大鼠肺缺血再灌注损伤基因表达谱的变化和骨髓间充质干细胞的干预作用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的:探讨缺血再灌注诱导大鼠肺组织损伤不同时期基因表达谱的变化,阐明肺缺血再灌注的动态损伤机制,通过筛选损伤和修复的相关基因,为肺缺血再灌注损伤的干预治疗提供新的线索和思路。
     方法:雄性SD大鼠36只,实验随机分为对照组(假手术组,6只)和缺血再灌注组(I/R 0、1、3、6、24小时组,各组6只)。通过阻断肺门建立大鼠肺缺血再灌注损伤模型,于再灌注后不同时间点取大鼠肺组织并提取标本总RNA,运用包含22 226个大鼠基因点的Illumina RatRef-12全基因组表达谱微珠芯片检测对照组和模型组肺缺血再灌处理后不同时间点的基因表达情况,并采用SOM算法将具有相似表达模式的基因进行聚类分析。
     结果:缺血后再灌0,1,3,6,24h分别有648,340,711,1279,641个基因表达发生改变。根据基因的功能不同将部分发生显著改变的基因分为七类,包括炎性相关因子、凋亡调控相关蛋白、氧化与抗氧化分子、代谢相关酶类、离子通道及水通道、信号传导分子以及补体系统等七类。同时通过聚类分析将具有相同表达模式的基因被聚为12类。
     结论:缺血再灌注可以诱导肺的基因表达谱发生改变,基因表达谱芯片能够快速、高效地筛选差异表达基因,多种不同功能的基因相互影响共同造成肺缺血后再灌损伤,具有相似表达模式的基因可能具有相似的功能或相似的表达调控机制。
     目的:建立大鼠骨髓间充质干细胞(Mesenchymal Stem Cells, MSCs)的分离和培养方法,探讨MSCs的生物学特性和不同情况下的多向分化潜能,为将MSCs作为基因载体应用于体内细胞治疗和构建新型气管组织工程软骨种子细胞提供理论基础。
     方法:采用原代贴壁法获得间充质干细胞,观察细胞形态和生长变化,筛选细胞培养的最佳条件。流式细胞仪鉴定细胞表面标志,体外诱导间充质干细胞向脂肪细胞、成骨细胞和软骨细胞分化。采用EGFP慢病毒载体感染培养的间充质干细胞,比较细胞感染前后生物学特性。观察绿色荧光蛋白(Green Fluorescent Protein, GFP)基因通过慢病毒载体感染MSCs的表达情况。
     结果:原代贴壁法获可获得纯度较高的MSCs,稳定培养液的pH值能使MSCs稳定传代。流式细胞仪检测示大鼠MSCs的表型为CD11b-CD34-CD44+CD45-CD90+CD-106+。体外MSCs能诱导分化为脂肪细胞、成骨细胞和软骨细胞。慢病毒载体可有效感染大鼠MSCs, EGFP在MSCs中能长期稳定表达,聚凝胺可增强感染效率。
     结论:稳定pH值的培养液能使大鼠间充质干细胞保持旺盛的生长能力,间充质干细胞具有良好的多向分化能力。慢病毒能高效感染间充质干细胞,GFP基因能在间充质干细胞中长期稳定表达。本研究建立了一种有效、稳定、持久的大鼠骨髓MSCs分离培养及荧光基因标记技术,为研究MSCs的转归、可塑性及基因治疗奠定了基础。
     目的:探讨骨髓间充质干细胞(MSCs)植入大鼠肺缺血再灌注损伤(I/R)模型中的效应、分化及其相关的作用机制。
     方法:分离纯化培养MSCs,进行GFP标记,将MSCs注射大鼠肺I/R损伤模型及对照组,观察再灌注后6h、1d、3d、7d等时间点肺的病理变化及功能改变,以及不同时间点MSCs向肺内迁移和在肺内的存留情况,通过免疫组化方法观察在肺内MSCs的分化。实时荧光定量PCR检测肺组织TNF-a mRNA和C5 mRNA表达变化,ELISA检测IL-1β、IL-10、IL-17、KGF, MIP-1α等炎性因子含量的改变。
     结果:MSCs植入I/R模型可以降低肺湿重比和MPO活力,MSCs可以向肺内迁移,以24h至3d数量较多,再灌后7d仍可见存留于肺内,数量减少,但7d时观察到带有EGFP和SP-C双标阳性的MSCs。相对于单纯I/R损伤组,MSCs可以下调肺组织内致炎因子TNF-α、C5、IL-17、MIP-1α的表达和上调抗炎因子IL-10、KGF的表达。
     结论:MSCs可以减轻肺I/R损伤,通过向肺Ⅱ型上皮细胞分化以及免疫调节和旁分泌功能发挥保护效应。
Objective In order to provide us new clues to induce some endogenous protective molecular mechanisms, the changes in gene expression profile induced by ischemia-reperfusion in pulmonary tissues of rats were investigated and the dynamic mechanism of pulmonary ischemia-reperfusion injury was elucidated.
