes. Journal of Controlled Release, 2006, 112(1): 15-25
    [64] Lemarchand C, Gref R, Passirani C, et al. Influence of polysaccharide coating on the interactions of nanoparticles with biological systems. Biomaterials, 2006, 27(1): 108-118
    [65] Zambaux MF, Bonneaux F, Gref R, et al. MPEO-PLA nanoparticles: Effect of MPEO content on some of their surface properties. Journal of Biomedical Materials Research part b: applied biomaterials, 1999, 44(1): 109-115
    [66] Vonarbourg A, Passirani C, Saulnier P, et al. Evaluation of pegylated lipid nanocapsules versus complement system activation and macrophage uptake. Journal of Biomedical Materials Research A, 2006, 78A(3): 620-628
    [67] Mosqueira VCF, Legrand P, Gulik A, et al. Relationship between complement activation, cellular uptake and surface physicochemical aspects of novel PEG-modified nanocapsules. Biomaterials, 2001, 22(22): 2967-2979
    [68] Nagayama S, Ogawara KI, Fukuoka Y, et al. Time-dependent changes in opsonin amount associated on nanoparticles alter their hepatic uptake characteristics. International Journal of Pharmaceutics, 2007, 342(1-2): 215-221
    [69] Ogawara K, Furumoto K, Nagayama S, et al. Pre-coating with serum albumin reduces receptor-mediated hepatic disposition of polystyrene nanosphere: implications for rational design of nanoparticles. Journal of Controlled Release, 2004, 100(3): 451-455
    [70] Furumoto K, Yokoe JI, Ogawara KI, et al. Effect of coupling of albumin onto surface of PEG liposome on its in vivo disposition. International Journal of Pharmaceutics, 2007, 329(1-2): 110-116
    [71] Mosqueira VC, Legrand P, Gref R, et al. Interactions between a macrophage cell line(J774AI) and surface-modified poly(D, L-lactide)nanocapsules bearing poly(ethylene glycol). Journal of Drug Targeting, 1999, 7(1): 65-78
    [72] Fontana G, Licciardi M, Mansueto S, et al. Amoxicillin-loaded polyethylcy -anoacrylate nanoparticles: Influence of PEG coating on the particle size, drug release rate and phagocytic uptake. Biomaterials, 2001, 22(21): 2857-2865
    [73] Johnstone SA, Masin D, Mayer L, et al. Surface-associated serum proteins inhibit the uptake of phosphatidylserine and poly(ethylene glycol) liposomes by mouse macrophages. Biochimica et Biophysica Acta, 2001, 1513(1): 25-37
    [74] Foged C, Brodin B, Frokjaer S, et al. Particle size and surface charge affect particle uptake by human dendritic cells in an in vitro model. International Journal of Pharmaceutics, 2005, 298(2): 315-322
    [75] Dijkstra J, van Galen M, Scherphof G. Influence of liposome charge on the association of liposomes with Kupffer cells in vitro.Effects of divalent cations and competition with latex particles.Biochimica et Biophysica Acta,1985,813(2):287-297
    [76]Rhaese S,Briesen HV,Rübsamen-Waigmann H,et al.Human serum albumin-polyethylenimine nanoparticles for gene delivery.Journal of Controlled Release,2003,92(1,2):199-208
    [77]Adler R,Hurwitz E,Wands JR,et al.Specific targeting of adriamycin conjugates with monoclonal antibodies to hepatoma associated antigens to intrahepatic tumors in athymic mice.Hepatology,1995,22(5):1482-1487
    [78]Moghimi SM,Szebeni J.Stealth liposomes and long circulating nanoparticles:critical issues in pharmacokinetics,opsonization and protein-binding properties.Progress in Lipid Research,2003,42(6):463-478
    [79]Rao DA,Robinson JR.Effect of size and surface properties of biodegradable PLGA-PMA:PLA:PEG nanoparticles on lymphatic uptake and retention in rats.Journal of Controlled Release,2008,132(3):45-47
    [80]Gaumet M,Gurny R,Delie F.Localization and quantification of biodegradable particles in an intestinal cell model:The influence of particle size.European Journal of Pharmaceutic Science,2009,36(4-5):465-473
