汇利心康及白藜芦醇对野百合碱诱导的肺动脉高压及右心室重构的影响及机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
肺动脉高压是进行性和致命性疾病,系多种原因引起的肺循环压力高于正常的病症,可继发右心室重构、右心衰竭,故防治肺动脉高压及右心室重构具有重要的临床意义。现可用的降肺动脉高压药物不仅数量少、疗效有限、且因缺乏针对性,因而存在诸多不良反应。目前对右心室重构的研究相当有限,且临床无针对性抗右心室重构药物,因此,寻找抗肺动脉高压和/或抗右心室重构新药十分必要。肺动脉平滑肌细胞(PASMCs)异常增殖,导致远端肺动脉腔狭窄,甚至阻塞,造成肺血管阻力增加,是肺动脉高压病理生理机制的重要特点。因此,抑制或逆转肺动脉平滑肌增殖,改善远端肺动脉重构,是预防和治疗肺动脉高压的关键措施之一。右心室重构最初是继发于内在刺激和外部刺激的代偿现象,最终会发展成为右心衰竭,是肺动脉高压患者死亡的重要原因。因此,抑制右心室重构发展具有重要意义。心肌细胞凋亡作为细胞死亡的方式之一,与细胞坏死一道,共同调控心肌细胞数量,是各种病因导致心室重构的重要环节。
     汇利心康(GCIP-27)是我室针对心肌肥大发生、发展过程中具有重要作用的Gαq羧基末端,克隆制备的一种G蛋白竞争性抑制性肽。既往研究证实:GCIP-27能有效抑制AngII,NA诱导的离体心肌细胞肥大反应,抑制不同动物模型的左心室重构,并且GCIP-27抑制自发性高血压大鼠(SHR)左心室重构几乎不依赖于其降低体循环动脉压作用。另外,GCIP-27还可抑制SHR主动脉平滑肌重构效应以及抑制AngII所诱导体外血管平滑肌细胞增殖效应。为此,本课题拟对GCIP-27防治MCT所诱导的肺动脉高压及右心室重构作用及机制进行了探索性研究。
     白藜芦醇(resveratrol,Res)是一种天然多酚类化合物,对心血管有多种益处。Res能抑制Ang-II,PE所诱导的离体心肌细胞肥大反应及抑制心肌成纤维细胞增殖和分化,抑制不同模型的左心室重构;另外,还具有保护肺血管内皮及抑制Ang-II等引起的体外的大鼠主动脉平滑肌细胞增殖作用;Res苷具有抑制急、慢性低氧型肺动脉高压作用。鉴于目前尚缺乏针对性防治肺动脉高压和右心室重构药物,为了拓宽筛选领域,本课题一并研究Res对MCT所诱导的大鼠肺动脉高压及右心室重构的防治影响。
     方法:
     ♂SD大鼠随机分为正常对照组(control组,n=8)、MCT模型组(MCT组,n=12)、GCIP-27低剂量预防处理组(GCIP-27-P-L组,n=8)、GCIP-27高剂量预防处理组(GCIP-27-P-H,n=8)、GCIP-27治疗处理组(GCIP-27-T-H,n=8)、Res低剂量预防处理组(Res-P-L组,n=8),Res高剂量预防处理组(Res-P-H组,n=8),Res治疗处理组(Res-T-H组,n=8)。大鼠颈背部一次性皮下注射MCT(50 mg/kg)造模,于造模后1-21d或14-21d分别给GCIP-27(30, 90μg/kg,ip,bid)或Res(10, 30 mg/kg, ig, bid)处理。在实验过程中,观察动物一般状况及动物死亡情况;在实验第21d,用彩色多普勒超声成像技术(CDFA)和肺脉冲多普勒技术(PW)观察所有存活动物的肺动脉加速时间(PAAT)、右心室游离壁厚度(RVFWT)、和三尖瓣返流等指标的变化;在实验第22d用右心导管术检测肺动脉收缩压(PASP)、肺动脉舒张压(PADP)、平均肺动脉压(MPAP)、右心室收缩压( RVSP )等指标;用称重法测量和计算右心室肥大指数[RVHI=RV/(LV+SEP)]、右心室质量指数(RVMI=RV/BW)、肺重指数(LI=LUNG/BW);用石蜡包埋处理肺或右心室标本;用偏振光显微镜观察右心室及肺HE染色形态学改变及免疫组化技术处理的相关抗原表达等变化;用透射电镜技术(TEM)观察右心室超微结构;用TdT介导的缺口末端标记法(TNNEL)检测右心室心肌细胞凋亡的变化,用免疫组织化学技术观察肺动脉α-平滑肌肌动蛋白(α-SMA抗原),增殖细胞核抗原(PCNA),第八因子抗原表达的变化,以及右心室Bcl-2抗原和Bax抗原表达的变化。另外,针对造模后第14d-21d给予GCIP-27或Res处置的动物、正常对照组动物和单纯MCT模型组动物,我们用CDFA和PW技术观察了这些动物在造模前、造模第14d、造模第21d的PAAT、RVFWT等指标的动态变化。
     结果:
     1.MCT模型组有33%动物死亡,尽管这组动物开始时数目为12只,但在实验期间分别于13d、14d、19d和20d各死亡1只动物,故该组仅剩8只存活动物进入超声及血流动力学检测。其余存活MCT模型组大鼠一般状况差,体重降低明显;而GCIP-27或Res处理组无一只动物死亡,一般状况较好,并且显著改善MCT所引起的体重下降。
     2.与造模前相比,MCT显著缩短大鼠的第14 d和21 d的PAAT(P<0.01);与MCT组第21d相比,GCIP-27或Res明显改善MCT所诱导的PAAT的缩短(P<0.05或P<0.01);在造模第14-21d,给予GCIP-27或Res处置的MCT造模的大鼠,其第21天PAAT值比第14天的PAAT值延长(P<0.05)。
     3.与正常对照组相比,MCT明显升高PASP、PADP、MPAP、RVSP(P<0.01);与MCT组相比,GCIP-27显著抑制MCT所诱导的PASP、RVSP的升高(P<0.05,P<0.01),但仅GCIP-27-P-H处理组显著抑制MCT所诱导的MPAP的升高(P<0.05);与MCT组相比,除了对PADP没有显著水平的降低外(P>0.05),Res明显改善上述所有指标的变化(P<0.05,P<0.01)。
     4.偏振光学显微镜观察左肺组织HE染色的病理结构揭示:MCT引起明显的肺间质炎症,与正常对照相比,显著增加LI、肺小动脉中膜相对厚度(P<0.01),上调肺动脉α-SMA抗原的表达(P<0.01),增加PCNA抗原核阳性的PASMCs数目(P<0.01);与MCT组相比,GCIP-27和Res均一定程度减轻肺间质炎症,并且二者均不同程度显著地改善上述指标的变化(P<0.05,P<0.01)。
     5.MCT明显减少肺小动脉第八因子抗原的表达,减少肺毛细血管数量(P<0.01);与MCT组相比,Res不同程度地增加肺动脉第八因子抗原的表达,增加肺毛细血管数量(P<0.05,P<0.01)。
     6.与造模前相比,MCT显著升高大鼠第14 d和21 d的RVFWT(P<0.01),在造模21d,MCT组出现75%三尖瓣返流;与MCT组相比,GCIP-27或Res明显改善MCT所诱导的RVFWT的增加(P<0.05,P<0.01),并且GCIP-27或Res处理的动物均无三尖瓣返流;在造模第14-21d,给予GCIP-27或Res处置的MCT造模的大鼠,其第21天RVFWT值比第14天的RVFWT值明显减少(P<0.01)。
     7.与正常对照组相比,MCT明显升高RVHI、RVMI(P<0.01);与MCT组相比,GCIP-27显著抑制MCT所诱导的RVHI和RVMI的增高(P<0.01);与MCT组相比,Res也显著抑制MCT所诱导的RVHI,RVMI的增高(P<0.05,P<0.01)。
     8.偏振光学显微镜观察右心室组织HE染色的病理结构揭示:MCT组心肌细胞排列紊乱,心肌细胞横截面积和细胞长度均显著增加,胞浆肿胀,心肌细胞间质增生等。与MCT组相比,GCIP-27及Res均不同程度地明显抑制MCT所引起的右心室组织病理结构改变。
     9.TEM观察右心室心肌细胞超微结构显示:右心室心肌细胞线粒体肿胀、内有空泡形成、呈髓鞘样退行性改变、肌浆网扩张、横纹、Z线不清、肌丝排列紊乱及部分肌丝局灶性坏死;与MCT组相比,GCIP-27及Res均不同程度地明显改善MCT所引起的右心室心肌细胞超微结构的改变。
     10.MCT明显增加右心室心肌细胞TUNEL阳性心肌细胞的数量(P<0.01),下调右心室心肌细胞的Bcl-2抗原的表达(P<0.01)和上调心肌细胞的Bax抗原的表达(P<0.01);与MCT组相比,GCIP-27显著改善MCT所引起上述指标的变化(P<0.01);Res也改善MCT所引起上述改变(P<0.05,P<0.01)。
     结论:
     1.GCIP-27特异性抑制MCT诱导的右心室重构效应,与抗心肌细胞凋亡及一定程度地降低肺动脉高压作用相关。
     2.GCIP-27通过上调心肌细胞Bcl-2抗原、下调Bax抗原的表达、保护心肌细胞的线粒体及一定程度降低右心室后负荷而抑制右心室心肌细胞凋亡。
     3.GCIP-27抑制PASMCs增殖、改善肺动脉重构,一定程度地抑制MCT诱导的肺动脉高压。
     4.Res抑制MCT诱导的右心室重构,与抗心肌细胞凋亡及降低肺动脉高压作用相关。
     5.Res通过上调Bcl-2抗原、下调Bax抗原表达、保护心肌细胞线粒体及降低右心室后负荷而抑制右心室心肌细胞凋亡。
     6.Res通过增加肺毛细血管数量,抑制PASMCs的增殖以及改善肺动脉重构,从而较明显地抑制MCT诱导的肺动脉高压。
BACKGROUD: Pulmonary hypertension is a serious illness, with multiple potential causes that may progressively worsen and eventually prove fatal, which was classified into two categories: primary pulmonary hypertension and secondary pulmonary hypertension. Pulmonary hypertension is characterized by progressive remodeling of the small pulmonary arteries, causing increased resistance to blood flow in the lung, which, in turn, can raise the pulmonary arterial pressure. As the resistance rises, the afterload on the right ventricle increases, which leads to right ventricle remodeling and ultimately failure. Available treatments for pulmonary hypertension are limited, and often associated with significant side effects. Other