AD模型大鼠的制备及其认知能力和脑电频谱特征的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的
     Aβ脑内沉积对神经组织具有毒性作用而导致痴呆,是目前较被公认的AD发病机制假说之一。基于这一假说,通过Aβ脑内注射以探讨制备AD大鼠模型的可行方法及其有效性,并通过Morris水迷宫行为学测试和认知区脑电频谱特性的AD特征检测,对所制备的AD大鼠模型进行评估和认定。
     方法
     本论文以老年性痴呆(AD)大鼠为研究对象,采用Aβ在大鼠海马CA1区微量注射方法制备AD大鼠模型。并分别对模型组和正常组大鼠应用Morris水迷宫行为学测试,包括5天10个时段定位航行实验,和撤去平台的空间探索实验。以正常大鼠的平均运动时间为基准,模型大鼠的平均运动时间延长20%为轻度痴呆,20%-30%之间为中度痴呆,40%以上为重度痴呆。从模型组大鼠中分别筛选出符合上述条件的不同痴呆程度的AD大鼠。对正常和AD大鼠在额叶皮层、枕叶皮层和海马(颞区)等认知相关脑区的自发脑电进行功率谱分析,以研究AD大鼠的脑电频率特性。
     结果
     1.Morris水迷宫行为学测试实验的主要结果是:
     (1)定位航行实验结果:模型组大鼠的运动时间较对照组的明显延长,运动距离较对照组的明显增长、平台象限记忆频度比正常大鼠的明显偏低、4环内搜索点数和记忆得分低于对照组;
     (2)空间探索实验结果:模型组大鼠运动距离比对照组大鼠的明显延长,平台象限的时间分布比对照组大鼠的明显要少,模型组大鼠对平台的搜索范围较广,不能集中在平台为圆心的4环内。
    
     中文摘要
     2.按照筛选标准,从制备的AD模型大鼠中筛选出4只符合痴呆标准的
    AD大鼠:6号为中度痴呆,l号、2号和5号为轻度痴呆。痴呆率,即AD大
    鼠的制备成功率为57.1%。
     3.AD和正常大鼠认知脑区脑电频谱分析结果:
     AD模型大鼠脑电的a波功率降低,节律慢化:6波和e波功率明显增高。
    结论
     1.本研究中AD大鼠的制备成功率达57.1%,证实了A已脑内注射方法是
    制备AD大鼠模型有效可行的方法,支持了A日脑内沉积造成神经系统损害导
    致痴呆的假说。
     2.MorriS水迷宫行为学测试的定位航行实验和空间探索实验结果表
     明:(1)应用行为学指标(运动时间)可以作为筛选AD大鼠的指标;
     (2)AD大鼠的学习能力和记忆能力都比正常对照组有明显降低。
     3.本研究中对AD大鼠认知脑区自发脑电的频谱特征分析结果呈现了AD
    脑电特征:。波节律慢化,功率下降(或消失);慢波(6波和0波)活动增加,
    功率增高。
Objective: The aim of this thesis is to research the theory and feasible method for Alzheimer' s disease(AD) with rat model by microinjecting AB into cerebrum, to explore the ability of learning and space memory of AD rats by performing Morris water maze behavior examination, and to analyse the AD electroencephalography(EEG) frequency characters via frequency analysis of EEG in the brain area related with cognitive areas of rats. The AD rat is successfully modeled and verified by behavior examination and EEG frequency characters analysis at cerebral areas related with cognitive function in rats brain. Methods: To model the Alzheimer' s disease for rat, the AB was microinjected into hippocampal CA1 area. Two weeks later, Morris water maze behavior examination was performed, which included 5-day place navigation with a fixed platform randomly placed in one quandrant, and spatial probe test without platform. The related data, such as movement time, movement distance, and the memory percentage for the platform q
    uandrant etc, was recorded. Respectively compared with the average of the normal rats' movement time, 4 of the 7 modeled rats with different dementia degree were chosen from the madeled rats, with 1 mild and 3 medium dementia. The EEG in the brain areas related with cognitive function (frontal lobes, occipital lobes and temporal area) were recorded in both normal and AD rats, to analyse the power spectrum and to study the AD EEG frequency feature of the AD model rats.
    