    [81]Wan F,You J,Sun Y,et al.Studies on PEG-modified SLNs loading vinorelbine bitartrate(Ⅰ):Preparation and evaluation in vitro.International Journal of Pharmaceutics,2008,359(1-2):104-110
    [82]Zauner WG.In vitro uptake of polystyrene microspheres:effect of particle size,cell line and cell density.Journal of Controlled Release,2001,71(1):39-51
    [83]Elizabeth GG,Karine A,Sophie G,et al.A methodology to study intracellular distribution of nanoparticles in brain endothelial cells.International Journal of Pharmaceutics,2005,298(2):310-314
    [84]冯敏,潘仕荣,吴伟荣.两性霉素B/聚乙二醇-聚谷氨酸苄酯纳米球溶血毒性的研究.中国药科大学学报,2004,35(3):263-266
    [85]Goppert TM,Muller RH.Protein adsorption patterns on poloxamer-and poloxamine-stabilized solid lipid nanoparticles(SLN).European Journal of Pharmaceutics and Biopharmaceutics,2005,60(3):361-372
    [86]Nagayama S,Ogawara KI,Fukuoka Y,et al.Time-dependent changes in opsonin amount associated on nanoparticles alter their hepatic uptake characteristics.International Journal of Pharmaceutics,2007,342(1-2):215-221
    [87]Leroux JC,Gravel P,Balant L,et al.Internalization of poly(D,L-1actic acid) nanoparticles by isolated human leukocytes and analysis of plasma proteins adsorbed onto the particles.Journal of Biomedical Materials Research part b-applied biomaterials,2004,28(4):471-481
    [88]Furumoto K,Ogawara K,Nagayama S,et al.Important role of serum proteins associated on the surface of particles in their hepatic disposition.Journal of Controlled Release,2002,83(1):89-96
    [89]Kim SH,Jeong JH,Chun KW,et al.Target-specific cellular uptake of PLGA nanoparticles coated with poly(L-lysine)-poly(ethylene glycol)-folate conjugate.Langmuir,2005,21(19):8852-8857
    [90]Zhang Y,Kohler N,Zhang MQ.Surface modification of superparamagnetic magnetite nanoparticles and their intracellular uptake.Biomaterials,2002,23(7):1553-1561
    [91]Kim HR,Andrieux K,Gil S,et al.Translocation of poly(ethylene glycol-co-hexadecyl) cyanoacrylate nanoparticles into rat brain endothelial cells:role of apolipoproteins in receptor-mediated endocytosis.Biomacromolecules,2007,8(3):793-799
    [92]Kim HR,Andrieux K,Delomenie C,et al.Analysis of plasma protein adsorption onto PEGylated nanoparticles by complementary methods:2-DE,CE and Protein Lab-on-chip□system.Electrophoresis 2007,28(13):2252-2261
    [93]李赛,刘孝波.高分子纳米粒子在靶向药物载体中的研究进展.生物医学工程杂志,2004,21(3):495-497
    [94]李赛.聚氰基丙烯酸丁酯纳米微囊作为蛋白质多肽药物控释载体的研究,博士论文,2004
    [95]陈大兵,张强.Brij78表面修饰对硬脂酸固态脂质纳米粒体内组织分布的影响.北京大学学报,医学版,2001,33(3):233-237
    [96] Upasna G, Sanjeeb KS, Tapas KD, et al. Biodistribution of fluoresceinated dextran using novel nanoparticles evading reticuloendothelial system. International Journal of Pharmaceutics, 2000, 202(1-2): 1-10
    [97] Rehor A, Schmoekel H, Tirelli N, et al. Functionalization of polysulfide nanoparticles and their performance as circulating carriers. Biomaterials, 2008, 29(12): 1958-1966
    [98] Scheinfeld N. A comprehensive review and evaluation of the side effects of the tumor necrosis factor alpha blockers etanercept, infliximab and adalimumab. Journal of Dermatolog Treat, 2004,15(5): 280-294
    [99] Brennan FM, Feldrnann M. Cytokines in autoimmunity. Current Opinion in Immunology, 1996, 8(6): 872-877
    [100] Feldmann M, Maini RN. Discovery of TNF-a as a therapeutic target in rheumatoid arthritis: preclinical and clinical studies. Joint Bone Spine, 2002, 69(1): 8-12
    [101] Feige U, Hu YL, Gasser J, et al. Anti-interleukin-1 and anti-tumor necrosis factor-alpha synergistically inhibit adjuvant arthritis in Leuis rats. Cell and Molecular Life Sciences, 2000, 57(10): 1457-1470
    [102] Biondo S, Pares D, Marti J, et al. Emergency operation for nondiverticular perforation of the left colon. American Journal of Surgery, 2002, 183(3): 256-260