deseases are associated with right ventricle remodeling such as left ventricular pathology, Chagas' disease, and arrhythmogenic right ventricle cardiomyopathy. The pathophysiology of right ventricular remodeling is a complex process. Due to the structure and function between the two chambers are very different, the right ventricular remodeling may include unique elements not observed in the left ventricular remodeling. Therefore, further understanding of these issues is of pivotal importance. The available treatments for right ventricle remodeling are also quite limited. Therefore, it is necessary to seek for some materials for treatment of pulmonary hypertension and right ventricle remodeling.
     Huilixinkang (GCIP-27) is a Gαq protein carboxyl terminus imitation polypeptide, which was cloned and constructed in our laboratory previously, prevent the hypertrophyic responses in cultured rat cardiomyocyte by noradrenaline (NA) and angiotensin II (AngII) and inhibited the left ventricular hypertrophy induced by NA or AngII in rats and mice, and also inhibited the left ventricular remodeling in spontaneously hypertensive rats (SHR). Interestingly, GCIP-27 inhibiting left ventricular remodeling is almost not depended on the effect of decreasing blood pressure in SHR. In addition, GCIP-27 inhibited the remodeling of aorta in SHR and prevented the proliferation responses responses in cultured vascular smooth muscle cell (VSMCs) by AngII.
     The polyphenolic compound resveratrol (Res, trans-3, 4’, 5-trihydroxystilbene), is a naturally occurring phytochemical, which has been found in many plants. Relatively high quantity of Res is found in grapes. Res possesses a wide range of biological and pharmacological properties such as anti-oxidant, anti-inflammatory, anti-proliferation properties and the cardio-protective effects. Res inhibits the cardiomyocyte hypertrophy induced by AngII or PE in rat neonatal myocyte cultures, and the cardiac fibroblast proliferation. Res shows the protective effect on pulmonary endothelial cell, and represses the proliferation responses of in cultured VSMCs. In addition, the glycoside of Res was reported to prevent the pulmonary hypertension in the acute and chronic hypoxia animal model.
     AIM: The study is designed to study the potential effects of GCIP-27 on pulmonary hypertension and right ventricle remodeling using monocrotaline (MCT)-treated rats, and primarily analyze the mechanism.
     METHODs: Male Sprague-Dawley rats were given a single injection of MCT (50 mg/kg, sc) and then received treatment with vehicle or GCIP-27 (30, 90μg/kg, ip bid) or Res (10 and 30 mg/kg, ig, bid) from 1~21 days or 14~21days, respectively. The general state was observed. At the end of treatments, all survival rats received echocardiography to observe the RV free wall thickness (RVFWT), pulmonary arterial acceleration time (PAAT) and tricuspid regurgitation. All survival rats also received right catheterization to observe pulmonary arterial systolic pressure (PASP), pulmonary artery diastolic pressure (PADP), mean pulmonary arterial pressure (MPAP) and right ventricular systolic pressure (RVSP). In addition, right ventricular hypertrophy index (RVHI), right ventricular mass index (RVMI), lung index (LI) were obtained by weighting. Lung and right ventricles tissue were embedded in paraffin and stained with haematoxylin–eosin (HE), then examined under an optical microscope. Furthermore, the right ventricles were subjected to untrastructural analysis by transmission electron microscopy (TEM). The expression ofα-smooth muscle actin (α-SMA), proliferating cell nuclear antigen (PCNA) orⅧfactor antigen in pulmonary arteries and the expression of Bcl-2 and Bax antigen in right ventricles were done through immunohistochemical technique. The TdT mediated nick dUTP end labeling (TUNEL) technique was used to observe the apoptosis of cardiomyocytes in right ventricles. In addition, we used chocardiography to observed dynamic changes for PAAT, RVFVT and tricuspid regurgitation in some animals on 0 day, 14 day and 21day, respectively, which include animals treatment with GCIP-27 or Res from 14~21days, control animals and MCT model animals.
     RESULTs
     1. MCT produced 33% mortality in model rats, while no mortality occurs in animal treatment with Res or GCIP-27
     2. As compared with 0 d, MCT significantly decreased PAAT on 14day and 21day, respectively (P<0.01). As compared with MCT group, both Res and GCIP-27 improved the decreased PAAT on 21day (P<0.05, P<0.01). As compared with 14day, the decreased PAAT could be ameliorated on 21day (P<0.05) in animals treatment with GCIP-27 or Res from 14~21days.