     Methods Thirty male SD rats were randomly divided into 6 groups:5 ischemia-reperfusion (I/R) groups (I/R 0-h, I/R 1-h, I/R 3-h, I/R 6-h, I/R 24-h) and control group (n=6 in each). An in situ ischemia-reperfusion lung injury rat model was established by occluded hilus of lung. The RatRef-12 Expression Beadchip (22 226 gene probes per array) was used to analyze the pattern of gene expression in all groups.
     Results The results showed that 648,340,711,1279 and 641 genes were differentially expressed in I/R 0-,1-,3-,6- and 24-h groups respectively. The differentially expressed genes were classified as following 7 functional categories:cytokine, growth factor and apoptosis-related factor, oxidation and antioxidation molecule, metabolic enzyme, ion channel and aquaporin, signal transduction molecule and complement. Clusters analysis identified 12 clusters of genes in which each cluster had similar expression pattern.
     Conclusions It was suggested that gene chip technology was an effective and quick method for screening differentially expressed genes. Many differentially expressed genes with different functions interacted each other to result in pulmonary ischemia-reperfusion injury. Genes with similar expression pattern could have the similar regulated mechanism.
     Objective The multilineage capability of adult bone marrow mesenchymal stem cells (MSCs) supports the feasibility of tissue engineering multiphasic constructs using a single cell source. Therefore, it is important to establish a method of isolation and culture of the rat mesenchymal stem cells, make a study on the differentiation character and pluripotency of MSCs under different conditions and to investigate the expression of green fluorescent protein (GFP) gene carried by lentiviral vectors into MSCs.
     Methods MSCs, which were initially isolated from the bone marrow of rats, were cultured in vitro, isolated by trypsin digestion method, purified by adherence method and tested by flow cytomertry. After MSCs were transferred to osteogenic, adipogenic or chondrogenic differentiation medium respectively, the morphological characterization of induced cells was observed. The expression of marker genes was measured by RT-PCR analysis. Then MSCs were infected with lentiviral vectors. The results of the expression of GFP and infection efficiency were observed by fluorescence microscope.
     Results MSCs of high purity were obtained from bone marrow using adherence screening method. The stable pH of culture medium was important for cell growth and subculture. MSCs typically expressed the antigens CD44 (94.81%), CD90 (99.53%), CD106 (76.34%). They were negative for typical lymphocytic markers like CD45 (1.94%) and CD11b (1.42%) and for the early hematopoietic markers CD34 (0.04%). MSCs can differentiate to adipocyte, osteocyte and chondrocyte in vitro. The results of fluorescence microscopic imaging proved that the high level and stability of GFP expression in MSCs infected with lentiviral vector. So the exogenous GFP and multilineage potential of MSCs had no severe influences on each other.
     Conclusions Since the MSCs can be easily obtained and abundant, it is proposed that they may be promising candidate cells for further studies on tissue engineering. Imaging with expression of GFP facilitates the research on MSCs physiological behavior and application in tissue engineering during differentiation both in vitro and in vivo.
     Objective To elucidate effect of adult bone marrow mesenchymal stem cells (MSCs) on pulmonary ischemia-reperfusion (I/R) injury and make a research on differentiaon and regulatory mechanism of MSCs in I/R injury.
