羟乙基淀粉130/0.4对脓毒血症大鼠全身抗炎作用及相关机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
早期液体复苏是脓毒血症综合治疗手段中必不可少的一项治疗措施,但是关于脓毒血症的液体治疗一直存有争议,其中包括晶体与胶体之争、白蛋白与人工胶体之争,除此外,甚至面对市场上众多的晶体、胶体制剂,究竟选择何种具体制剂亦是临床医生感到困惑的问题。
     羟乙基淀粉(hydroxyethyl starch, HES)是目前临床上经常被使用的一种胶体,从玉米、高梁或者土豆中提炼制备而成,根据不同的分子量、摩尔取代度,HES分为多种剂型,其中HES 130/0.4属于新的第三代HES制剂,不仅过敏发生率低,对肾功能以及凝血功能的影响亦很小。前人有研究报道HES不仅有稳定血流动力学扩容作用,而且可能还有全身抗炎作用,例如可以下调全身的炎症介质,包括细胞因子、粘附分子、趋化因子等,同时又可以抑制白细胞粘附浸润减少毛细血管渗漏,但是关于HES抗炎以及堵漏的确切机制并不清楚。
     Toll样受体(Toll-like receptors, TLRs)/核因子(nuclear factor, NF)-kB信号转导通路在脓毒血症发生发展中占重要地位。TLRs是一类具有信号转导功能的跨膜蛋白,脓毒血症中,TLRs与相应配体,例如内毒素(lipopolysaccharide, LPS)、肽聚糖等结合后通过一系列跨膜信号转导激活细胞内的转录因子NF-kB,活化的NF-kB获自由从胞质移入胞核内从而促进一系列炎症介质的表达,包括多种细胞因子、粘附分子等,最终促进脓毒血症的发生。本实验欲应用大鼠盲肠结扎穿孔模型(cecal ligation and puncture, CLP)模拟脓毒血症观察第三代羟乙基淀粉制剂HES130/0.4的全身抗炎作用,并且试图从是否影响TLRs/NF-kB信号转导通路方面解释HES 130/0.4的可能抗炎机制。
     第一部分羟乙基淀粉(HES130/0.4)对脓毒血症大鼠血浆细胞因子的影响以及Toll样受体4/核因子-κB信号转导通路在其中的作用研究
     胶体HES 130/0.4是羟乙基淀粉的第三代制剂,目前在临床广为使用,除了扩容作用,前人研究提示HES可能还具备全身抗炎作用,但具体机制不清。本部分实验目的是观察HES 130/0.4对脓毒血症大鼠血浆细胞因子的影响以及探讨LPS-TLR4-NF-KB信号转导通路在其中所起的作用。方法是应用大鼠CLP模型模拟脓毒血症,CLP 3h后输注不同剂量的HES130/0.4(7.5ml/kg,15ml/kg及30ml/kg), CLP 5h后收集大鼠血浆、外周血单核细胞标本,采用鲎三肽偶氮显色法测定血浆LPS浓度;采用酶联免疫吸附方法检测大鼠血浆肿瘤坏死因子(tumor necrosis factor, TNF)-a,白介素(interleukin, IL)-6浓度;采用逆转录-聚合酶链方法检测外周血单核细胞TLR4 mRNA表达;采用免疫蛋白印迹方法检测外周血单核细胞TLR4蛋白相对浓度;采用凝胶电迁移方法检测外周血单核细胞转录因子NF-kB活化。实验结果表明CLP大鼠输注HES130/0.4后可以明显降低血浆TNF-αIL-6水平,15ml/kg剂量组降低细胞因子水平最明显;同时,HES 130/0.4可以显著抑制CLP大鼠外周血单核细胞TLR4的生成以及转录因子NF-kB的活化,与影响细胞因子一样,15ml/kg剂量表现最大抑制作用。上述实验结果表明HES 130/0.4在脓毒血症大鼠中具有下调全身炎症介质的作用,该作用可能与抑制TLR4/NF-KB信号转导通路有关。
     第二部分羟乙基淀粉(HES130/0.4)对脓毒血症大鼠肺毛细血管渗漏的影响以及Toll样受体/核因子-KB信号转导在其中的作用研究
     肺是脓毒血症发生时最易受累的脏器组织,根据严重程度可发展为急性肺损伤(acute lung injury, ALI)/急性呼吸窘迫综合征(acute respiratory distress syndrome, ARDS)。前人研究报道HES可能通过抗炎作用降低白细胞浸润粘附从而减轻毛细血管渗漏,但确切作用机制不清楚。本部分实验目的是观察HES130/0.4是否能够下调肺部炎症介质减少中性粒细胞浸润;是否能够减轻脓毒血症大鼠肺部毛细血管渗漏,并初步探讨TLRs (TLR2, TLR4)/NF-kB信号转导在其中可能所起的作用。方法是应用大鼠CLP模型模拟脓毒血症所致ALI, CLP 3h后输注15ml/kgHES130/0.4或者同剂量的琥珀酰明胶,CLP 5h后收集大鼠肺脏标本,采用酶联免疫吸附方法测定大鼠肺组织中的细胞因子TNF-α、IL-1β与粘附分子intercellular adhesion molecule(ICAM-1)-1浓度;采用逆转录-聚合酶链方法检测肺组织TLR2、TLR4 mRNA表达;采用免疫蛋白印迹方法检测肺组织TLR2、TLR4蛋白相对浓度;采用凝胶电迁移方法检测肺组织转录因子NF-kB活化。CLP 12h后测定大鼠肺脏湿干重比、毛细血管渗漏以及髓过氧化酶(myeloperoxidase, MPO)活性。实验结果表明15ml/kg HES 130/0.4可以明显减轻脓毒症大鼠的肺水肿以及肺毛细血管渗漏,同时HES130/0.4可以显著下调CLP大鼠肺部的炎症介质,包括细胞因子TNF-α、IL-1β与粘附分子ICAM-1;还可抑制CLP大鼠肺部的TLR2、TLR4生成以及转录因子NF-kB的活化。同剂量的琥珀酰明胶与HES130/0.4相比虽然也可减轻CLP大鼠肺毛细血管渗漏、降低炎症介质浓度,但作用没有HES130/0.4明显,且琥珀酰明胶对TLR2.TLR4以及NF-kB没有影响。上述实验结果表明HES130/0.4确实可以减轻脓毒血症大鼠的肺毛细血管渗漏,这可能与其下调肺部炎症介质、减少中性粒细胞浸润有关,另外实验结果提示HES130/0.4下调炎症介质发挥堵漏作用可能与抑制TLRs (TLR2, TLR4)/NF-kB信号转导有关。
     本实验主要欲观察第三代羟乙基淀粉制剂HES130/0.4在脓毒血症大鼠中的全身抗炎作用以及减轻毛细血管渗漏作用,并探讨与TLRs/NF-kB信号转导通路可能相关的分子机制。实验结果确实表明HES130/0.4可以下调脓毒血症大鼠全身的炎症介质,也可以减轻肺毛细血管渗漏,同时可以抑制外周血单核细胞与肺组织中的TLRs受体生成与转录因子NF-kB活化,提示HES130/0.4可能通过抑制TLRs/NF-kB信号转导下调全身炎症介质、减少中性粒细胞浸润以及减轻毛细血管渗漏。
     作为胶体制剂,HES130/0.4的主要作用仍然为扩容改善血流动力学作用,但是面对市场上众多的液体制剂,如果相比较,HES130/0.4还具有全身抗炎、减轻毛细血管渗漏作用,那么势必会增加其应用优势。正如实验第二部分结果显示HES130/0.4相比同剂量的胶体琥珀酰明胶能够更加明显的减轻脓毒症大鼠肺毛细血管渗漏,如果该实验成果能够得到临床进一步验证,那么临床医生对脓毒症患者进行液体治疗时便会考虑HES130/0.4的这一治疗优势,这便是该实验的最大临床意义。
In the treatment of sepsis, early fluid therapy appears to be essential to optimize hemodynamics and obtain suitable tissue perfusion. However, much controversy still exists about the role of crystalloids and colloids in fluid therapy. Clinicians are often confused about which fluid fraction is most appropriate for septic patients.