     3. As compared with the control group, MCT increased RVSP, PASP, PADP, MPAP (P<0.01). Except for PADP, Res improved all the above changes (P<0.05, P<0.01). GCIP-27 could improve the increased RVSP, PASP induced by MCT (P<0.05, P<0.01), but only the treatment with high dose of GCIP-27 (90μg/kg) from 1~21 day improved the increased MPAP induced by MCT (P<0.05).
     4. As compared with the control group, MCT effectively increased LI, the pulmonary arterial medial thickness and the expression ofα-SMA antigen and PCNA antigen in pulmonary arterial smooth muscle cell (PASMCs). Both Res and GCIP-27 improved all these changes to some extent (P<0.05, P<0.01).
     5. As compared with the control group, MCT also effectively decreased the expression ofⅧfactor antigen in the PAs and the number of pulmonary capillary (P<0.01), however, Res improved these changes (P<0.05, P<0.01).
     6. As compared with 0 d, MCT increased RVFWT on 14day and 21day (P<0.01), respectively, and induced 75% tricuspid regurgitation on 21day. As compared with in MCT group, both Res and GCIP-27 could improve the increased RVFWT induced by MCT (P<0.05, P<0.01). No tricuspid regurgitation occured in animal treatment with Res or GCIP-27. As compared with 14day, the increased RVFWT could be ameliorated on 21day in animals treatment with GCIP-27 or Res from 14~21days (P<0.01).
     7. As compared with the control group, MCT increased the RVHI, RVMI (P<0.01). However, GCIP-27 and Res improved all these changes (P<0.05, P<0.01).
     8. In MCT-treated rats, the microstructure of right ventricles was as follows: the cardiomyocytes hypertrophy, interstitium fibrosis and myofibrilla lined up in disorder. However, both GCIP-27 and Res improved these morphological changes to some extent.
     9. In MCT-treated rats, the ultrastructure of right ventricular cadiocytes was observed as the mitochondria swell and medullary sheath-like degeneration, the sarcoplasmic reticulum enlarged and the myofilaments dissolved and the Z lines broken. However, GCIP-27 and Res improved these morphological changes.
     10. As compared with the control group, MCT induced the apoptosis of cardiomyocytes and the over-expression of the Bax antigen and the low-expression of Bcl-2 antigen in the right ventricle tissues, respectively (P<0.01). However, both Res and GCIP-27 markedly attenuated the above changes (P<0.05, P<0.01).
     CONCLUSION
     1. Huilixinkang (GCIP-27) significantly inhibits right ventricle remodeling induced by MCT. The mechanism is associated with the anti-apoptosis effect in right ventricular cardiomyocytes and the effect of reducing pulmonary hypertension to some extent.
     2. GCIP-27 significantly attenuates the apoptosis of right ventricular cardiomyocytes in MCT-treated rats. The mechanism is relative to the overexpression of Bcl-2 antigen, low expression of Bax antigen, the protective effect of mitochondrium in right ventricular cardiomyocytes as well as the effect of reducing pulmonary hypertension to some extent.
     3. GCIP-27 inhibits the pulmonary hypertension to some extent, which is relative to the impressing effect on the proliferation of PASMCs and pulmonary artery remodeling.
     4. Res inhibits right ventricle remodeling induced by MCT. The mechanism is associated with the anti-apoptosis effect in right ventricular cardiomyocytes and the reducing pulmonary hypertension effect significantly.
     5. Res significantly attenuates the apoptosis of right ventricular cardiomyocytes in MCT-treated rats. The anti-apoptotic effects is relative to the overexpression of Bcl-2 antigen, low expression of Bax antigen, the protective effect of mitochondria in right ventricular cardiomyocytes as well as the significant effect of reducing pulmonary hypertension.
     6. Res significantly inhibits the pulmonary hypertension, which is relative to the impressing effect on the proliferation of PASMCs, pulmonary artery remodeling, and the increased number of pulmonary capillary in MCT- treated rats.
引文
1. van Wolferen SA, Grünberg K, Vonk Noordegraaf A. Diagnosis and management of pulmonary hypertension over the past 100 years. Respir Med. 2007; 101(3):389-398.
    2. Archer S, Rich S, Primary Pulmonary Hypertension: A Vascular Biology and Translational Research“Work in Progress”circulation. 2000; 102: 2781-2791.
    3.罗慰慈,临床医师应提高对肺动脉高压的认识,临床肺科杂志,2008,13(5):535-536.
    4. Sebastien B, Gael R, Gopinath S, et al. The nuclear factor of activated T cells in pulmonary arterial hypertension can be therapeutically targeted. Proc Natl Acad Sci USA. 2007,104(27):11418–11423.
    5. Newman JH. Pulmonary hypertension. Am J Respir Crit Care Med.2005,172(9): 1072–1077.
    6.徐昶,曾和松,肺动脉高压药物治疗进展,临床内科杂志2008, 25(10): 662-665.
    7.王毅,方唯一特发性肺动脉高压的药物治疗进展,心肺血管病杂志2008; 27(6): 375-378.
    8. McMurtry MS, Bonnet S, Wu X, et al. Dichloroacetate prevents and reverses pulmonary hypertension by inducing pulmonary artery smooth muscle cell apoptosis. Circ. Res. 2004; 95: 830-840.
    9. Voelkel NF, Quaife RA, Leinwand LA, et al; National Heart, Lung, and Blood Institute Working Group on Cellular and Molecular Mechanisms of Right Heart Failure. Right ventricular function and failure: report of a National Heart, Lung, and Blood Institute working group on cellular and molecular mechanisms of right heart failure.Circulation. 2006; 114(17): 1883-1891.
    10. .Kret M, Arora R. Pathophysiological basis of right ventricular remodeling. J. Cardiovasc. Pharmacol. Ther. 2007; 12: 5-14.
    11. Verduyn SC, Ramakers C, Snoep G, et al. Time course of structural adaptations in chronic AV block dogs: evidence for ventricular remodeling. Am J Physiol Heart Circ Physiol. 2001; 280: H2882-H2890.
    12. Ahn BH, Park HK, Cho HG, et al. Estrogen and enalapril attenuate the development of right ventricular hypertrophy induced by monocrotaline in ovariectomized rats. J KoreanMed Sci. 2003; 18:641-648.
    13. Chen EP, Akhter SA, Bittner HB, et al. Molecular and functional mechanisms of right ventricular adaptation in chronic pulmonary hypertension. Ann Thorac Surg. 1999; 67:1053-1058.
    14. Eltzschig HK, Mihaljevic T, Byrne JG, et al. Echocardiographic evidence of right ventricular remodeling after transplantation. Ann Thorac Surg. 2002; 74: 584-586.
    15. Louren?o AP, Roncon-Albuquerque R Jr, Brás-Silva C, et al. Myocardial dysfunction and neurohumoral activation without remodeling in left ventricle of monocrotaline-induced pulmonary hypertensive rats. Am J Physiol Heart Circ Physiol. 2006; 291(4):H1587-1594.
    16. Farahmand F, Hill MF, Singal PK. Antioxidant and oxidative stress changes in experimental cor pulmonale. Mol Cell Biochem. 2004; 260: 21-29.
    17. McMahon WS, Mukherjee R, Gillette PC, Crawford FA, Spinale FG. Right and left ventricular geometry and myocyte contractile processes with dilated cardiomyopathy: myocyte growth and beta-adrenergic responsiveness. Cardiovasc Res. 1996; 31 (2): 314-323.