     Methods MSCs were initially isolated from the bone marrow of rats and cultured in vitro. Then MSCs were infected with lentiviral vectors to obtain EGFP mark. MSCs were injected into rats of I/R injury model and control groups. Pathological changes and function alterations of lung were observed at 6 h,1 d,3 d and 7 d after I/R injury. Migration to lung and persistence in lung of MSCs were also observed. Immunohistochemisty method was used to investigate the differentiation of MSCs. Real-time RT-PCR was used to monitor gene expression changes of TNF-αand complement 5 (C5) in all groups. ELISA was used to detect concentration alterations of IL-1β, IL-10, IL-17, KGF and MIP-1αin pulmonary tissue.
     Results MSCs could decrease pulmonary ratio of wet to dry and MPO activity. MSCs could migrate to lung and the number of cells at 24 h was larger than those at 7 d. However, the double positive of EGFP and SP-C in MSCs was found at 7 d after I/R injury. Concertaion of pro-inflammatory cytokines auch as TNF-α, C5, IL-17 and MIP-1αwere decreased and expression of antiinflammatory cytokines such as IL-10 and KGF were upregulated.
     Conclusions MSCs have beneficial effects in experimental pulmonary I/R injury model. The beneficial effect of MSCs derives from their differentiation to typeⅡalveolar cells and more from their capacity to secrete paracrine soluble factors that modulate immune responses.
引文
1. Trulock EP. Lung transplation. Am J Respir Crit Care Med,1997; 155(3):789-818.
    2. Land WG. The role of postischemia reperfusion injury and other nonantigen-dependent inflammation pathways in transplation. Transplation,2005; 79(5):505-514.
    3. Patterson GA. Indications. Unilateral, bilateral, heart-lung, and lobar transplant procedures. Clin Chest Med,1997; 18(2):225-230.
    4. Schena M, Shalon D, Dais RW, et al. Quantitative monitoring of gene expression patterns with a complementary DNA microarray. Science (5235),1995; 270:467-470.
    5. Eppinger MJ, Deeb GM, Bolling SF et al. Mediators of ischemia-reperfusion injury of rat lung. Am J.Pathol,1997,150(5):1773-1784.
    6. Chudin E., Kruglyak S., Baker S.C., et al. A Model of Technical Variation of Microarray Signals. Journal of Computational Biology.2006; 13(4):996-1003.
    7. Amberger A, Schneeberger S, Hernegger G,et al. Gene expression of prolonged cold ischemia and reperfusion in murine heart transplants. Transplantation,2002; 74 (10):144121449.
    8. Lu XC, Williams AJ, Yao C, et al. Microarray analysis of acute and delayed gene expression profile in rats after focal ischemic brain injury and reperfusion. J Neurosci Res,2004; 77(6):843-57.
    9. Naito Y, Mizushima K, Yoshikawa T. Global analysis of gene expression in gastric ischemia-reperfusion:a future therapeutic direction for mucosal protective drugs. Dig Dis Sci,2005; 50 Suppl 1:S45-55.
    10. Wang SF, Liang Q, Li GW, et al. Gene expression profile in rat small intestinal allografts after cold preservation/reperfusion. World J Gastroenterol,2005; 11(6):885-9.
    11. Borozan I, Chen L, Sun J, et al. Gene expression profiling of acute liver stress during living donor liver transplantation. Am J Transplant,2006; 6(4):806-24.
    12. Basile DP, Fredrich K, Alausa M,et al. Identification of persistently altered gene expression in the kidney after functional recovery from ischemic acute renal failure. Am J Physiol Renal Physiol,2005; 288(5):F953-63.
    13. Benz S, Lobler M, Obermaier R, el al. New possible target genes in pancreatic ischemia/reperfusion-injury identified by microarray analysis. Transplantation Proceedings,2002; 34:2369.
    14. Tamayo P, Slonim D, Mesirov J, et al. Interpreting patterns of gene expression with self-organizing maps:methods and application to hematopoietic differentiation. Proc Natl Acad Sci USA,1999; 96(6):2907-2912.