     Hydroxyethyl starch (HES) is one of the most frequently used plasma substitutes and derived from maize, sorghum or potato. According to its in vitro molecular weight (MW) and molar substitution (MS), HES is classified into different starch preparations. HES130/0.4, the third generation of HES, was developed with lower MW (130) and MS (0.4) to enhance degradation and to minimize side effects.In addition to maintaining the stability of hemodynamics, previous studies have shown that HES may have anti-inflammatory effects, such as down-regulating systemic inflammatory mediators and reducing capillary permeability through inhibiting leukocyte adhesion and infiltration. However, the accurate mechanism of the anti-inflammatory effect of HES is still unclear.
     The Toll-like receptors (TLRs)/nuclear factor-kappa B (NF-кB) signaling pathway plays an important role in initiating the inflammatory response in sepsis. TLR family members are transmembrane proteins, which can specifically recognize pathogen-associated molecular patterns. Among 10 mammalian TRLs, TLR4 functions as a receptor for lipopolysaccharide (LPS) from Gram-negative bacteria, and TLR2 is involved in the recognition of multiple products of Gram-positive bacteria. TLR signals finally activate the transcription factor NF-kB and permit the transactivation of proinflammatory cytokine genes. Our experiments were designed to investigate the anti-inflammatory effect of HES 130/0.4 in septic rats induced by cecal ligation and puncture (CLP) and the possible mechanism related with TLRs/NF-kB signaling pathway.
     Section one:Effect of HES130/0.4 on plasma cytokines in septic rats and possible mechanism related with TLR4/NF-kB signaling pathway
     In addition to expanding blood volume, HES130/0.4, the third generation of HES colloidal solutions, has been reported to exert an anti-inflammatory effect. However, the accurate mechanism is still obscure. The aim of the experiment was to observe the effect of HES130/0.4 on plasma cytokines in septic rats and investigate the possible mechanism related with LPS-TLR4-NF-kB signaling pathway. Rats with sepsis induced by CLP were treated with HES 130/0.4 (7.5,15, or 30 ml/kg) intravenously, then, rat plasma and peripheral blood monocytes were isolated from blood at 5h after CLP. The plasma levels of LPS and cytokines (tumor necrosis factor [TNF]-a and interleukin [IL]-6), NF-kB activities and mRNA and protein levels of TLR4 in peripheral blood monocytes were determined by limulus amebocyte lysate test, enzyme-linked immunosorbent assay, electrophoretic mobility shift assay, reverse transcription-polymerase chain reaction and western blotting test, respectively. The results showed that HES 130/0.4 dose-dependently reduced the plasma levels of TNF-a and IL-6 in rats with sepsis. As compared with 7.5 and 30 ml/kg HES130/0.4,15 ml/kg caused greater reduction of plasma TNF-a and IL-6 concentrations. HES 130/0.4 also significantly inhibited NF-kB activation and TLR4 expression in monocytes. The results suggest that during sepsis HES 130/0.4 could down-regulate the inflammatory response, possibly through inhibiting the TLR4/NF-kB signaling pathway, and could be one more appropriate plasma substitute in sepsis.