    18. Hirose K, Reed JE, Rumberger JA. Serial changes in regional right ventricular free-wall and left ventricular septal wall lengths during the first 4-5 years after index anterior wall myocardial infarction. J Am Coll Cardiol. 1995; 26: 394-400.
    19. Strniskova M, Ravingerova T, Neckar J, et al. Changes in the expression and/or activation of regulatory proteins in rat hearts adapted to chronic hypoxia. Gen Physiol Biophys. 2006; 25: 25–41.
    20. Wang GY, McCloskey DT, Turcato S, et al. Contrasting inotropic responses to {alpha}1-adrenergic receptor stimulation in left versus right ventricular myocardium. Am J Physiol. 2006; 291:H2013–H2017.
    21. Campian ME, Hardziyenka M, Michel MC, et al. How valid are animal models to evaluate treatments for pulmonary hypertension? Naunyn Schmiedebergs Arch. Pharmacol. 2006; 373:391-400.
    22. Kasahara Y, Kiyatake K, Tatsumi K, et al. Bioactivation of monocrotaline by P-450 3A in rat liver. J. Cardiovasc. Pharmacol. 1997; 30:124-129.
    23. Sadoshima J, Izumo S. Molecular characterization of angiotensin II-induced hypertrophy of cardiac myocytes and hyperplasia of cardiac fibroblasts. Critical role of the AT1receptor subtype. Circ Res. 1993;73(3):413-423.
    24. Clerk A, Michael A, Sugden PH. Stimulation of the p38 mitogen-activated protein kinase pathway in neonatal rat ventricular myocytes by the G protein-coupled receptor agonists, endothelin-1 and phenylephrine: a role in cardiac myocyte hypertrophy? J Cell Biol. 1998;142(2):523-535.
    25. Sugden PH. Signaling in myocardial hypertrophy: Life after calcineurin? Circ. Res. 1999; 84: 633–646.
    26. Jalili T, Takeishi Y, Walsh RA: Signal transduction during cardiac hypertrophy: the role of G alpha q, PLC beta I, and PKC. Cardiovasc Res. 1999; 44: 5-9.
    27. Wettschureck N, Rütten H, Zywietz A, et al: Absence of pressure overload induced myocardial hypertrophy after conditional inactivation of Galphaq/Galpha11 in cardiomyocytes. Nat Med 2001; 7: 1236-1240.
    28. Adams JW, Sakata Y, Davis MG, et al: Enhanced Galphaq signaling: a common pathway mediates cardiac hypertrophy and apoptotic heart failure. Proc Natl Acad Sci USA. 1998; 95: 10140-10145.
    29. D'Angelo DD, Sakata Y, Lorenz JN, et al Transgenic Galphaq overexpression induces cardiac contractile failure in mice.Proc Natl Acad Sci U S A. 1997; 94(15):8121-1286.
    30. Zhou JZ, Li XH, Zhang HG, et al: Cloning and gene expression of G protein competitive inhibitory polypeptide and its prophylactic effects on myocardial hypertrophy in vitro. Acta Pharmacol. Sin. 2003; 24:1108-1112.
    31. Zhang HG, Li XH, Zhou JZ, et al: Gαq-protein carboxyl terminus imitation GCIP-27 attenuates cardiac hypertrophy in vitro and in vivo. Clin Exp Pharmacol Physiol .2007; 34: 1276-1281.
    32. Wang XQ, Zhang HG, Cheng YQ, et al: Inhibition of left ventricular remodeling in spontaneously hypertensive rats by G(alphaq)-protein carboxy terminus imitation polypeptide GCIP-27 is not entirely dependent on blood. Clin Exp Pharmacol Physiol. 2008;35:1215-1221.
    33.程轶群,李晓辉,张海港. G蛋白抑制肽对血管紧张素Ⅱ诱导的大鼠血管平滑肌细胞增殖的影响.中国动脉硬化杂志.2006;14(9):763-766.
    34. Bhat KPL, Kosmeder II JW, Pezzuto JM. Biological effects of resveratrol. Antioxid Redox Signal. 2001;3:1041-1064.
    35.张梅,杨林.白藜芦醇生物学作用的研究进展,华北煤炭医学院学报.2007; 9(3):333-335.
    36. Kopp P. Resveratrol, a phytoestrogen found in red wine. A possible explanation for the conundrum of the "Frenchparadox"? EurJ Endocrinol. 1998;138:619-620.
    37.牛培勤,郭传勇.白藜芦醇药理作用的研究进展.医药导报. 2006; 25(6):524-525.
    38. BaurJA,SinclairDA.Therapeutic potential of resveratrol:the in vivo evidence.Nat Rev,Drug Discov . 2006;5:493-506.
    39.陈莉娜,臧伟进,唐玉海.白藜芦醇心血管保护作用研究进展.生理科学进展.2003,34(3): 272-274.
    40. Das DK, Maulik N. Resveratrol in cardioprotection: a therapeutic promise of alternative medicine. Mol. Interv. 2006; 6:36-47.
    41. Ray PS, Maulik G, Cordis GA, et al. The red wine antioxidant resveratrol protects isolated rat hearts from ischemia reperfusion injury. Free Radic. Biol. Med. 1999; 27:160–169.
    42. Chen YR, Yi FF, Li XY, et al. Resveratrol attenuates ventricular arrhythmias and improves the long-term survival in rats with myocardial infarction. Cardiovasc. Drugs Ther. 2008; 22: 479-485.
    43. Das S, Khan N, Mukherjee S, et al. Redox regulation of resveratrol-mediated switching of death signal into survival signal. Free Radic. Biol. Med. 2008; 44: 82-90.
    44. Cheng TH, Liu JC, Lin H, et al. Inhibitory effect of resveratrol on angiotensin II-induced cardiomyocyte hypertrophy. Naunyn Schmiedebergs Arch. Pharmacol. 2004; 369: 239-244.
    45. Chan AY, Dolinsky VW, Soltys CL, et al. Resveratrol inhibits cardiac hypertrophy via AMP-activated protein kinase and Akt. J. Biol. Chem. 2008; 283: 24194-24201.
    46. Wang S, Wang X, Yan J, et al. Resveratrol inhibits proliferation of cultured rat cardiac fibroblasts: correlated with NO-cGMP signaling pathway. Eur. J. Pharmacol. 2007; 567: 26–35.
    47. Olson ER, Naugle JE, Zhang X, et al. Inhibition of cardiac fibroblast proliferation and myofibroblast differentiation by resveratrol. Am. J. Physiol. Heart Circ. Physiol. 2005; 288: H1131–1138.
    48. Liu Z, Song Y, Zhang X, et al. Effects of trans-resveratrol on hypertension-induced cardiac hypertrophy using the partially nephrectomized rat model. Clin. Exp. Pharmacol. Physiol. 2005; 32:1049-1054.
    49. Juric D, Wojciechowski P, Das DK et al. Prevention of concentric hypertrophy and diastolic impairment in aortic-banded rats treated with resveratrol. Am. J. Physiol. Heart Circ. Physiol. 2007; 292: H2138-2143.
    50. Hsieh TC,Juan G, Darzynkiewicz Z, et al. Resveratrol increases nitric oxide synthase , induces accumulation of p53 and p21 (WAF1/ CIP1), and suppresses cultured bovine pulmonary artery endothelial cell proliferation by perturbing progression through S and G2. Cancer Res.1999; 59:2596-2601.