    15. Fiser SM, Tribble CG, Long SM, et al. Lung transplant reperfusion injury involves pulmonary macrophages and circulating leukocytes in a biphasic response. J Thorac Cardiovasc Surg,2001; 121:1069-1075.
    16. de Perrot M, Young K, Imai Y, et al. Recipient T cells mediate reperfusion injury after lung transplantation in the rat. The Journal of Immunology,2003; 171:4995-5002.
    17. Zwacka RM, Zhang Y, Halldorson J, et al. CD4+ T-lymphocytes mediate ischemia/reperfusion-induced inflammatory responses in mouse liver. J Clin Invest, 1997; 100:279-289.
    18. Hosenpud JD, Bennett LE, Keck BM, Boucek MM, Novick JR. The Registry of the International Society for Heart and Lung Transplantation:seventeenth official report: 2000. J Heart Lung Transplant,2000; 19:909-931.
    19. Fischer S, Liu M, Maclean AA, et al. In vivo transtracheal adenovirus-mediated transfer of human interleukin-10 gene to donor lungs ameliorates ischemia-reperfusion injury and improves early posttransplant graft function in the rat. Hum Gene The, 2001;12:1513-1526.
    20. Otterbein LE, Choi AM. Heme oxygenase:colors of defense against cellular stress. Am J Physiol Lung Cell Mol Physiol,2000; 279:L1029-L1037.
    21. Harrison C A, Raftery M J, Walsh J, et al. Oxidation regulates the inflammatory properties of the murine S100 protein S100A8. J Biol Chem,1999; 274(13): 8561-8569.
    22. Thorey I S, Roth J, Regenbogen J, el al. The Ca2+-binding proteins S100A8 and S100A9 are encoded by novel injury-regulated genes. J Biol Chem,2001; 276 (38): 35818-35825.
    23. Wang GW, Zhou Z, Klein JB, Kang YJ. Inhibition of hypoxia/reoxygenation-induced apoptosis in metallothionein overexpressing cardiomyocytes. Am J Physiol Heart Circ Physiol,2001; 280:H2292-H2299.
    24. Li X, Chen H, Epstein PN. Metallothionein protects islets from hypoxia and extends islet graft survival by scavenging most kinds of reactive oxygen species. J Biol Chem 2004; 279:765-771.
    25. Shinmura K, Tang XL, Wang Y, Cyclooxygenase-2 mediates the cardioprotective effects of the late phase of ischemic preconditioning in conscious rabbits. Proc Natl Acad Set USA,2000; 97:10197-10202.
    26. Shinmura K, Xuan YT, Tang XL, et al. Inducible nitric oxide synthase modulates cyclooxygenase-2 activity in the heart of conscious rabbits during the late phase of ischemic preconditioning. Circ Res,2002; 90(5):602-608.
    27. Encinas JM, Serrano J, Alonso D, et al. Adrenomedullin over-expression in the caudate-putamen of the adult rat brain after ischaemia-reperfusion injury. Neurosci Lett, 2002; 329:197-200.
    28. Nishimatsu H, Hirata Y, Shindo T, et al. Role of endogenous adrenomedullin in the regulation of vascular tone and ischemic renal injury:studies on transgenic/knockout mice of adrenomedullin gene. Circ Res,2002; 90:657-663.
    29. Minamino N, Kikumoto K, Isumi Y. Regulation of adrenomedullin expression and release. Microsc Res Tech,2002; 57:28-39.
    30. Nelson DP. Wechsler SB. Miura T, et al. Myocardial immediate early gene activation after cardiopulmonarT bypass with cardiac ischemia-repefusion. Ann Thorac Surg, 2002; 73(1):156-162.
    31. Naka Y, Marsh HC, Scesney SM, et al. Complement activation as a cause for primary graft failure in an isogeneic rat model of hypothermic lung preservation and transplantation. Trans plantation,1997; 64:1248-1255.