     Section two:Effect of HES130/0.4 on pulmonary capillary permeability in septic rats and possible mechanism related with TLRs/NF-kB signaling pathway
     Sepsis frequently causes multiorgan dysfunction and the lung is the most vulnerable organ that is often affected. According to different severities, lung injury is classed into acute lung injury (ALI) and acute respiratory distress syndrome (ARDS). Previous studies indicated that HES could inhibit leukocyte adhesion and infiltration due to its anti-inflammatory effect, and then reduce capillary permeability. However, the accurate mechanism is obscure. The aim of the experiment was to observe the effect of HES 130/0.4 on pulmonary inflammatory mediators, leukocyte infiltration and pulmonary capillary permeability and further investigate the mechanism related with TLRs (TLR2, TLR4)/NF-kB signaling pathway. Rats with sepsis induced by CLP were treated with HES130/0.4 or succinylated gelatin (15 ml/kg, intravenously), then, rat lungs were isolated from blood at 5 h after later. The pulmonary levels of inflammatory mediators (TNF-α, IL-1βand intercellular adhesion molecule [ICAM]-1), NF-kB activities and mRNA and protein levels of TLRs (TLR2 and TLR4) were determined by enzyme-linked immunosorbent assay, electrophoretic mobility shift assay, reverse transcription-polymerase chain reaction and western blotting test, respectively. At 12 h after CLP, the rat lungs were collected for determination of capillary permeability and myeloperoxidase (MPO) activities. The results showed that HES130/0.4 significantly reduced pulmonary edema and capillary permeability, down-regulated pulmonary inflammatory mediators including TNF-a, IL-1βand ICAM-1, and inhibited pulmonary NF-kB activation and TLRs (TLR2 and TLR4) expressions. Compared with HES130/0.4, gelatin could also decrease pulmonary levels of inflammatory mediators and reduce capillary permeability, but not impact NF-kB activation and TLRs expression. The results of the experiment indicated that HES 130/0.4 could reduce pulmonary capillary permeability possibly through down-regulating inflammatory mediators and inhibiting TLRs (TLR2, TLR4)/NF-kB signaling pathway in septic rats.
     Conclusion
     The aim of the experiments was to observe the effect of HES 130/0.4 on systemic inflammatory response and pulmonary capillary permeability in septic rats and further investigate the possible mechanism related with TLRs/NF-kB signaling pathway. The results definitely demonstrated that HES 130/0.4 could down-regulate the septic rat systemic inflammatory mediators, reduce pulmonary capillary permeability and inhibit TLRs expression and NF-kB activation in peripheral monocytes and lung tissue, which suggests that the mechanism on anti-inflammatory effect of HES 130/0.4 in sepsis might be related with inhibiting TLRs/NF-kB signaling pathway.
     As one colloidal solution, the main pharmaceutical effect of HES is still to expand blood volume and improve hemodynamic parameters. However, compared with other many solutions in pharmaceutical market, the effects of anti-inflammatory and reducing capillary permeability would strengthen the competitive capacity of HES. As the results of the second experiment showed, HES 130/0.4, compared with the same dose of succinylated gelatin, could more significantly reduce pulmonary capillary permeability in septic rats. If the conclusion of our animal experiments was further conformed using clinical trials, the clinicians would consider the above pharmaceutical advantages of HES 130/0.4, which is the utmost clinical significance of our experiments.
引文
[1]Dulu AO, Haupt MT. Fluid therapy continues to be validated in early sepsis: impact on myocardial depression. Crit Care Med.2007 May;35(5):1435-6.
    [2]Dellinger RP, Levy MM, Carlet JM, Bion J, Parker MM, Jaeschke R. Surviving Sepsis Campaign:international guidelines for management of severe sepsis and septic shock:2008. Intensive Care Med.2008 Jan;34(1):17-60.
    [3]Langeron O, Doelberg M, Ang ET, Bonnet F, Capdevila X, Coriat P. Voluven, a lower substituted novel hydroxyethyl starch (HES 130/0.4), causes fewer effects on coagulation in major orthopedic surgery than HES 200/0.5. Anesth Analg. 2001 Apr;92(4):855-62.
    [4]Feng X, Yan W, Liu X, Duan M, Zhang X, Xu J. Effects of hydroxyethyl starch 130/0.4 on pulmonary capillary leakage and cytokines production and NF-kappaB activation in CLP-induced sepsis in rats. J Surg Res.2006 Sep; 135(1):129-36.
    [5]Lee CC, Chang IJ, Yen ZS, Hsu CY, Chen SY, Su CP, Chiang WC, Chen SC, Chen WJ. Effect of different resuscitation fluids on cytokine response in a rat model of hemorrhagic shock. Shock.2005 Aug;24(2):177-81.
    [6]Dieterich HJ, Weissmuller T, Rosenberger P, Eltzschig HK. Effect of hydroxyethyl starch on vascular leak syndrome and neutrophil accumulation during hypoxia. Crit Care Med.2006 Jun;34(6):1775-82.