    51. Bruder JL, Hsieh T, Lerea KM , et al. Induced cytoskeletal changes in bovine pulmonary artery endothelial cells by resveratrol and the accompanying modified responses to arterial shear stress. BMC Cell Biol .2001;2:1.
    52. Mnjoyan ZH ,Fujise K. Profound negative regulatory effects by resveratrol on vascular smooth muscle cells: a role of p53-p21 (WAF1/ CIP1) pathway. Biochem Biophys Res Commun. 2003;311:546-555 .
    53. Chao HH, Juan SH, Liu JC, et al. Resveratrol inhibits angiotensin II-induced endothelin-1 gene expression and subsequent proliferation in rat aortic smooth muscle cells. Eur J Pharmacol.2005; 515(1-3):1-9.
    54.宋月雁,李笑宏,商丽.白藜芦醇苷对缺氧性肺动脉高压的作用.海南医学. 2006;17(9):143-144.
    55.陈莉延,梁标,彭勃等.白藜芦醇苷对低氧大鼠肺血管构型重建的影响.中国病理生理杂志.2002;18:935-937.
    56. Olivetti G, Cigola E, Maestri R, et al. Recent advances in cardiac hypertrophy. Cardiovascular Research .2000; 45: 68-75.
    57. James TN. Normal and abnormal consequences of apoptosis in the human heart. From postnatal morphogenesis to paroxysmal arrhythmias. Circulation. 1994; 90(1):556-573.
    58. Gupta S, Das B, Sen S. Cardiac hypertrophy: mechanisms and therapeutic opportunities. Antioxid Redox Signal. 2007; 9(6):623-652.
    59. Bussani R, Abbate A, Biondi-Zoccai GG, et al. Right ventricular dilatation after left ventricular acute myocardial infarction is predictive of extremely high peri-infarc-tual apoptosis at postmortem examination in humans. J Clin Pathol. 2003; 56: 672-676.
    60. Kniewald H, Malcic I, Radosevic K, Gaurina Srcek V, Slivac I, Polancec D, Matijasic M, Kniewald J, Kniewald Z. Application of flow cytometry in the study of apoptosis inneonatal rat cardiomyocytes. Methods Find Exp Clin Pharmacol. 2007;29(10): 681-687.
    61. Iwai-Kanai E, Hasegawa K, Araki M, et al. alpha- and beta-adrenergic pathways differentially regulate cell type-specific apoptosis in rat cardiac myocytes. Circulation. 1999; 100(3):305-311.
    62. Anselmi A, Gaudino M, Baldi A, et al. Role of apoptosis in pressure-overload cardiomyopathy. J. Cardiovasc. Med. (Hagerstown). 2008; 9:227-232.
    63. Kajstura J, Cigola E, Malhotra A et al. Angiotensin II induces apoptosis in adult ventricular myocytes in vitro. J Mol Cell Cardiol .1997;29: 859–870.
    64. Shimojo N, Jesmin S, Zaedi S, et al. Changes in important apoptosis-related molecules in the endothelin-1-induced hypertrophied cardiomyocytes: effect of the pretreatment with eicosapentaenoic Acid. Exp Biol Med (Maywood). 2006;231(6):932-936.
    65. Lu YM, Han F, Shioda N, et al. Phenylephrine-induced cardiomyocyte injury is triggered by superoxide generation through uncoupled endothelial nitric-oxide synthase and ameliorated by 3-[2-[4-(3-chloro-2-methylphenyl)-1-piperazinyl]ethyl]-5, 6-dimethoxyindazole (DY-9836), a novel calmodulin antagonist.Mol Pharmacol. 2009; 75(1):101-112.
    66. Ichas F, Mazat JP. From calcium signaling to cell death: two conformations for the mitochondrial permeability transition pore. switching from low- to high-conductance state. Biochim. Biophys. Acta. 1998; 1366: 33–50.
    67. Lagouge M, Argmann C, Gerhart-Hines Z, et al. Resveratrol improves mitochondrial function and protects against metabolic disease by activating SIRT1 and PGC-1alpha. Cell . 2006; 127:1109-1122.
    68. Jones JE, Mendes L, Rudd MA,et al. Serial noninvasive assessment of progressive pulmonary hypertension in a rat model. Am. J. Physiol. Heart Circ. Physiol. 2002; 283: H364-371.
    69.孙波,刘文利.右心导管测定大鼠肺动脉压的实验方法.中国医学科学院学报. 1984,6(6):465-467.
    70. Jiang QS, Huang XN, Dai ZK, et al. Inhibitory effect of ginsenoside Rb1 on cardiac hypertrophy induced by monocrotaline in rat. J. Ethnopharmacol. 2007; 111: 567–572.
    71. Clozel M, Hess P, Rey M, et al. Bosentan, sildenafil, and their combination in the monocrotaline model of pulmonary hypertension in rats. Exp. Biol. Med. (Maywood). 2006; 231: 967-973.
    72. O'BLENES SB, Fischer S, Mcintyre B, et al. Hemodynamic unloading leads to regression of pulmonary vascular disease.in rats. J Thorac Cardiovasc Surg. 2001, 121 (2): 279-289
    73. Qin N, Gong QH, Wei LW, et al. Total ginsenosides inhibit the right ventricular hypertrophy induced by monocrotaline in rats. Biol. Pharm. Bull. 2008; 31: 1530-1535.
    74. Laudi S, Trump S, Schmitz V, et al. Serotonin transporter protein in pulmonary hypertensive rats treated with atorvastatin. Am. J. Physiol. Lung Cell Mol. Physiol. 2007; 293: L630-638.
    75. Yang DL, Zhang HG, Xu YL, et al. Galphaq-protein carboxyl terminus imitation polypeptide (GCIP)-27 inhibits right ventricular hypertrophy induced by monocrotaline in rats.Biol Pharm Bull. 2009;32(3):376-381.
    76. Nahrendorf M, Hu K, Fraccarollo D, et al. Time course of right ventricular remodeling in rats with experimental myocardial infarction. Am J Physiol Heart Circ Physiol. 2002;284:241-248.
    77. Schussheim A, Kushwaha S, Chesebro J, et al Right ventricular volume to mass ratio: a
    3D echocardiographic measure of right ventricular remodeling. J Am Coll Cardiol. 1998;31:322A.
    78. Canniere DD,Stefanidis C,Brimioulle S, et al.Effects of a chronic aortopulmonary shunt on pulmonary hemodynamics in piglets. J Appl Physiol.1994;77(4) :1591-1596.
    79.齐建光,杜军保,李简,等.高肺血流对大鼠肺血管结构及尾加压素Ⅱ表达的影响.中国应用生理学杂志. 2003;19(3):274-277.
    80.汪浩文,何志旭,王志华,等.野百合碱诱导实验性肺动脉高压的研究. 2007; 32(1):1-4.
    81.王伟,张宜乾,吴树明.兔高动力性肺动脉高压模型的建立.中国病理生理杂志. 2006; 22(3):612-617.
    82. Li Z, Huang W, Jiang Z L,et al.Tissue remodeling of rat pulmonary arteries in recovery from hypoxic hypertension Proc Natl Acad Sci USA.2004;101 31 :11488-11493.
    83. Glenn R. Marsboom, Stefan P. Janssens et al., Models for pulmonary hypertension Drug Discovery Today: Disease Models. 2004; 1(3) 289-296.