    [103] Bacher A, Mayer N, Klimscha W, et al. Effects of pentoxifylline on hemodynamics and oxygenation in septic and nonseptic patients. Critical Care Medicine, 1997, 25(5): 795-800
    [104] Dekker PE, Lauw FN, ten Hove T, et al, The effect of a metalloproteinase inhibitor (G15402) on tumor necrosis factor-alpha (TNF-alpha) and TNF-alpha receptors during human endotoxemia. Blood, 1999, 94(7): 2252-2258
    [105] Carney DE, Lutz CJ, Picone AL, et al. Soluble Tumor Necrosis Factor Receptor Prevents Post-pump Syndrome. Journal of Surgical Research, 1999, 83(2): 113-121
    [106] Lie BL, Tunemoto D, Hemmi H, et al. Identification of the binding site of 55 KDa tumor necrosis factor receptor by synthetic peptides. Biochemical and Biophysical Research Communications, 1992, 188(2): 503-509
    [107] Banner DW, James W, et al. Crystal structures of the soluble human 55 kd TNF receptor-human TNF-beta complex: implications for TNF receptor activation. Cell, 1993,73(3):431-435
    [108]叶飞,姜小丹,李卓娅等.利用噬菌体肽库筛选TNF-α表位的相关短肽.中华微生物学和免疫学杂志,2002,22(4):366-370
    [109]尹丙姣,喻明霞,王晶等.TNF结合肽和TNFR封闭肽对TNBS诱导的大鼠溃疡性结肠炎的治疗作用.免疫学杂志,2007,23(6):663-667
    [110]Kumar N,Ravikumar MNV,Domb AJ.Biodegradable block copolymers.Advance Drug Delivery Reviews,2001,53(1):23-24
    [111]Murakami H,Kobayashi M,Takeuchi H,et al.Further application of a modified spontaneous emulsification solvent diffusion method to various types of PLGA and PLA polymers for preparation of nanoparticles.Powder Technology,2000,107(1-2):137-143
    [112]Hideki M,Masao K,Hirofumi T,et al.Preparation of poly(DL-lactide-co-glycolide) nanoparticles by modified spontaneous emulsification solvent diffusion method.International Journal of Pharmaceutics,1999,187(2):143-152
    [113]Schubert MA,Muller-Goymann CC.Characterisation of surface-modified solid lipid nanoparticles(SLN):Influence of lecithin and nonionic emulsifier.European Journal of Pharmaceutics and Biopharmaceutics,2005,61(1-2):77-86
    [114]Kim K,Luu YK,Chang C,et al.Incorporation and controlled release of a hydrophilic antibiotic using poly(lactide-co-glycolide)-based electrospun nanofibrous scaffolds.Journal of Controlled Release,2004,98(1):47-56
    [115]Wang Y,Challa P,Epstein DL,et al.Controlled release of ethacrynic acid from poly(lactide-co-glycolide) films for glaucoma treatment.Biomaterials,2004,25(18):4279-4285
    [116]Dong CM,Qiu KY,Gu ZW,et al.Synthesis of poly(D,L-lactic acid -alt- glycolic acid) from D,L-3-methylglycolide.Journal of Polymer Science part a:Polymer Chemistry,2000,38(23):4179-4184
    [117]艾国,程远国.长效微球注射剂及其在糖尿病治疗领域中的应用.中国药剂学杂志,2008,6(4):206-213
    [118]Beletsi A,Leontiadis L,Klepetsanis P,et al.Effect of preparative variables on the properties of poly(dl-lactide-co-glycolide)-methoxypoly(ethyleneglycol) copolymers related to their application in controlled drug delivery.International Journal of Pharmaceutics,1999,182(2):187-197
    [119]Jeong B,Charles F,Windisch J,et al.Phase Transition of the PLGA-g-PEG Copolymer Aqueous Solutions.Journal of Physical and Chemistry B,2003,107:10032-10039
    [120]朱立平,陈学清主编.免疫学常用实验方法[M].人民军医出版社,120-123
    [121]施斌,方超,游美羡等.隐形PEG-PHDCA纳米囊泡:PEG的相对分子质量对体外补体消耗和巨噬细胞吞噬的影响.药学学报,2005,40(11):976-981
    [122]Verrecchia T,Spenlehauer G,Bazile DV,et al.Non-stealth(poly(lactic acid/albumin)) and stealth(poly(lactic acid-polyethylene glycol)) nanoparticles as injectable drug carriers.Journal of Controlled Release,1995,36(1-2):49-61
    [123]方超.重组人肿瘤坏死因子隐形纳米粒肿瘤靶向研究,博士论文,2005
    [124]Ren J,Hong HY,Ren TB,et al.Preparation and characterization of magnetic PLA-PEG composite particles.Material Letters,2005,59(21):2655-2658
    [125]Patel HM.Serum opsonins and liposomes:Their interaction and opsonophagocytosis.Critical.Reviews in Therapeutic Drug Carrier Systems,1992,9(1):39-90