    32. Frank MM. Complement in the pathophysiology of human disease. N Engl J Med,1987; 316:1525-1530.
    33. Marboe CC.Pathology of lung transplantation.Semin Diagn Pathol.2007 Aug; 24(3): 188-98.
    34. Hirayama, S., Shiraishi, T., Shirakusa, T., et al., Prevention of neutrophil migration ameliorates rat lung allograft rejection. Mol Med,2006.12(9-10):208-13.
    35. Keshavjee, S., Davis, R.D., Zamora, M.R., et al., A randomized, placebo-controlled trial of complement inhibition in ischemia-reperfusion injury after lung transplantation in human beings. J Thorac Cardiovasc Surg,2005.129(2):423-428.
    1. Friedenstein AJ, Corskaja JF, Kulagina NN. Fibroblast precursors in normal and irradiated mouse hematopoietic organs. Exp Hematol,1976; 4:267-274.
    2. Minguell JJ, Erices A, Conget P. Mesenchymal stem cells. Exp Biol Med,2001; 226(6):507-520.
    3. Deryugina EI, Muller-Sieburg CE. Stromal cells in longterm cultures:Keys to the elucidation of hematopoietic development? Crit Rev Immunol,1993; 13:115.
    4. Majumdar MK, Thiede MA, Mosca JD, et al. Phenotypic and function comparison of cultures of marrow-derived mesenchymal stem cells (MSCs) and stromal cells. J Cell Physiol,1998;176(1):57-66.
    5. Colter DC, Class R, DiGirolamo CM, et al. Rapid expansion of recycling stem cells in cultures of plastic-adherent cells from human bone marrow. Proc Natl Acad Sci USA, 2000; 97(7):3213-3218.
    6. Jiang Y, Jahagirdar BN, Reinhardt RL, et al. Pluripotency of mesenchymal stem cells derived from adult marrow. Nature,2002; 418(6893):41-49.
    7. Reyes M, Lund T, Lenvik T, et al. Purification and ex vivo expansion of postnatal human marrow mesodermal progenitor cells. Blood,2001; 98(9):2615-2625.
    8. Pittenger MF, Multilineage potential of adult human mesenchymal stem cells. Science, 1999; 284(5411):143-7.
    9. Silva ML, Caplan AI, Nardi NB. In search of the in vivo identity of mesenchymal stem cells. Stem Cells,2008; 26(9):2287-2299.
    10. Tcacencu I, Carlsoo B, Stierna P. Effect of recombinant human BMP-2 on the repair of cricoid cartilage defects in young and adult rabbits:a comparative study. Int J Pediatr Otorhinolaryngol,2005,69 (9):1239-1246.
    11. Hanawa T, Ikeda S, Funatsu T, et al. Development of a new surgical procedure for repairing tracheobronchomalacia. J Thorac Cardiovasc Surg,1990,100 (4):587-594.
    12. Spagnoli A, Longobardi L, O'Rear L, et al. Cartilageders:potential therapeutic use of mesenchymal stem. Endocr Dev,2005,9(1):17-30.
    13. Ballock RT, Zhou X, Mink LM, et al. Both retinoic acid and 1,25 (OH) 2 vitamin D3 inhibit thyroid hormone2induced terminal differentiation of growth plate chondrocytes. J Orthop Res,2001,19(1):43-49.
    14. Ballock RT, Zhou X, Mink L M, et al. Expression of cyclin2dependent kinase inhibitors in epiphyseal chondrocytes induced to terminally differentiate with thyroid hormone. Endocrinology,2000,141 (12):4552-4557.
    15. Yoo JU, Barthel TS, Nishimura K, et al. The chondrogenic potential of human bone marrow derived mesenchymal progenitor cells. J Bone Joint Surg Am,1998, 80(12):1745-1757.
    16. Le LP, Everts M, Dmitriev IP, et al. Fluorescently labeled adenovirus with pIX-EGFP for vector detection. Mol Imaging,2004; 3:105-116.
    17. Magness ST, Jijon H, Van Houten Fisher N, et al. In vivo pattern of lipopolysaccharide and anti-CD3-induced NF-kappa B activation using a novel gene-targeted enhanced GFP reporter gene mouse. J Immunol,2004; 173:1561-1570.