    84. Frey N and Olson EN. Cardiac hypertrophy: the good, the bad, and the ugly. Annu Rev Physio. 2003; l65: 45-79.
    85. Berenji K, Drazner MH, Rothermel BA, et al. Does load-induced ventricular hypertrophy progress to systolic heart failure? Am. J Physiol. Heart Circ. Physiol. 2005; 289: H8-16.
    86. Hayakawa Y, Chandra M, Miao W, et al.. Inhibition of cardiac myocyte apoptosis improves cardiac function and abolishes mortality in the peripartum cardiomyopathy of Galpha(q) transgenic mice. Circulation. 2003;108(24):3036-3041.
    87.蔡文琴.主编.现代实用细胞与分子生物学实验技术.北京:人民军医出版社.2003.
    88. Molteni A, Ward WF, Ts'ao CH, et al. Cytostatic properties of some angiotensin I converting enzyme inhibitors and of angiotensin II type I receptor antagonists. Curr Pharm Des. 2003; 9(9):751-761.
    89. Farleyj, Ozbun L, Samimi G, et al. Cell cycle and reated protein. Dis Markers , 2007; 23: 433-443
    90. Shivji KK, Kenny MK, Wood RD. Proliferating cell nuclear antigen is required for DNA excision repair. Cell. 1992;69: 367-374
    91. Cohen GM, Sun XM, Snowden RT, et al. Key morphotogical features of apoptosis may occur in the absence of internucleosomal DNA fragmentation. Biol, 1992; 286: 331-334.
    92.王嘉宁,郭宁.细胞凋亡的检测技术与方法.中国药理学与毒理学杂志. 2005; 19(6): 466-470
    93. Li D, Tomson K, Yang B, et al. Modulation of constitutive nitric oxide synthase, bcl-2 and Fas expression in cultured human coronary endothelial cell exposed to anoxia reoxygenation and angiotensin: role of AT1 receptor activation. Cardiovasc Res, 1999; 41 (1): 109-115.
    94.李醒三,文宏.缬沙坦对野百合碱所致肺动脉高压大鼠心肌细胞凋亡的影响.广西医科大学学报2004;21(6):816-819
    95. Ren A, Yan X, Lu H, et al..Antagonism of endothelin-1 inhibits hypoxia-induced apoptosis in cardiomyocytes.Can J Physiol Pharmacol. 2008; 86(8):536-540.
    96. Xu J, Lu XW, Huang Y, et al. Synergism of simvastatin with losartan prevents angiotensin II-induced cardiomyocyte apoptosis in vitro. Pharm Pharmacol. 2009; 61(4):503-510.
    97. Sun CK, Chang LT, Sheu JJ, et al. Losartan preserves integrity of cardiac gap junctions and PGC-1 alpha gene expression and prevents cellular apoptosis in remote area of left ventricular myocardium following acute myocardial infarction. Int Heart J. 2007; 48(4):533-546.
    98. Iwai-Kanai E, Hasegawa K, Araki M, et al. alpha- and beta-adrenergic pathways differentially regulate cell type-specific apoptosis in rat cardiac myocytes.Circulation.1999; 100(3):305-311.
    99. Paolo P,Davide F,Elena R,et al. A role for calcium in Bcl-2 action Biochimie,2002;84: 195-201.
    100.季红斌,翟琦巍,刘新垣,等. Bcl-2基因的转录调控.生物化学与生物物理学报, 2000,32: 95-99.
    101. Admas JM , Cory S. The bcl-2 protein family:arbiters of cell survival. Science, 1998, 281 (5381):1322-1326.
    102. Mazel S,Burtrum D, Petrie HT. Regulation of cell devision cycle progression by bcl-2 expression: a potential mechanism for inhibition of programmed cell death. J Exp Med, 1996, 183 (5): 2219-2226.
    103. Brady HJ , Gil2Gomez G, Kirberg J , et al. Bax perturbs T cell development and affects cell cycle entry of T cells. EMBO J, 1996, 15 (24): 6991-7001.
    104. Reed JC. Bcl-2 family proteins and mitochondria. Biochim Biophys Acta,1998,1366: 127-137.
    105. Ott M, Robert JD, Gogvadze V, et al. Cytochrome C release from mitochondria proceeds by a two step process. Proc Natl Acad Sci USA. 2002, 99(3): 1259-1263.
    106. Sener G, Topaloglu N, Sehirli AO, Ercan F, Gedik N. Resveratrol alleviates bleomycin-induced lung injury in rats. Pulm. Pharmacol. Ther. 2007; 20: 642-649.
    107. Itoh T, Nagaya N, Murakami S, et al. C-type natriuretic peptide ameliorates monocrotaline-induced pulmonary hypertension in rats. Am J Respir Crit Care Med. 2004 ; 170(11): 1204-11
    108. Yang LC, Wang F, Liu M. A study of an endothelin antagonist from a Chinese anti-snake venom medicinal herb. J Cardiovasc Pharmacol .1998; 31: S249-250.
    109.陆景坤,王丽伟,刘凤芝,不同类型黄酮对过氧化氢诱导的心肌细胞凋亡的影响,中国临床药理学与治疗学.2007; 12(6): 620-625.
    1. Kret M, Arora R. Pathophysiological basis of right ventricular remodeling. J. Cardiovasc. Pharmacol. Ther. 2007; 12:5-14.
    2. Voelkel NF, Quaife RA, Leinwand LA, et al. National Heart, Lung, and Blood Institute Working Group on Cellular and Molecular Mechanisms of Right Heart Failure. Right ventricular function and failure: report of a National Heart, Lung, and Blood Institute working group on cellular and molecular mechanisms of right heart failure. Circulation. 2006;114(17):1883-1891.
    3. Wiesmann F, Frydrychowicz A, Rautenberg J, et al. Analysis of right ventricular function in healthy mice and a murine model of heart failure by in vivo MRI. Am J Physiol Heart Circ Physiol. 2002; 283: 1065-1071.
    4. Rozenberg VD, Nepomnyashchikh LM. Postinfarction remodeling of the heart: types of pathomorphological changes in the right ventricle. Bull Exp Biol Med. 2003;136:291-295.
    5. Rensing BJ, McDougall, JC, Breen JF, et al. Right and left ventricular remodeling after orthotopic single lung transplantation for end-stage emphysema. J Heart Lung Transplant.1997;16:926-933.
    6. Beygui F, Furber A, Delepine S, et al. Assessment of biventricular remodeling by magnetic resonance imaging after successful primary stenting for acute myocardial infarction. Am J Cardiol. 2004;94:354-357.
    7. Kowalewski J, Brocki M, Dryjanski T, et al. Right ventricular morphology and function after pulmonary resection. Eur J Cardiothorac Surg.1999;15: 444-448.
    8. Spinale FG, Crawford FA, Hewett KW, et al. Ventricular failure and cellular remodeling with chronic supraventricular tachycardia. J Thorac Cardiovasc Surg.1991;102:874-882.
    9. Casset-Senon D, Philippe L, Babuty D, et al. Diagnosis of arrhythmogenic right ventricular cardiomyopathy by Fourier analysis of gated blood pool single-photon emission tomography. Am J Cardiol.1998;82: 1399-1404.
    10. Peters S. Age related dilation of the right ventricle in arrhythmogenic right ventricular dysplasia-cardiomyopathy. Int J Cardiol. 1996; 56:163-167.
    11. Carrasco HA, Medina M, Inglessis G, et al. Right ventricular function in Chagas disease.Int J Cardiol. 1983; 2:325-335.