    [126]Thiele L,Diederichs JE,Reszka R,et al.Competitive adsorption of serum proteins at microparticles affects phagocytosis by dendritic cells.Biomaterials,2003,24(8):1409-1418
    [127]Nakada Y,Sakurai K,Horiuchi M,et al.Long-circulating nanoparticles using biodegradable ABA triblock copolymers containing poly(L-lactic acid) A-blocks attached to central poly(oxyethylene) B-blocks.Pharmacological Sciences,1997,3(10):479-481
    [128]Peracchia MT,Vauthier C,Passirani C,et al.Complement consumption by poly(ethylene glycol) in different conformations chemically coupled to poly(isobutyl 2-cyanoacrylate) nanoparticles.Life Sciences,1997,61(7):749-761
    [129]Jeon SI,Lee JH,Andrade JD,et al.Protein-surface interaction in the presence of polyethylene oxide:Ⅱ.Effect of protein size.Journal of Colloid and Interface Science,1991,142(1):159-166
    [130]Li JT.Caldwell KD,Rapoport N.Surface properties of Pluronic-coated polymeric colloids. Langmuir, 1994, 10(12): 4475-4482
    [131] Allemann E, Patricia G, Leroux JC, et al. Kinetics of blood component- adsorption on poly(D, L-lactide) nanoparticles: Evidence of compliment C component involvement. Journal of Biomedical Materials Research part B: Applied biomaterials, 1997, 37(2): 229-234
    [132] Papisov MI. Theoretical considerations of RES-avoiding liposomes: molecular mechanics and chemistry of liposome interactions. Advanced Drug Delivery Reviews, 1998; 32(1-2): 119-138
    [133] Owens DE, Peppas NA. Opsonization, biodistribution and pharmacokinetics of polymeric nanoparticles. International Journal of Pharmaceutics, 2006, 307(1): 93-102
    [134] Vonarbourg A, Passirani C, Saulnier P, et al. Parameters influencing the stealthiness of colloidal drug delivery systems. Biomaterials, 2006, 27 (24): 4356-4373
    [135] Zimmermann NE, Svehag SE, Thorlacius UO. ELISA for evaluating the incorporation of plasma derived complement split-products C3b/iC3b into solid-phase immune complexes. Journal of Immunological Methods, 2001, 249(1-2): 43-51
    [136] Craddock RR, Fehr J, Dalmasso AP, et al. Pulmonary vascular leukostasis resulting from complement activation by dialyzer cellophane membranes. Journal of Clinical Investigation, 1977, 59(5): 879-888
    [137] Hauser AC, Derfler K, Stockenhuber F, et al. Generation of the membrane attack complex during haemodialysis: impact of classical and alternative pathway components. Clinical Science(Lond), 1990, 79(5): 471-476
    [138] Nilsson U R. Deposition of C3b/iC3b leads to the concealment of antigens, immunoglobulins and bound Clq in complement-activating immune complexes. Molecular Immunology, 2001, 38(2-3): 151-160
    [139] Wilhelm C, Gazeau F, Roger J, et al. Interaction of anionic superparamagnetic nanoparticles with cells: kinetic analyses of membrane adsorption and subsequent internalization. Langmuir, 2002, 18(21): 8148-8155
    [140] Gupta AK, Curtis SG. Lactoferrin and ceruloplasmin derivatized superparamagnetic iron oxide nanoparticles for targeting cell surface receptors. Biomaterials,2004,25(15):3029-3040
    [141]Dawson G F,Halbert G W.The in vitro cell association of invasin coated polylactide-co-glycolide nanoparticles.Pharmaceutical Research,2000,17(11):1420-142
    [142]Tabata Y,Ikada Y.Phagocytosis of polymer microspheres by macrophages.Advances in Polymer Science,1990,94(2):107-141
    [143]Hu Y,Xie JW,Tong YW,et al.Effect of PEG conformation and particle size on the cellular uptake efficiency of nanoparticles with the HepG2 cells.Journal of Controlled Release,2007,118(1):7-17
    [144]Gaumet M,Gurny R,Delie F.Localization and quantification of biodegradable particles in an intestinal cell model:The influence of particle size.European Journal of Pharmaceutical Science,2009,36(4-5):465-473