    18. Matsumoto R, Omura T, Yoshiyama M, et al. Vascular endothelial growth factor expressing mesenchymal stem cell transplantation for the treatment of acute myocardial infarction. Arterioscler Thromb Vasc Biol,2005; 25(6):1168-1173
    19. Lakshmipathy U, Pelacho B, Sudo K,et al. Efficient transfection of embryonic and adult stem cells. Stem Cells,2004; 22(4):531-543
    20. Davis HE, Rosinski M, Morgan JR, et al. Charged polymers modulate retrovirus transduction via membrane charge neutralization and virus aggregation. Biophys J, 2004,86(2):1234-1242
    1. Gergory CA, Porckop DJ, Spees JL. Non-hematopoietic bone marrow stem cells: molecular control of expansion and differentiation. Experimental Cell Res,2005; 306:330-335.
    2. Prockop DJ. Marrow stromal cells as stem cells for non-hematopoietic tissues. Science, 1997; 276:71-74.
    3. Minguell JJ, Erices A, Conget P. Mesenchymal stem cells. Exp Biol Med,2001; 226(6):507-520.
    4. Livak KJ, Schmittgen TD. Analysis of Relative Gene Expression Data Using Real-Time Quantitative PCR and the 2-△△C Method. Methods,2001,25 (4):402-408.
    5. Krause DS,Theise ND,Collector MI, et al. Multi-organ, multi-lineage engraftment by a single bone marrow-derived stem cell. Cell,2001; 105(3):369-377.
    6. Kotton DN, Ma BY, Cardoso WV, et al. Bone marrow-derived cells as progenitors of lung alveolar epithelium. Development,2001; 128(24):5181-5188.
    7. Kotton DN, Fine A. Derivation of lung epithelium from bone marrow cells. Cytotherapy, 2003; 5(2):169-173.
    8. Tu Z, Li Q, Bu H, Lin F. Mesenchymal stem cells inhibit complement activation by secreting factor H. Stem Cells Dev.2010 doi:10.1089/scd.2009.0418.
    9. Quintero PA, Knolle MD, Cala LF, et al. Matrix metalloproteinase-8 inactivates macrophage inflammatory protein-1 alpha to reduce acute lung inflammation and injury in mice. J Immunol,2010; 184(3):1575-1588
    10. Ortiz LA, Dutreil M, Fattman C, et al. Interleukin 1 receptor antagonist mediates the antiinflammatory and antifibrotic effect of mesenchymal stem cells during lung injury. Proc Natl Acad Sci USA,2007; 104(26):11002-11007
    11. Ajuebor MN, Das AM, Virag L, et al. Role of resident peritoneal macrophages and mast cells in chemokine production and neutrophil migration in acute inflammation:evidence for an inhibitory loop involving endogenous IL-10. J Immunol,1999;162(3):1685-1691
    12. Hosenpud JD, Bennett LE, Keck BM, Boucek MM, Novick JR. The Registry of the International Society for Heart and Lung Transplantation:seventeenth official report: 2000. J Heart Lung Transplant,2000; 19:909-931.
    13. Fischer S, Liu M, Maclean AA, et al. In vivo transtracheal adenovirus-mediated transfer of human interleukin-10 gene to donor lungs ameliorates ischemia-reperfusion injury and improves early posttransplant graft function In the rat. Hum Gene The, 2001;12:1513-1526.