    [7]Lv R, Zhou W, Chu C, Xu J. Mechanism of the effect of hydroxyethyl starch on reducing pulmonary capillary permeability in a rat model of sepsis. Ann Clin Lab Sci.2005 Spring;35(2):174-83.
    [8]Lv R, Zhou ZQ, Wu HW, Jin Y, Zhou W, Xu JG. Hydroxyethyl starch exhibits antiinflammatory effects in the intestines of endotoxemic rats. Anesth Analg. 2006 Jul;103(1):149-55.
    [9]Dobrovolskaia MA, Vogel SN. Toll receptors, CD14, and macrophage activation and deactivation by LPS. Microbes Infect.2002 Jul;4(9):903-14.
    [10]Brown MA, Jones WK. NF-kappaB action in sepsis:the innate immune system and the heart. Front Biosci.2004;9:1201-17.
    [11]Li Q, Verma IM. NF-kappaB regulation in the immune system. Nat Rev Immunol. 2002;2:725-34.
    [12]Feng X, Yan W, Wang Z, Liu J, Yu M, Zhu S, Xu J. Hydroxyethyl starch, but not modified fluid gelatin, affects inflammatory response in a rat model of polymicrobial sepsis with capillary leakage. Anesth Analg.2007 Mar; 104(3): 624-30.
    [13]Boldt J. New light on intravascular volume replacement regimens:what did we learn from the past three years? Anesth Analg.2003;97:1595-604.
    [14]Lang K, Boldt J, Suttner S, Haisch G. Colloids versus crystalloids and tissue oxygen tension in patients undergoing major abdominal surgery. Anesth Analg 2001;93:405-9.
    [15]Lang K, Suttner S, Boldt J, Kumle B, Nagel D. Volume replacement with HES 130/0.4 may reduce the inflammatory response in patients undergoing major abdominal surgery. Can J Anaesth.2003;50:1009-16.
    [16]Hoffmann JN, Vollmar B, Laschke MW, Inthorn D, Schildberg FW, Menger MD. Hydroxyethyl starch (130 kD), but not crystalloid volume support, improves microcirculation during normotensive endotoxemia. Anesthesiology.2002 Aug;97(2):460-70.
    [17]Liu SF, Malik AB. NF-kappa B activation as a pathological mechanism of septic shock and inflammation. Am J Physiol Lung Cell Mol Physiol.2006 Apr;290(4): L622-L645.
    [18]Uwe S. Anti-inflammatory interventions of NF-kappaB signaling:potential applications and risks. Biochem Pharmacol.2008 Apr 15;75(8):1567-79.
    [19]Tsai MC, Chen WJ, Ching CH, Chuang JI. Resuscitation with hydroxyethyl starch solution prevents nuclear factor kappaB activation and oxidative stress after hemorrhagic shock and resuscitation in rats. Shock.2007 May;27(5): 527-33.
    [1]Costa EL, Schettino I A, Schettino GP. The lung in sepsis:guilty or innocent? Endocr Metab Immune Disord Drug Targets.2006 Jun;6(2):213-6.
    [2]Bhatia M, Moochhala S. Role of inflammatory mediators in the pathophysiology of acute respiratory distress syndrome.J Pathol.2004 Feb;202(2):145-56.
    [3]Ware LB. Pathophysiology of acute lung injury and the acute respiratory distress syndrome.Semin Respir Crit Care Med.2006 Aug;27(4):337-49.
    [4]Dellinger RP, Levy MM, Carlet JM, Bion J, Parker MM, Jaeschke R. Surviving Sepsis Campaign:international guidelines for management of severe sepsis and septic shock:2008. Intensive Care Med.2008 Jan;34(1):17-60.
    [5]Westphal M, James MF, Kozek-Langenecker S, Stocker R, Guidet B, Van Aken H. Hydroxyethyl starches:different products—different effects.Anesthesiology. 2009 Jul;111(1):187-202.
    [6]Jungheinrich C, Neff TA. Pharmacokinetics of hydroxyethyl starch. Clin Pharmacokinet.2005;44(7):681-99.
    [7]Tian J, Lin X, Zhou W, Xu JG. Hydroxyethyl starch inhibits NF-kappaB activation and prevents the expression of inflammatory mediators in endotoxic rats. Ann Clin Lab Sci.2003 Fall;33(4):451-8.
    [8]Tian J, Lin X, Guan R, Xu JG. The effects of hydroxyethyl starch on lung capillary permeability in endotoxic rats and possible mechanisms. Anesth Analg.2004 Mar;98(3):768-74.
    [9]Lv R, Zhou W, Chu C, Xu J. Mechanism of the effect of hydroxyethyl starch on reducing pulmonary capillary permeability in a rat model of sepsis. Ann Clin Lab Sci.2005 Spring;35(2):174-83.
    [10]Lv R, Zhou ZQ, Wu HW, Jin Y, Zhou W, Xu JG. Hydroxyethyl starch exhibits antiinflammatory effects in the intestines of endotoxemic rats. Anesth Analg. 2006 Jul;103(1):149-55.
    [11]Feng X, Yan W, Liu X, Duan M, Zhang X, Xu J. Effects of hydroxyethyl starch 130/0.4 on pulmonary capillary leakage and cytokines production and NF-kappaB activation in CLP-induced sepsis in rats. J Surg Res.2006 Sep;135(1):129-36.