    
    
    Results:
    1. 7 rats in model group were microinjecte AB into the cerebrum. Based on the dementia chosen criteria, 1 of 7 model rats was the moderate dementia and 3 of 7 were mild dementia. The success rate of the AD rats is 57. 1% in this research.
    2. The main results of Morris water maze behavior examination are as follows:
    (1)place navigation: The movement time of the AD rats is markedly more than that of normal, the movenment distance of the AD rats is highly longer than that of normal, and the platform memory percentage of the AD rats is much lower than that of normal. The search points and the memory mark are also less than normal.
    (2)Spatial probe test: The movement distance in AD rats is obviously longer than that of normal, its time percentage of the original platform quandrant is low compare with the normal.
    3. The EEG frequency feature in the cerebral cognitive areas in two groups are as follows:
    The a -band power of EEG decreased in AD rats, with slower frequency. The power of the -band and the -band increased significantly. Conclusions:
    1. In the study the success rate of making AD model is 57.1%, showing that the microinjection of AB into rat cerebrum is an effect and feasible method for modeling the AD rats. This results supported the hypothesis in some degree that the AB deposition would lead to the
    
    
    neural system damaged as well as dementia.
    2. The results of Morris water maze behavior examination shown that the movement time could be used as a choosing criteria for AD rats, and that the learning and memory of the AD rats decreased notably compared with the normal rats.
    3. With the analysis of the frequency features of the EEG in brain areas, which is related to cognitive function, of AD rats, EEG features could be seen as such: the rhythm of the a wave were slowed down, its power decreased or even disappeared. Activaties of the slow waves( band and band) increased, with the power raised.
引文
[1] 韩太真,吴馥梅.学习记忆的神经生物学.北京医科大学中国协和医科大学联合出版社,1998,363
    [2] 盛树力.老年性痴呆:从分子生理学到临床诊治.科学技术文献出版社,2000,
    [3] 陈彪,马球兰.阿尔茨海默病病因学研究进展及治疗展望.中华神经科杂志,2003,36(2):158-160
    [4] 王新德.老年人痴呆的分类、发病机理、诊断和鉴别诊断.跨世纪脑科学老年性痴呆发病机理与诊治,1998,8
    [5] 苗建亭,李柱一,林宏等.β—淀粉样蛋白对大鼠学习记忆功能及胆碱能乙酰胆碱转移酶和生长抑素表达的影响.中国神经科学杂志,2003,19(1):23-26
    [6] Hefti F, Dravid A, Hartikka J. Chronic intraventricular injections of nerve growth factor elevate hippacampal choline acetyltransferase activity in adult rats with partial septohippocampal lesions. Brain Res, 1984,293(2):305-309
    [7] Arendt T, Bigl V, Temnstedt A, etc. Neuronal loss in different parts of the nucleus basalis is related to neuritic plaque fomation in cortical target areas in Alzheimer' s disease. Neuroscience, 1985, 4 (1) :1-6
    [8] Pavia J, Ceballos ML. Alzheimer' s diease:relationship between muscarinic cholinergic receptors, beta-amyloid and tau proteins. Fundam Clin Pharmacol, 1998,12(5): 473—481
    [9] Mesulan MM.Some cholinergic themes related to Alzheimer' s disease: synaptology of the nucleus basalis, location of m2 receptors,
    
    interactions with amyloid metabolism, and perturbations of cortical plasticity. J Physiol Paris, 1998,92(3-4):293-298
    [10] Rossner S, Ueberham U. The regulation of amyloid metabolism by cholinergic mechanisms and neurotrophin receptor signaling. Prog Neurobiol, 1998, 56(5):541-569
    [11] 葛圣蕾,谢鼎华.自由基氧化应激损伤在老龄化神经变性疾病中的作用.国外医学:老年医学分册,2002,23(6):271-276
    [12] 马国诏,陈生弟.老年性痴呆发病机制的研究进展.临床内科杂志,2003,20(12):617-620
    [13] 楚晋,叶翠飞,李林.二苯乙烯苷对痴呆小鼠学习记忆及自由基代谢的影响.中国康复理论与实践,2003,9(11):643-645
    [14] 姜招嶂,周翔,杨翰仪.氧自由基对大鼠海马及皮层的损伤作用.中国老年学杂志,2002,22:158-160
    [15] 陈勤.脑忆清胶囊对痴呆小鼠自由基代谢的影响.时珍国医国药,2001,12(10):867-869
    [16] 张晓君,王玉平,汤晓芙.痴呆的事件相关电位研究进展.中华神经科杂志,2000,33(1):45—47
    [17] Martinelli V, Locatelli T, Comi G, et al. Pattern visual evoked potential mapping in Alzheimer' s disease: correlations with visuopatial impairment. Dementis, 1996,7:63-68
    [18] Ferri R, Del Gracco S, Elia M, et al. Scalp topographic mapping of middle-latency somatosensory evoked potentials in normal aging and dementia. Neurophysiol Clin, 1996,26(5):311-319
    [19] Zappoli R, Versari A, Arnetoli G, et al. Cognitive event-related potentials and reaction time in presenile subjects with intial mild
    