    14. Nemzek JA, Ebong SJ, Kim J, et al. Keratinocyte growth factor pretreatment is associated with decreased macrophage inflammatory protein-2a concentrations and reduced neutrophil recruitment in acid aspiration lung injury. Shock,2002; 18(6):501-506
    15. Yano T, Deterding RR, Simonet WS, et al. Keratinocyte growth factor reduces lung damage due to acid instillation in rats. Am J Respir Cell Mol Biol,1996;15(4):433-442
    16. Sugahara K, Iyama K, Kuroda MJ, Sano K. Double intratracheal instillation of keratinocyte growth factor prevents bleomycin-induced lung fibrosis in rats. J Pathol, 1998;186(1):90-98
    17. Yi ES, Salgado M, Williams S, et al. Keratinocyte growth factor decreases pulmonary edema, transforming growth factor-beta and platelet-derived growth factor-BB expression, and alveolar type II cell loss in bleomycin-induced lung injury. Inflammation,1998;22(3):315-325
    18. Barazzone C, Donati YR, Rochat AF, et al. Keratinocyte growth factor protects alveolar epithelium and endothelium from oxygen-induced injury in mice. Am J Pathol, 1999;154(5):1479-1487
    19. Panos RJ, Bak PM, Simonet WS, et al. Intratracheal instillation of keratinocyte growth factor decreases hyperoxia-induced mortality in rats. J Clin Invest,1995; 96(4):2026-2033
    20. Viget NB, Guery BP, Ader F, et al. Keratinocyte growth factor protects against Pseudomonas aeruginosa-induced lung injury. Am J Physiol Lung Cell Mol Physiol, 2000; 279(6):L1199-1209
    21. Wang Y, Folkesson HG, Jayr C, et al. Alveolar epithelial fluid transport can be simultaneously upregulated by both KGF and P-agonist therapy. J Appl Physiol, 1999;87(5):1852-1860
    22. Guery BP, Mason CM, Dobard EP, et al. Keratinocyte growth factor increases transalveolar sodium reabsorption in normal and injured rat lungs. Am J Respir Crit Care Med 1997;155(5):1777-1784
    23. Yano T, Mason RJ, Pan T, et al. KGF regulates pulmonary epithelial proliferation and surfactant protein gene expression in adult rat lung. Am J Physiol Lung Cell Mol Physiol 2000;279(6):L1146-1158
    24. Ware LB, Matthay MA. Keratinocyte and hepatocyte growth factors in the lung:roles in lung development, inflammation, and repair. Am J Physiol Lung Cell Mol Physiol 2002;282(5):L924-940
    25. Bettelli E, Korn T, Kuchroo VK. Th17:the third member of the effector T cell trilogy. Curt Opin Immunol,2007; 19(6):652-7.
    26. Romagnani S, Maggi E, Liotta F, et al. Properties and origin of human Th17 cells. Mol Immunnol,2009;47(1):3-7.
    27. Bettelli E, Oukka M, Kuchroo VK. TH-17 cells in the circle of immunity and autoimmunity. Nature Immunology,2007; 8(4):345-350.
    28. Loong CC, Hsieh HG, Lui WY, et al. Evidence for the early involvement of interleukin 17 in human and experimental renal allograft rejection. J Pathol,2002; 197(3):322-332.
    29. Li J, Simeoni E, Fleury S, et al. Gene transfer of soluble interleukin-17 receptor prolongs cardiac allograft survival in a rat model. Eur J Cardiothorac Surg,2006; 29(5):779-783.
    30. Tang JL, Subbotin VM, Antonysamy MA, et al. Interleukin-17 antagonism inhibits acute but not chronic vascular rejection. Transplantation,2001; 72(2):348-350.
    1. Lagase E, Shizuru JA, Uchida N, et al. Toward Regenerative Medicine. Immunity, 2001; 14:425-436.
    2. Janes SM, Lowell S, Hutter C. Epidermal stem cells. J Pathol,2002; 197(4):479-91.
    3. Perl AK, Wert SE, Nagy A, Lobe CG, et al. Early restriction of peripheral and proximal cell lineages during formation of the lung. Proc Natl Acad Sci U S A,2002; 99:10482-10487.
    4. Inayama Y, Hook GE, Brody AR, et al. In vitro and in vivo growth and differentiation of clones of tracheal basal cells. Am J Pathol,1989; 134:539-549.
    5. Ford JR, Terzaghi-Howe M. Basal cells are the progenitors of primary tracheal epithelial cell cultures. Exp Cell Res,1992; 198:69-77.
    6. Hong KU, Reynolds SD, Watkins S, et al. In vivo differentiation potential of tracheal basal cells:evidence for multipotent and unipotent subpopulations. Am J Physiol Lung Cell Mol Physiol,2004; 286:L643-L649.