    [12]Xiang M, Fan J. Pattern recognition receptor-dependent mechanisms of acute lung injury.Mol Med.2010 Jan-Feb;16(1-2):69-82.
    [13]Imai Y, Kuba K, Neely GG, Yaghubian-Malhami R, Perkmann T, van Loo G.Identification of oxidative stress and Toll-like receptor 4 signaling as a key pathway of acute lung injury. Cell.2008 Apr 18;133(2):235-49.
    [14]Fein AM, Calalang-Colucci MG. Acute lung injury and acute respiratory distress syndrome in sepsis and septic shock. Crit Care Clin.2000 Apr;16(2):289-317.
    [15]Aldridge AJ. Role of the neutrophil in septic shock and the adult respiratory distress syndrome. Eur J Surg.2002;168(4):204-14.
    [16]Balamayooran G, Batra S, Fessler MB, Happel KI, Jeyaseelan S. Mechanisms of Neutrophil Accumulation in the Lungs Against Bacteria. Am J Respir Cell Mol Biol.2009 Sep 8.
    [17]Collis RE, Collins PW, Gutteridge CN, Kaul A, Newland AC, Williams DM, Webb AR. The effect of hydroxyethyl starch and other plasma volume substitutes on endothelial cell activation; an in vitro study. Intensive Care Med. 1994;20(1):37-41.
    [18]Zikria BA, King TC, Stanford J, Freeman HP. A biophysical approach to capillary permeability. Surgery.1989 May;105(5):625-31.
    [19]Zikria BA, Subbarao C, Oz MC, Shih ST, McLeod PF, Sachdev R, Freeman HP, Hardy MA. Macromolecules reduce abnormal microvascular permeability in rat limb ischemia-reperfusion injury. Crit Care Med.1989 Dec;17(12):1306-9.
    [20]Koizumi T, Kaneki T, Yamamoto H, Ri-Li GE, Drome Y, Kubo K, Shibamoto T. Lung lymph response to overinfusion with hydroxyethyl starch in sheep. Comparative studies of high and low molecular weight compounds. Acta Anaesthesiol Scand.2000 Mar;44(3):255-60.
    [21]Kaneki T, Koizumi T, Yamamoto H, Fujimoto K, Kubo K, Shibamoto T. Effects of resuscitation with hydroxyethyl starch (HES) on pulmonary hemodynamics and lung lymph balance in hemorrhagic sheep; comparative study of low and high molecular HES. Resuscitation.2002 Jan;52(1):101-8.
    [22]Lee CC, Chang IJ, Yen ZS, Hsu CY, Chen SY, Su CP, Chiang WC, Chen SC, Chen WJ. Effect of different resuscitation fluids on cytokine response in a rat model of hemorrhagic shock. Shock.2005 Aug;24(2):177-81.
    [23]Dieterich HJ, Weissmuller T, Rosenberger P, Eltzschig HK. Effect of hydroxyethyl starch on vascular leak syndrome and neutrophil accumulation during hypoxia. Crit Care Med.2006 Jun;34(6):1775-82.
    [1]Kozek-Langenecker S. Effects of hydroxyethyl starch solutions on hemostasis. ANESTHESIOLOGY 2005; 103:654-60
    [2]Boldt J, Suttner S:Plasma substitutes. Minerva Anesthesiol 2005; 71:741-58
    [3]Lehmann G, Asskali F, Fo"rster H:Pharmacokinetics of hydroxyethyl starch (70/0.5) following repeated infusions. Transfuse Med Hemother 2003; 30:72-7
    [4]Jung F, Koscielny J, Mrowietz C, Fo'rster H, Schimetta W, Kiesewetter H, Wenzel E:The effect of molecular structure of hydroxyethyl starch on the elimination kinetics and fluidity of blood in human volunteers. Arzneimittelforschung 1993; 43:99-105
    [5]Wilkes NJ, Woolf RL, Powanda MC, Gan TJ, Machin SJ, Webb A, Mutch M, Bennett-Guerrero E, Mythen M:Hydroxyethyl starch in balanced electrolyte solution (Hextend(?))-Pharmacokinetic and pharmacodynamic profiles in healthy volunteers. Anesth Analg 2002; 94:538-44
    [6]Mishler JM, Borberg H, Emerson PM, Gross R:Hydroxyethyl starch:An agent for hypovolemic shock treatment. J Surg Res 1977; 23:239-45
    [7]Asskali F, Fo"rster HL:The accumulation of different substituted hydroxyethyl starches (HES) following repeated infusions in healthy volunteers. Anasthaesiol Intens Notfall Schmerz 1999; 34:537-41
    [8]Lehmann G, Asskali F, Fo"rster H:Pharmacokinetics of hydroxyethyl starch (70/0.5) following repeated infusions. Transfuse Med Hemother 2003; 30:72-7
    [9]Waitzinger J, Bepperling F, Pabst G, Opitz J, Mu'ller M, Baron J: Pharmacokinetics and tolerability of a new hydroxyethyl starch (HES) specification [HES(130/0.4)] after single-dose infusion of 6% or 10% solutions in healthy volunteers. Clin Drug Investig 1998; 16:151-60
    [10]Waitzinger J, Bepperling F, Pabst G, Opitz J:Hydroxyethyl starch (HES) [130/0.4], a new HES specification. Pharmacokinetics and safety after multiple infusions of 10% solution in healthy volunteers. Drugs RD 2003; 4:149-57
    [11]Jungheinrich C, Sauermann W, Bepperling F, Vogt N:Volume efficacy and reduced influence on measures of coagulation using hydroxyethyl starch 130/0.4 (6%) with an optimised in vivo molecular weight in orthopaedic surgery. Drugs RD 2004; 5:1-9