    12. Sukmawan R, Akasaka T, Watanabe N, et al. Quantitative assessment of right ventricular geometric remodeling in pulmonary hypertension secondary to leftsided heart disease using real-time three-dimensional echocardiography. Am J Cardio. 2004;94:1096-1099.
    13. Hirose K, Shu NH, Reed JE, et al. Right ventricular dilatation and remodeling the first year after an initial transmural wall left ventricular myocardial infarction. Am J Cardiol. 1993;72:1126-1130.
    14. Nahrendorf M, Hu K, Fraccarollo D, et al. Time course of right ventricular remodeling in rats with experimental myocardial infarction. Am J Physiol Heart Circ Physiol. 2002;284:241-248.
    15. Olivetti G, Ricci R, Lagrasta C, et al. Cellular basis of wall remodeling in longterm pressure overload-induced right ventricular hypertrophy in rats. Circ Res. 1998; 63: 648-657.
    16. Wang X, Li F, Gerdes AM. Chronic pressure overload cardiac hypertrophy and failure in guinea pigs: I.Regional hemodynamics and myocyte remodeling. J Mol Cell Cardiol. 1999;31:307-317.
    17. Bussani R, Abbate A, Biondi-Zoccai GGL, et al. Right ventricular dilatation after left ventricular acute myocardial infarction is predictive of extremely high peri-infarctual apoptosis at postmortem examination in humans. J Clin Pathol. 2003;56:672-676.
    18. Newman JH. Pulmonary hypertension. Am J Respir Crit Care Med,2005,172(9):1072–1077.
    19.罗慰慈.临床医师应提高对肺动脉高压的认识,临床肺科杂志2008,13(5),535-536.
    20. Archer S, Rich S. Primary Pulmonary Hypertension: A Vascular Biology and Translational Research "Work in Progress" circulation,2000;102;2781-2791.
    21. Simonneau G, Galie N, Rubin LJ, et al. Clinical classification of pulmonary hypertension. J Am Coll Cardiol. 2004;43:5S–12S.
    22. Chen EP, Akhter SA, Bittner HB, et al. Molecular and functional mechanisms of right ventricular adaptation in chronic pulmonary hypertension. Ann Thorac Surg. 1999;67:1053-1058.
    23. Tritthart H, Luedcke H, Bayer R, et al. Right ventricular hypertrophy in the cat–An electrophysiological and anatomical study. J Mol Cell Cardiol. 1975; 7:163-175.
    24. Yoshiyama M, Takeuchi K, Hanatani A, et al. Effect of cilazapril on ventricular remodeling assessed by Doppler-echocardiographic assessment and cardiac gene expression. Cardiovasc Drugs Ther. 1998; 12: 57-70.
    25. Wei S, Chow LTC, Shum IOL, et al. Left and right ventricular collagen type I/III ratios and remodeling post-myocardial infarction. J Card Fail. 1999;5:117-126.
    26. Gardner JD, Brower GL, Janicki JS. Gender differences in cardiac remodeling secondary to chronic volume overload. J Card Fail. 2002; 8: 101-107.
    27. Brower GL, Janicki JS. Contribution of ventricular remodeling to pathogenesis of heart failure in rats. Am J Physiol Heart Circ Physiol. 2001; 280: H674-683.
    28. Eltzschig HK, Mihaljevic T, Byrne JG, et al. Echocardiographic evidence of right ventricular remodeling after transplantation. Ann Thorac Surg. 2002;74:584-586.
    29. Beltrami CA, Finato N, Della Mea V, et al. Right ventricular dysplasia: right and left ventricular involvement morphometrically evaluated. Cardiovasc Pathol. 1995;4:47-55.
    30. Verduyn SC, Ramakers C, Snoep G, et al. Time course of structural adaptations in chronic AV block dogs: evidence for ventricular remodeling. Am J Physiol Heart Circ Physiol. 2001;280: H2882-2890.
    31. Ahn BH, Park HK, Cho HG, et al. Estrogen and enalapril attenuate the development of right ventricular hypertrophy induced by monocrotaline in ovariectomized rats. J Korean Med Sci. 2003;18: 641-648.
    32. Louren?o AP, Roncon-Albuquerque R Jr, Brás-Silva C, et al. Myocardial dysfunction and neurohumoral activation without remodeling in left ventricle of monocrotaline-induced pulmonary hypertensive rats.Am J Physiol Heart Circ Physiol. 2006 ;291(4):H1587-94.
    33. McMahon WS; Mukherjee R; Gillette PC. Right and left ventricular geometry and myocyte contractile processes with dilated cardiomyopathy: myocyte growth and beta-adrenergic responsiveness. Cardiovasc Res. 1996; 31(2): 314-323.
    34. Hirose K, Reed JE, Rumberger JA. Serial changes in regional right ventricular free-wall and left ventricular septal wall lengths during the first 4-5 years after index anterior wall myocardial infarction. J Am Coll Cardiol. 1995; 26:394-400.
    35. Strniskova M, Ravingerova T, Neckar J et al. Changes in the expression and/or activation of regulatory proteins in rat hearts adapted to chronic hypoxia. Gen Physiol Biophys. 2006; 25:25-41.
    36. Wang GY, McCloskey DT, Turcato S, et al. Contrasting inotropic responses to {alpha}1-adrenergic receptor stimulation in left versus right ventricular myocardium. Am J Physiol. 2006; 291:H2013–2017.
    37. Yang DL, Zhang HG, Xu YL, et al. Galphaq-protein carboxyl terminus imitation polypeptide (GCIP)-27 inhibits right ventricular hypertrophy induced by monocrotaline in rats.Biol Pharm Bull. 2009 ;32(3):376-381.
    38. Qin N, Gong QH, Wei LW, et al. Total ginsenosides inhibit the right ventricular hypertrophy induced by monocrotaline in rats. Biol Pharm Bull. 2008 ;31(8):1530-1535.
    39. Kucuker SA, Stetson SJ, Becker KA, et al. Evidence of improved right ventricular structure after LVAD support in patients with end-stage cardiomyopathy. J Heart Lung Transplant. 2004; 23: 28-35.
    40. Barbone A, Holmes JW, Heerdt PM, et al. Comparison of right and left ventricular responses to left ventricular assist device support in patients with severe heart failure: a primary role of mechanical unloading underlying reverse remodeling. Circulation. 2000;104: 670-675.
    41. Wang Y, Huang S, Sah VP, et al. Cardiac muscle cell hypertrophy and apoptosis induced by distinct members of the p38 mitogen-activated protein kinase family. J Biol Chem 1998; 273: 2161–2168.
    42. Olivetti G, Cigola E, Maestri R, et al. Recent advances in cardiac hypertrophy. Cardiovasc Res. 2000; 45: 68-75.
    43. James TN. Normal and abnormal consequences of apoptosis in the human heart. From postnatalmo rphogenesisto paroxysmal arrhythmias. Circulation, 1994, 90 (1): 556-573.
    44. Gupta S, Das B, Sen S. Cardiac hypertrophy: mechanisms and therapeutic opportunities..Antioxid Redox Signal. 2007; 9(6):623-652.
    45. Bussani R, Abbate A, Biondi-Zoccai GGL, et al. Right ventricular dilatation after left ventricular acute myocardial infarction is predictive of extremely high peri-infarctual apoptosis at postmortem examination in humans. J Clin Pathol. 2003; 56: 672-676.