    cognitive decline or probable Alzheimer-type dementia. Ital J Neurol Sci, 1990, 11: 113-130.
    [20] Takeda M, Tachibana H, Sugita M. Multimodal evoked potentials in patients with dementia. Nippon Ronen Igakkai Zashi, 1993, 30:1058-1067
    [21] Locatelli T, Cursi M, Liberati D, et al. EEG coherence in Alzeimer' s disease. Electroencephalogr Clin Neurophysiol, 1998,106(3):229-237
    [22] Babiloni C, Babiloni F, Carducci F, et al. Movement-related electroencephalographic reactivity in Alzheimer disease. Neuroimage, 2000,12(2):139-146
    [23] Dineley Kr, Bell KA, Buy D, et al. β-amyloid peptide activates α7 nicotinic acetylcholine receptors expressed in xenopus oocytes. J Biol Chem, 2002,277(28):25056-25061
    [24] Huang F, Li W, Zhang B, et al. Effect of free radicals and amyloid beta protein on the currents of expressed rat receptors in ienopus oocytes. Chin Med J, 2001,114(3):244-247
    [25] 周慧芳,薛冰,王晓民.Alzheimer病研究进展——β淀粉样蛋白学说与主要防治策略.自然科学进展,2003,13(2):121-125
    [26] 王奕,金国琴,徐维蓉等.调心方对A β所致Alzheimer痴呆大鼠线粒体呼吸功能的影响.中国老年学杂志,22:206-208
    [27] Tangui m, Grian Ph, Alain P. Amnesia induced in mice by centrally administered β -amyloid peptides involves cholinergic dysfunction. Brain Res, 1996,706(2):181-193
    [28] Nitta A, Itoh A, Hasegawa T, et al. β -amyloid protein induced Alzheimer' s disease animal model. Neurosci Lett, 1994,170(1):63-66
    
    
    [29] 崔行,王墨林,张群业.胆碱能系损伤老化鼠的脑神经肽表达与学习能力改变.中国老年学杂志,2002,22:379-381
    [30] Giovannelli L, Cassamenti F, Scall C, et al. Differential effects of amyloid peptides β -(1-40) and β -(25-35) injection into the rat mucles basalis. Neuroscience, 1995,66:781-792
    [31] 程龙,田金州,黄启福.β—淀粉样蛋白所致拟AD大鼠模型行为学特征.中华医药杂志,2003,3(6)481-484
    [32] 林煜,王占军,陈俊抛,等.海马注射β—淀粉样蛋白对白介素—1 β和肿瘤坏死因子—β表达的影响及消炎痛的干预作用.中国神经免疫学和神经病学杂志,2002,9(1):21-24
    [33] 杨春,张茜,韦迎娜,等.β—淀粉样蛋白致大鼠Alzheimer病模型的研究.河南医学研究,2003,12(4):294-296
    [34] 罗焕敏。海马结构——从形态、功能到可塑性、衰老性变化。神经解剖学杂志,1996,12:177—184
    [35] 赵宪林,方秀斌,李东培.大鼠血管性痴呆模型制作.中国医科大学学报,31(3):166-168
    [36] 李卫国,邓曦,张正国。一种基于微机的新型Morris水迷宫分析系统。中国生物医学工程学报,2002,21(3):286-288
    [37] 杨炯炯,隋南,Albert Chen,等.丹参改善大鼠颞叶梗死后空间认知加工障碍的研究.中国神经免疫学和神经病学杂志,1998,5(4):198-202
    [38] 纪方,张炳熙.脑电分析技术进展及其在麻醉监护中的应用.中华医学研究杂志,2003,3(1):35-37
    [39] 陈宜张.神经系统电生理学.人民卫生出版社,1983,207
    [40] 阮迪云,寿天德。神经生理学,合肥:中国科学技术大学出版社,1992,
    