    [12]Gallandat Huet RC, Siemons AW, Baus D, van Rooyen-Butijn WT, Haagenaars JA, van Oeveren W, Bepperling F:A novel hydroxyethyl starch (Voluven(?)) for effective perioperative plasma volume substitution in cardiac surgery. Can J Anaesth 2000; 47:1207-15
    [13]Langeron O, Doelberg M, Ang E-T, Bonnet F, Capdevila X, Coriat P:Voluven(?), a lower substituted novel hydroxyethyl starch (HES 130/0.4) causes fewer effects on coagulation in major orthopaedic surgery than HES 200/0.5. Anesth Analg 2001; 92:855-62
    [14]Lehmann G, Marx G, Fo"rster H:Bioequivalence comparison between hydroxyethyl starch 130/0.42/6:1 and hydroxyethyl starch 130/0.4/9:1. Drugs RD 2007; 8:229-40
    [15]Blennow A, Bay-Smidt AM, Olsen CE, M(?)ller BL. The distribution of covalently bound phosphate in the starch granule in relation to starch crystallinity. Int J Biol Macromol 2000; 27:211-8
    [16]Sommermeyer K, Cech F, Schossow R:Differences in chemical structures between waxy maize- and potato-starch-based hydroxyethyl starch volume therapeutics. Transfus Altern Transfus Med 2007; 9:127-33
    [17]Kozek-Langenecker S. Effects of hydroxyethyl starch solutions on hemostasis. ANESTHESIOLOGY 2005; 103:654-60
    [18]Jamnicki M, Bombeli T, Seifert B, Zollinger A, Camenzind V, Pasch T, Spahn D: Low- and medium-molecular-weight hydroxyethyl starches:Comparison of their effect on blood coagulation. ANESTHESIOLOGY 2000; 92:1231-7
    [19]Treib J, Haass A, Pindur G, Seyfert U, Treib W, Grauer M, Jung F, Wenzel E, Schimrigk K:HES 200/0.5 is not HES 200/0.5. Influence of the C2/C6 hydroxy-ethylation ratio of hydroxyethyl starch (HES) on hemorheology, coagulation and elimination kinetics. Thromb Haemost 1995; 74:1452-6
    [20]Franz A, Bra'unlich P, Gamsja'ger T, Felfernig M, Gustorff B, Kozek-Langenecker SA:The effects of hydroxyethyl starches of varying molecular weights on platelet function. Anesth Analg 2001; 92:1402-7
    [21]Jamnicki M, Zollinger A, Seifert B, Popovic D, Pasch T, Spahn DR: Compromised blood coagulation:An in vitro comparison of hydroxyethyl starch 130/0.4 and hydroxyethyl starch 200/0.5 using thromboelastography. Anesth Analg 1998; 87:989-93
    [22]Deusch E, Thaler U, Kozek-Langenecker SA:The effects of high molecular weight hydroxyethyl starch solutions on platelets. Anesth Analg 2004; 99:665-8
    [23]Ellger B, Freyhoff J, Van Aken H, Booke M, Markus MA:High dose volume replacement using HES 130/0.4 during major surgery. Impact on coagulation and incidence of postoperative itching. Neth Tijdschr Anesth 2006; 19:63-8
    [24]Cheng D, Belisle S, Giffin M, Karkouti K, Martin J, James M, Laliberte P, McCluskey S, Muirhead B, Pendergrast J, Sharpe M, Waters T:Colloids for perioperative plasma volume expansion:Systematic review with meta-analysis of controlled trials (Abstract). Transfus Altern Transfus Med 2007; 9:S3
    [25]Sander O, Reinhart K, Meier-Helmann A:Equivalence of hydroxyethyl starch HES 130/0.4 and HES 200/0.5 for perioperative volume replacement in major gynaecological surgery. Acta Anaesthesiol Scand 2003; 47:1151-8
    [26]Legendre C, Thervet E, Page B, Percheron A, Noel L, Kreis H: Hydroxyethylstarch and osmotic-nephrosis-like lesions in kidney transplantation. Lancet 1993; 342:238-9
    [27]Cittanova ML, Leblanc I, Legendre C, Mouquet C, Riou B, Coriat P:Effect of hydroxyethyl starch in brain-dead kidney donors on renal function in kidneytransplant recipients. Lancet 1996; 348:1620-2
    [28]Schortgen F, Lacherade JC, Bruneel F, Cattaneo I, Hemery F, Lemaire F, Brochard L:Effects of hydroxyethyl starch and gelatine on renal function in severe sepsis:A multicentre randomised study. Lancet 2001; 357:911-6
    [29]Winkelmayer WC, Glynn RJ, Levin R, Avorn J:Hydroxyethyl starch and change in renal function in patients undergoing coronary artery bypass graft surgery. Kidney Int 2003; 64:1046-9
    [30]Brunkhorst FM, Engel C, Bloos F, Meier-Hellmann A, Ragaller M, Weiler N, Moerer O, Gruendling M, Oppert M, Grond S, Olthoff D, Jaschinksi U, John S, Rossaint R, Welte T, Schaefer M, Kern P, Kuhnt E, Kiehntopf M, Hartog C, Natanson C, Loeffler M, Reinhart K:Intensive insulin therapy and pentastarch resuscitation in severe sepsis. New Eng J Med 2008; 358:125-39
    [31]Rozich JD, Paul RV:Acute renal failure precipitated by elevated colloid osmotic pressure. Am J Med 1989; 87:359-60