    [145]Couvreur P,Puisicux F.Nano- and microparticles for the delivery of polypeptides and proteins.Advance Drug Delivery Reviews,1993,10(2-3):141-162
    [146]Zhang GD,Yang Z,Lu W,et al.Influence of anchoring ligands and particle size on the colloidal stability and in vivo biodistribution of polyethylene glycol-coated gold nanoparticles in tumor-xenografted mice.Biomaterials,2009,30(10):1928-1936
    [147]Fang C,Shi B,Pei YY,In vivo tumor targeting of tumor necrosis factor-α-loaded stealth nanoparticles:Effect of MePEG molecular weight and particle size.European Journal of Pharmaceutical Sciences,2006,27(1):27-36
    [148]丁建潮,胡富强,袁弘.A549细胞对单硬脂酸甘油酯固体脂质纳米粒的摄取作用.药学学报,2004,39(11):876-880
    [149]Roser M,Fischer D,Kissel T.Surface-modified biodegradable albumin nano-and microspheres.Ⅱ:effect of surface charges on in vitro phagocytosis and biodistribution in rats.European Journal of Pharmaceutics and Biopharmaceutics,1998,46(3):255-263
    [150]Qaddoumi MG,Ueda H,Yang J,et al.Uptake of biodegradable nanoparticles in pigmented rabbit conjunctival epithelial cells.Investigative Ophthalmology & Visual Science,2000,41(1):57-65
    [151]Dong YC,Feng SS.Poly(D,L-lactide-co-glycolide)/montmorillonite nano -particles for oral delivery of anticancer drugs.Biomaterials,2005,26(30):6068-6076
    [152]Qaddoumi MG,Ueda H,Yang J,et al.The characteristic and mechanisms of PLGA nanoparticles in rabbit conjunctival epithelial cell layers.Pharmaceutical Research,2004,21(4):641-648
    [153]Van Etten EWM,Ten kate MT,Snijders SV,et al.Administration of liposomal agents and blood clearance capacity of the mononuclear phagocyte system.Antimicrobial agents and chemotherapy,1998,42(7):1677-1681
    [154]Jaiswal JK,Mattoussi H,Mauro JM.Ling term multipie color imaging of live cells using quantum dot bioeonjugate.Nature Biotechnology,2003,21(1):47-51
    [155]Jung T,Kamm W,Breitenbach A,et al.Loading of tetanus toxoid to biodegradable nanoparticles from branched poly(sulfobutyl-co-glycolide) nanoparticles by protein adsorption:a mechanistic study.Pharmaceutical Research,2002,19(8):1105-1112
    [156]Peracchia MT,Vauthier C,Passirani C,et al.Complement consumption by poly(ethylene glycol) in different conformations chemically coupled to poly(isobutyl 2-cyanoacrylate) nanoparticles.Life Sciences,1997,61(7):749-761
    [157]Yang AS,Liu W,Yang L,et al.Tumor necrosis factor alpha blocking peptide loaded PEG-PLGA nanoparticles:preparation and in vitro evaluation.International Journal of Pharmaceutics,2007,331:123-132
    [158]Gaspar MM,Blanco D,Cruz MEM,et al.Formulation of L-asparaginase -loaded poly(lactide-co-glycolide) nanoparticles:influence of polymer properties on enzyme loading,activity and in vitro release.Journal of Controlled Release,1998,52:53-62
    [159]Fan JD,Chen SW,Gao Y.Coating gold nanoparticles with peptide molecules via a peptide elongation approach.Colloids and Surfaces B:Biointerfaces,2003,28(2-3):199-207
    [160]Sanchez A,Tobio M,Gonzalez L,et al.Biodegradable micro- and nanoparticles as long-term delivery vehicles for interferon-alpha.European Journal of Pharmaceutical Sciences,2003,18(3-4):221-229
    [161]尹东锋,钟延强.影响聚乳酸、聚羟基乙酸嵌段共聚物微球中蛋白、多肽类药物释放的因素.中国药学杂志,2006,41(14):1049-1052
    [162]Fu K,Klibanov AM,Langer R.Protein stability in controlled release systems. Nature Biotechnology, 2000, 18(1): 24-25
    [163] Wang LY, Gu YH, Su ZG, et al. Preparation and improvement of release behavior of chitosan microspheres containing insulin. International Journal of Pharmaceutics, 2006,311(1-2): 187-195
    [164] Mallarde D, Boutignon F, Moine F, et al. PLGA-PEG microspheres of teverelix: influence of polymer type on microsphere characteristics and on teverelix in vitro release. International Journal of Pharmaceutics, 2003, 261(1-2): 69-80

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700