    
    [41] 尧德中.脑功能探测德电学理论与方法.科学出版社,2002,5-22
    [42] 季忠,秦树人,彭丽玲。脑电信号的现代分析方法。重庆大学学报,2002,25(9):108-112
    [43] 胡广书。数字信号处理——理论、算法与实现.清华大学出版社 1997,334
    [44] 李勇,徐震.MATLAB辅助现代工程数字信号处理.西安电子科技大学出版社,2002,120
    [45] 徐智,吴国明,钱桂生,等.大鼠衰老模型的初步建立.第三军医大学学报,2003,25(4):312-315
    [46] 邱南,朱振铎,田梅,等.益智合剂对D—半乳糖致衰模型大鼠学习记忆作用实验研究.山东中医杂志,2002,21(10):615-617
    [47] 王哲,张昱,刘畅,等.益智口服液对老年性痴呆大鼠模型行为许、脑内胆碱已酰转移酶及突触素水平的影响.中国老年学杂志,2003,23(3):189-191
    [48] 尹兆宝,王健,吴洪梅,等.调神方对实验性类AD痴呆大鼠记忆行为和血清细胞因子含量的影响.上海中医药大学学报,2000,14(3):42-44
    [49] Lebel CP, Bondy SC. Oxidative damage and cerebral aging. Prog Neuroh.1992.38:601-605
    [50] 崔旭,李文彬,张炳烈.D—半乳糖脑老化模型的脂质过氧化机理.中国老年医学杂志,1998,2(18):38-40
    [51] 孙异临,盛树力,曲宝清,等.实验性脑老化动物模型海马区的超微结构研究.中国医学影响学杂志,2001,9(2):122-125
    [52] Prie DL, Sidia SSW. Mutant genes in familial Alzheimer' s disease and transgenic models. Annu Rev Neurosci, 1998,21(5):479-505
    [53] Forloni G, Tagliavini F, Bugiani O, et al. Amyloid in Alzheimer' s disease and priori-related encephalopathies:studies with synthetic
    
    peptides. Prog Neurobiol, 1996,49:287-315
    [54] 刘辉,陈俊抛,田时雨,等.海马注射β淀粉样蛋白对大鼠学习记忆及局部神经元的损伤作用.中华神经科杂志,2000,33(3):150-153
    [55] 解建波,孙志清,陈玉芳.β淀粉样蛋白、炎性细胞因子与阿尔茨海默病.国外医学:神经病学神经外科学分册,2002,29(6):503-505
    [56] Reiter RJ. Oxidative damage in the central nervous system. Protenction by melatonin. Prog Neurobiol, 1998,56(4):359-284
    [57] Huang XD, Atwood CS, Hurtshorn MA, et al. The A β peptide of Alzheimer' s disease directly produces hydrogen peroxide through metal ion reduction. Biochemistry, 1999,38:7609-7616
    [58] 邓海平,沈雪勇,丁光宏.Alzheimer病β—淀粉样蛋白神经毒性机制的研究进展,中国老年学杂志,2004,24(1):73-74
    [59] Mahony S, Harkany T, Rensink AA, et al. Beta-amyloid-induced cholinergic denervation correlates with enhanced nitric oxide synthase activity in rat cerbral cortex:reversal by NMDA recepter blocked. Brain Res, 1998,45(4):405-411
    [60] 胡镜清,温泽淮,赖世熊.Morris水迷宫检测的记忆属性与方法学初探.广州中医药大学学报,2000,17(2):117-119
    [61] Squire LR, Zola-Morgan S. Memory, brain system and behavior. Trends in Neuroscience, 1988,11:170-175
    [62] 王怀星,姚智彬,顾耀铭,等.老年性记忆减退大鼠空间记忆和搜索策略的改变.神经解剖学杂志,2000,16(10):57-60
    [63] Lismso J. A mechanism for the Hebb and anti-Hebb processes underlying learning and memory. Proc Noil Acad Sci USA, 1989,86:9574-9581
    [64] Bliss TVP, Collingridge GL.A synaptic model of memory: long-term
    
    potentiation in the hippocampus. Nature, 1993,361:31-38
    [65] 张兰,张如意,叶翠飞,等.叠氮钠对模型大鼠学习记忆能力的影响.现代康复,2001,5(1):52-54
    [66] Smith-Swintosky VL. Glutamate β -amyloid precursor proteins, and calcium mediated neurofibrillary degeneration. J Neural Transm, 1994, 44(suppl):29-45
    [67] Ueda K, Shinohara S. imyloid β protein potentiates Ca~(2+) influx through L-type voltage-sensitive Ca~(2+) channels: a possible involvement of free radicals. J Neurochem, 1997,68:265-271
    [68] 邹飞,罗炳德,蔡绍曦等。NGF改善老年大鼠Morris水迷宫的学习记忆行为。中国应用生理学杂志,1998,14(2):184-187

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700