    [32]Bartels C, Hadzik B, Abel M, Roth B:Renal failure associated with unrecognized hyperoncotic states after pediatric heart surgery. Intensive Care Med 1996; 22:492-4
    [33]Deman A, Peeters P, Sennesael J:Hydroxyethyl starch does not impair immediate renal function in kidney transplant recipients:A retrospective, multicentre analysis. Nephrol Dial Transplant 1999; 14:1517-20
    [34]Boldt J, Brosch C, Ro"hm K, Papsdorf M, Mengistu A:Comparison of the effects of gelatin and a modern hydroxyethyl starch solution on renal function and inflammatory response in elderly cardiac surgery patients. Br J Anaesth 2008; 100:457-64
    [35]Boldt J, Brosch C, Ro"hm K, Lehmann A, Mengistu A, Suttner S:Is albumin administration in hypoalbuminemic elderly cardiac surgery patients of benefit with regard to inflammation, endothelial activation, and long-term kidney function? Anesth Analg 2008; 107:1496-503
    [36]Sakr Y, Payen D, Reinhart K, Sipmann F, Zavala E, Bewley J, Marx G, Vincent J: Effects of hydroxyethyl starch administration on renal function in critically ill patients. Br J Anaesth 2007; 98:216-24
    [37]Fenger-Eriksen C, Hartig Rasmussen C, Kappel Jensen T, Anker-M(?)ller E, Heslop J, Fr(?)kiaer J, T(?)nnesen E:Renal effects of hypotensive anaesthesia in combination with acute normovolaemic haemodilution with hydroxyethyl starch 130/0.4 or isotonic saline. Acta Anaesthesiol Scand 2005; 49:969-74
    [38]Godet G, Lehat JJ, Janvier G, Steib A, de Castro V, Coriat P:Safety of HES 130/0.4 (Voluven(?)) in patients with preoperative renal dysfunction undergong abdominal aortic surgery:A prospective, randomized, controlled, parallel-group multicentre trial. Eur J Anaesthesiol 2008; 25:986-94
    [39]Boldt J, Brosch C, Ducke M, Papsdorf M, Lehmann A:Influence of volume therapy with a modern hydroxyethylstarch preparation on kidney function in cardiac surgery patients with compromised renal function:A comparison with human albumin. Crit Care Med 2007; 35:2740-6
    [40]Schortgen F, Girou E, Deye N, Brochard L:The risk associated with hyperoncotic colloids in patients with shock. Intensive Care Med 2008; 34:2157-68
    [41]Boldt J, Scho"lhorn T, Mayer J, Piper S, Suttner S:The value of an albumin-based intravascular volume replacement strategy in elderly patients undergoing major abdominal surgery. Anesth Analg 2006; 103:191-9
    [42]Boldt J, Brenner T, Lehmann A, Lang J, Kumle B, Werling C:Influence of two different volume replacement regimens on renal function in elderly patients undergoing cardiac surgery:Comparison of a new starch preparation with gelatin. Intensive Care Med 2003; 29:763-9
    [43]Saudan S, Pellegrini M, Ceroni D, Kaelin A, Habre W:Hydroxyethyl starch 130/0.4 versus 5% human albumin in children undergoing spinal fusion:Safety and efficiency. Eur J Anaesthesiol 2006; 23:A-662
    [44]Mahmood A, Gosling P, Vohra RK:Randomized clinical trial comparing the effects on renal function of hydroxyethyl starch or gelatine during aortic aneurysm surgery. Br J Surg 2007; 94:427-33
    [45]Standl T, Lochbuehler H, Galli C, Reich A, Dietrich G, Hagemann H:HES 130/0.4 (Voluven(?)) or human albumin in children younger than 2 yr undergoing non-cardiac surgery. A prospective, randomized, open label, multicentre trial. Eur J Anaesthesiol 2008; 25:437-45
    [46]Hanart C, Khalife M, De Ville' A, Otte F, De Hert S, Van der Linden P: Perioperative volume replacement in children undergoing cardiac surgery: Albumin versus hydroxyethyl starch 130/0.4. Crit Care Med 2009; 37:696-701
    [47]Su'mpelmann R, Kretz FJ, Ga"bler R, Luntzer R, Baroncini S, Osterkorn D, Haeger MC, Osthaus WA:Hydroxyethyl starch 130/0.42/6:1 for perioperative plasma volume replacement in children:Preliminary results of a European Prospective Multicenter Observational Postauthorization Safety Study (PASS). Paediatr Anaesth 2008; 18:929-33
    [48]Sta"nder S, Sze'pfalusi Z, Bohle B, Sta'nder H, Kraft D, Luger T, Metze D: Differential storage of hydroxyethyl starch (HES) in the skin:An immunoelectronmicroscopical long-term study. Cell Tissue Res 2001; 304:261-9
    [49]Dienes HP, Gerharz CD, Wagner R, Weber M, John HD:Accumulation of hydroxyethyl starch (HES) in the liver of patients with renal failure and portal hypertension. J Hepatol 1986; 3:223-7
    [50]Metze D, Reimann S, Sze'pfalusi Z, Bohle B, Kraft D, Luger T:Persistent pruritus after hydroxyethyl starch infusion therapy:A result of long-term storage in cutaneous nerves. Br J Dermatol 1997; 136:553-9