    7. Borthwick DW, Shahbazian M, Krantz QT, et al. Evidence for stem-cell niches in the tracheal epithelium. Am J Respir Cell Mol Biol,2001; 24:662-670.
    8. Evans MJ, Shami SG, Cabral-Anderson Dekker NP. Role of nonciliated cells in renewal of the bronchial epithelium of rats exposed to NO2. Am J Pathol,1986; 123:126-133.
    9. Nettesheim P, Jetten AM, Inayama Y, et al. Pathways of differentiation of airway epithelial cells. Environ Health Perspect,1990; 85:317-329.
    10. Reynolds SD, Giangreco A, Power JH, et asl. Neuroepithelial bodies of pulmonary airways serve as a reservoir of progenitor cells capable of epithelial regeneration. Am J Pathol,2000; 156:269-278.
    11. Giangreco A, Reynolds SD, Stripp BR. Terminal bronchioles harbor a unique airway stem cell population that localizes to the bronchoalveolar duct junction. Am J Pathol, 2002; 161:173-182
    12. Hong KU, Reynolds SD, Giangreco A, et al. Clara cell secretory protein-expressing cells of the airway neuroepithelial body microenvironment include a labelretaining subset and are critical for epithelial renewal after progenitor cell depletion. Am J Respir Cell Mol Biol,2001; 24:671-681.
    13. Park KS, Wells JM, Zorn AM, et al. Transdifferentiation of Ciliated Cells During Repair of the Respiratory Epithelium. Am J Respir Cell Mol Biol,2006; 34:151-157.
    14. (14) Kim CF, Jackson EL, Woolfenden AE, et al. Identification of bronchioalveolar stem cells in normal lung and lung cancer. Cell,2005; 121:823-835.
    15. Kapanci Y, Weibel ER, Kaplan HP,et al. Pathogenesis and reversibility of the pulmonary lesions of oxygen toxicity in monkeys. Ⅱ. Ultrastructural and morphometric studies. Lab Invest,1969; 20:101-118.
    16. Evans MJ, Cabral LJ, Stephens RJ, et al. Renewal of alveolar epithelium in the rat following exposure to NO2. Am J Pathol 1973; 70:175-198.
    17. Danto SI, Zabski SM, Crandall ED. Reactivity of alveolar epithelial cells in primary culture with type I cell monoclonal antibodies. Am J Respir Cell Mol Biol,1992; 6:296-306.
    18. Borok Z, Lubman RL, Danto SI,et al. Keratinocyte growth factor modulates alveolar epithelial cell phenotype in vitro:expression of aquaporin 5. AmJ Respir Cell Mol Biol,1998; 18 (4):554-61.
    19. Mason RJ, WilliamsMC, Moses HL, et al. Stem cells in lung development, disease, and therapy. Am J Respir Cell Mol Biol,1997; 16(4):355-63.
    20. Krause DS, Theise ND, Collector MI, et al. Multi-organ, multi-lineage engraftment by a single bone marrow-derived stem cell. Cell,2001;105(3):369-377.
    21. Kotton DN,Ma BY,Cardoso WV,et al. Bone marrow-derived cells as progenitors of lung alveolar epithelium. Development 2001; 128(24):5181-5188
    22. Mitsuhiro Yamada, Hiroshi Kubo, Seiichi Kobayashi, et al. Bone marrow-derived progenitor cells are important for lung repair after lipopolysaccharide-induced lung injury. The Journal of Immunology,2004; 172:1266-1272.
    23. Ortiz LA, Gambelli F, McBride C, et al. Mesenchymal stem cell engraftment in lung is enhanced in response to bleomycin exposure and ameliorates its fibrotic effects. Proc Natl Acad Sci U S A,2003;100:8407-8411.
    24. Ishizawa K, Kubo H, Yamada M, et al. Bone marrow-derived cells contribute to lung regeneration after elastase-induced pulmonary emphysema. FEBS Lett,2004; 556:249-252.
    25. Wang G, Bunnell BA, Painter RG, et al. Adult stem cells from bone marrow stroma differentiate into airway epithelial cells:potential therapy for cystic fibrosis. Proc Natl Acad Sci USA,2005;102:186-191.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700