    46. Shimojo N, Jesmin S, Zaedi S, et al. Exp Biol Med (Maywood). 2006;231 (6):932-936.
    47. wai-Kanai E, Hasegawa K, Araki M et al. alpha- and beta-adrenergic pathways differentially regulate cell type-specific apoptosis in rat cardiac myocytes. Circulation.1999; 100(3):305-311.
    48. Anselmi A, Gaudino M, Baldi A, et al. Role of apoptosis in pressure-overload cardiomyopathy. J. Cardiovasc. Med. (Hagerstown). 2008; 9:227-232.
    49.李醒三,文宏.缬沙坦对野百合碱所致肺动脉高压大鼠心肌细胞凋亡的影响.广西医科大学学报2004, 21(6):816-819.
    50. Sadoshima J, Izumo S. Molecular characterization of angiotensin II-induced hypertrophy of cardiac myocytes and hyperplasia of cardiac fibroblasts. Critical role of the AT1 receptor subtype. Circ Res 1993;73:413–423.
    51. Kajstura J, Cigola E, Malhotra A et al. Angiotensin II induces apoptosis in adult ventricular myocytes in vitro. J Mol Cell Cardiol 1997; 29: 859–870.
    52. Shimojo N, Jesmin S, Zaedi S, et al. Changes in important apoptosis-related molecules in the endothelin-1-induced hypertrophied cardiomyocytes: effect of the pretreatment with eicosapentaenoic Acid.Exp Biol Med (Maywood). 2006; 231(6):932-936.
    53. Lu YM, Han F, Shioda N, et al. Phenylephrine-induced cardiomyocyte injury is triggered by superoxide generation through uncoupled endothelial nitric-oxide synthase and ameliorated by 3-[2-[4-(3-chloro-2-methylphenyl)-1-piperazinyl]ethyl]-5, 6-dimethoxyindazole (DY-9836), a novel calmodulin antagonist.Mol Pharmacol. 2009; 75(1):101-112.
    54. Ren A, Yan X, Lu H et al. Antagonism of endothelin-1 inhibits hypoxia-induced apoptosis in cardiomyocytes. Can J Physiol Pharmacol. 2008; 86(8):536-540.
    55. Xu J, Lu XW, Huang Y, et al. Synergism of simvastatin with losartan prevents angiotensin II-induced cardiomyocyte apoptosis in vitro. J Pharm Pharmacol 2009; 61(4):503-510.
    56. Li D, Tomson K, Yang B, et al. Modulation of constitutive nitric oxide synthase, bcl-2 and Fas expression in cultured human coronary endothelial cell exposed to anoxia reoxygenation and angiotensin II: role of AT1 receptor activation. Cardiovasc Res. 1999; 41 (1):109-115.
    57. Farahmand F, Hill MF, Singal PK. Antioxidant and oxidative stress changes in experimental cor pulmonale. Mol Cell Biochem. 2004; 260: 21-29.
    58. Campian ME, Hardziyenka M, Michel MC, et al. How valid are animal models to evaluate treatments for pulmonary hypertension? Naunyn Schmiedebergs Arch. Pharmacol. 2006; 373:391-400.
    59. Kasahara Y, Kiyatake K, Tatsumi K, et al. Bioactivation of monocrotaline by P-450 3A in rat liver. J. Cardiovasc. Pharmacol. 1997; 30:124-129.
    60. Loscalzo J Endothelial dysfunction in pulmonary hypertension. N Engl J Med.1992; 27(2):117–119.
    61. Tuder RM, Groves B, Badesch DB, et al. Exuberant endothelial cell growth and elements of inflammation are present in plexiform lesion of pulmonary hypertension. Am J Pathol. 1994;144 (2):275–285.
    62. Glenn R. Marsboom, Stefan P. Janssens, Models for pulmonary hypertension. Drug Discovery Today: Disease Models 2004; 1(3):289-296.
    63. Millatt L J, Whitley G S, Li D et al. Evidence for dysregulation of dimethylarginine dimethylaminohydrolase I in chronic hypoxia-induced pulmonary hypertension. Circulation. 2003;108: 1493–1498.
    64. Nong Z, Stassen J M, Moons L, et al. Inhibition of tissue angiotensin-converting enzyme with quinapril reduces hypoxic pulmonary hypertension and pulmonary vascular remodeling. Circulation .1996; 94:1941–1947.
    65. Steudel W, Scherrer-Crosbie M, Bloch KD, et al. Sustained pulmonary hypertension and right ventricular hypertrophy after chronic hypoxia in mice with congenital deficiency of nitric oxide synthase 3. J. Clin. Invest. 1998; 101: 2468–2477.
    66. Rondelet B, Kerbaul F, Motte S, et al. Bosentan for the prevention of overcirculation-induced experimental pulmonary arterial hypertension. Circulation. 2003; 107(9):1329-1335.
    67. Hill NS, O'Brien RF, Rounds S, et al. Repeated lung injury due to alpha-aphthylthiourea causes right ventricular hypertrophy in rats. J. Appl. Physiol. 1984; 56: 388–396.
    68. Azoulay E,Eddahibi S, Marcos E, et al. Granulocyte colony-stimulating factor enhances alpha-naphthylthiourea-induced pulmonary hypertension. J. Appl. Physiol. 2003; 94: 2027–2033.
    69. Ortiz LA; Champion HC; Lasky JA, et al.;. Enalapril protects mice from pulmonary hypertension by inhibiting TNF-mediated activation of NF-kappaB and AP-1. Am. J. Physiol. Lung Cell Mol. Physiol. 2002; 282:L1209–1221.
    70.贾志梅,贾志军,贺王伟,等.心肌梗死大鼠非梗死区心肌细胞的凋亡及机制探讨.天津医药.2008; 36(5): 363-364.
    71.郑兴.心肌胶原重塑及其与心功能关系解放军医学杂志.2002; 27 (9):802-804.
    72. Schussheim A, Kushwaha S, Chesebro J, et al. Right ventricular volume to mass ratio: a3D echocardiographic measure of right ventricular remodeling. J Am Coll Cardiol. 1998; 31:322A.
    73. Sheehan FH, Bolson EL, McDonald JA. Applications of three dimensional echocardiography beyond the left ventricle: other chambers and structural detail. Comput Cardiol. 2000; 27:119-122.
    74. Nava A, Canciani B, Buja G, et al. Electrovectorcardiographic study of negative T waves on precordial leads in arrhythmogenic right ventricular dysplasia: Relationship with right ventricular volumes. J Electrocardiol. 1988; 21:239-245.
    75. Roeleveld RJ, Vonk-Noordegraaf A, Marcus JT, et al. Effects of epoprostenol on right ventricular hypertrophy and dilatation in pulmonary hypertension. Chest. 2004; 125:572-579.
    76. Kjekshus JK, Gurantz D, Yndestad A, et al. Etanercept or intravenous immunoglobulin attenuates right and left ventricular post-myocardial infarction remodeling in rats Eur J Heart Fail Suppl. 2005; 4:130.
    77.杨丹莉,李晓辉,张海港等.环孢素A逆转野百合碱诱导的肺动脉高压.中国新药杂志.2008; 17(20):1557-1559.
    78.谭玉萍,肺动脉高压的药物治疗概述.广西中医学院学报. 2008; 11(3): 99-101.
    79.王毅,方唯一.特发性肺动脉高压的药物治疗进展.心肺血管病杂志. 2008; 27(6): 375-378.
    80. Klotz S, Naka Y, Oz MC, et al. Biventricular assist device-induced right ventricular reverse structural and functional remodeling. J Heart Lung Transplant. 2005; 24: 1195-1201.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700