    [51]Heilmann L, Lorch E, Hojnacki B, Mu'nterfering H, Fo'rster H:Accumulation of two different hydroxyethyl starch preparations in the placenta after hemodilution in patients with fetal intrauterine growth retardation or pregnancy hypertension. Infusionstherapie 1991; 18:236-43
    [52]Leuschner J, Opitz J, Winkler A, Scharpf R, Bepperling F:Tissue storage of 14C-labelled hydroxyethyl starch (HES) 130/0.4 and HES 200/0.5 after repeated intravenous administration to rats. Drugs RD 2003; 4:331-8
    [53]Hulse J, Yacobi A:Hetastarch:An overview of the colloid and its metabolism. Drug Intell Clin Pharm 1983; 17:334-41
    [54]Barron ME, Wilkes MW, Navickis RJ:A systematic review of the comparative safety of colloids. Arch Surg 2004; 139:552-63
    [55]Sirtl C, Laubenthal H, Zumtobel V, Kraft D, Jurecka W:Tissue deposits of hydroxyethyl starch (HES):Dose-dependent and time-related. Br J Anaesth 1999;82:510-5
    [56]Murphy M, Carmichael AJ, Lawler PG, White M, Cox NH:The incidence of hydroxyethyl starch-associated pruritus. Br J Dermatol 2001; 144:973-6
    [57]Bork K:Pruritus precipitated by hydroxyethyl starch:A review. Br J Dermatol 2005; 152:3-12
    [58]Lang K, Boldt J, Suttner S, Haisch G:Colloids versus crystalloids and tissue oxygen tension in patients undergoing major abdominal surgery. Anesth Analg 2001; 93:405-9
    [59]Standl T, Burmeister MA, Schroeder F, Currlin E, Schulte am Esch J, Freitag M, Schulte am Esch J:Hydroxyethyl starch (HES) 130/0.4 provides larger and faster increases in tissue oxygen tension in comparison with prehemodilution values than HES 70/0.5 or HES 200/0.5 in volunteers undergoing acute normovolemic hemodilution. Anesth Analg 2003; 96:936-43
    [60]Neff TA, Fischler L, Mark M, Stocker R, Reinhart WH:The influence of two different hydroxyethyl starch solutions (6% HES 130/0.4 and 200/0.5) on blood viscosity. Anesth Analg 2005; 100:1773-80
    [61]Lang K, Suttner S, Boldt J, Kumle B, Nagel D:Volume replacement with HES 130/0.4 may reduce the inflammatory response in patients undergoing major abdominal surgery. Can J Anaesth 2003; 50:1009-16
    [62]Collis RE, Collins PW, Gutteridge CN, Kaul A, Newland AC, Williams DM, Webb AR:The effect of hydroxyethyl starch and other plasma volume substitutes on endothelial cell activation:An in vitro study. Intensive Care Med 1994;20:37-41
    [63]Volta CA, Alvis V, Campi M, Marangoni E, Alvis R, Castellazzi M, Fainardi E, Manfrinato MC, Dallocchio F, Bellini T:Influence of different strategies of volume replacement on the activity of matrix metalloproteinases:An in vitro and in vivo study. ANESTHESIOLOGY 2007; 106:85-91
    [64]Dieterich H-J, Weissmu"ller T, Rosenberger P, Eltzschig HK:Effect of hydroxyethyl starch on vascular leak syndrome and neutrophil accumulation during hypoxia. Crit Care Med 2006; 34:1775-82
    [65]Xie J, Lv R, Yu L, Huang W:Hydroxyethyl Starch 130/0.4 Inhibits Production of Plasma Proinflammatory Cytokines and Attenuates Nuclear Factor-kappaB Activation and Toll-Like Receptors Expression in Monocytes During Sepsis. J Surg Res.2009 Jun 28 [Epub ahead of print]
    [66]Wilkes NJ, Woolf R, Mutch M, Mallett SV, Peachey T, Stephens R, Mythen MG: The effects of balanced versus saline-based hetastarch and crystalloid solutions on acid-base and electrolyte status and gastric mucosal perfusion in elderly surgical patients. Anesth Analg 2001; 93:811-6
    [67]Williams EL, Hildebrand KL, McCormick SA, Bedel MJ:The effect of intravenous lactated Ringer's solution versus 0.9% sodium chloride solution on serum osmolality in human volunteers. Anesth Analg 1999; 88:999-1003
    [68]Boldt J, Wolf M, Mengistu A:A new plasma-adapted hydroxyethylstarch preparation:In vitro coagulation studies using thrombelastography and whole blood aggregometry. Anesth Analg 2007; 104:425-30
    [69]Boldt J, Scho''llhorn T, Mu'nchbach J, Pabsdorf M:A total balanced volume replacement strategy using a new balanced hydroxyethyl starch preparation (6% HES 130/0.42) in patients undergoing major abdominal surgery. Eur J Anaesthesiol 2007; 24:267-75
    [70]Base E, Standl T, Lassnigg A, Mahl C, Jungheinrich C:Comparison of 6% HES 130/0.4 in a balanced electrolyte solution versus 6% HES 130/0.4 in saline solution in cardiac surgery. Crit Care 2006; 10:P176

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700