徐家围子断陷火山岩天然气成藏与分布主控因素研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
充分利用徐家围子断陷地质、地震、测井及各种分析化验资料,结合区域地质背景,对徐家围子断陷火山岩形成、发育特征、天然气来源、成藏机制及成藏模式进行了系统研究。研究认为徐家围子断陷是受徐西和宋西边界主干断裂控制的西断东超的箕状断陷,具有“两隆三凹”的构造格局。构造演化经历了孕育、发展和萎缩三个阶段,期间经历三期构造挤压,形成断弯褶皱、断展褶皱和反转构造,同拉张作用形成的伸展构造和调节构造共同构成深层天然气的有利圈闭带。通过天然气δ~(13)C_1~δ~(13)C_4、轻烃碳同位素、氢同位素、轻烃组成特征对比,认为徐家围子断陷火山岩天然气主要来自沙河子组煤系源岩,少量来自火石岭组和营城组源岩。徐家围子断陷火山岩主要分布在营一、三段和火一段,按着火山岩相的“岩性-组构-成因”分类方案,共划分出五相十五亚相。明确了近火山口多种相叠合区、远火山口爆发-喷溢相叠合区为有利火山岩相带。火山岩储集空间按成因可划分为原生孔隙、次生孔隙和裂缝三种类型,最主要的孔隙为气孔、杏仁孔、晶粒间孔和斑晶溶孔,最主要的裂缝为构造裂缝和炸裂缝。有利火山岩储层主要沿着三条断裂带呈北北西或近南北向呈串珠状分布,自西向东分别为徐西断裂区带、宋西断裂区带和榆西断裂区带。通过升平气藏和兴城气藏典型火山岩气藏解剖,认为气藏整体为岩性-构造圈闭,火山岩储层为喷溢相上部亚相、爆发相热碎屑流亚相以及火山通道相隐爆角砾岩亚相3种亚相,但非均质性非常严重。为正常温压系统,不具有统一的气水界面及压力系统,表现为上气下水的分异特征。徐家围子断陷火山岩天然气成藏与分布主要受源岩区、深大断裂、火山岩相、古隆起及火山岩自身盖层的控制。火山岩天然气成藏的主要时期是泉头组沉积末期~青山口组沉积中期、嫩江组沉积末期和明水组沉积末期。其成藏模式主要有近源断裂输导火山岩成藏和远源断裂输导火山岩成藏两种。
Ingtegrating with the study of regional geologic background, the thesis has full used the geology, seismic, well-logging and analysis data to systematically study the formation and development characteristics of igneous rock, genesis of gas, and the mechanism and model for igneous gas reservoir formation in Xujiaweizi Rift. The result shows that Xujiaweizi Rift is a half graben-like fault depression that consists of fault in the west and overlap in the east, and is controlled by the main boundering faults of Xuxi Fault and Xuzhong Fault which divide Xujiaweizi Rift into“two uplifts and three depressions”in structural pattern. The structural evolution of Xujiaweizi Rift has experienced three stages—incubation,development and fade—during which three structural compactions result in fault-bending fold, fault-propagation fold and inversion structure. These structures along with the extentional structure and accommodation structure caused by extensional movement provide the favorable trap belts for deep gas accumulation. Gas characteristics comparison inδ~(13)C_1-δ~(13)C_4, carbon isotope of light hydrocarbon, hydrogen isotope and the construction of light hydrocarbon in Xujiaweizi Rift proves that gas of igneous reservior is mainly from coal measure strata of Shahezi Formation(K_1sh), and part of it from the source rock of Huoshiling Formation(J_3–K_1h) and Yingcheng Formation(K_1yc). The igneous rocks in Xujiaweizi Rift mainly distributes in K_1yc1, K_1yc_3 and J_3–K_1h_1. Five kinds of facies and fifteen kinds of subfacies are classified according to the igneous rock facies classification scheme of lithology—texture—genesis. It can be surely believed that the favorable igneous rock facies belt are multi-facies overlapping zone near the volcanic crater and eruption-effusion facies overlapping zone far from the volcanic crater. In the light of genesis the igneous reservoir space is divided into primary pore, secondary pore and fracture.The most important types of pores are air hole, amygdale, intercrystalline pore and phanerocryst dissolved pore. The structural facture and explosive fracture are the most important fracture types. The favorable igneous reservoir mainly distributes along three fracture belts, which are Xuxi fracture belt, Songxi fracture belt and Yuxi fracture belt from west to east, like pinch and swell form in general direction of NNW or nearly north-south. The analysis of typical gas reservoirs in igneous rock of Shengping and Xingcheng shows that the type of gas reservoirs entirely is litho-structual, and that the igneous reservoir distributes in the following three sub-facies: the upper sub-facies of effusion facies, thermal debris flow sub-facies of explosion facies and cryptoexplosive breccia sub-facies of volcanic conduit facies, but serious are the reservoir heterogeneity. Both gas reservoirs belong to the normal temperature-pressure system, which don’t have unified gas-water contact or pressure system, but the differential characteristics with gas upward and water downward. Formation and distribution of igneous gas reservoir in the Rift are mainly controlled by source rock distributed area, discordogenic fault, igneous rock facies, palaeohigh and igneous caprock of its own. Main periods of igneous gas reservoir formation are from the last stage of K_1q to the middle stage of K_1qn, the last stage of K_1n and the last stage of K_2m respectively. The models for igneous gas reservoir formation mainly include two types: Transported by the faults near source rock type and Transported by the faults far from source rock type.
引文
[1] 罗静兰,邵红梅,张成立.火山岩油气藏研究方法与勘探技术综述.石油学报.2003,24(1):31-38.
    [2] Jansa L F,Pe_Piper G. Middle Jurassicto Early Cretaceous igneous rocks along eastern North American continental margin[J].AAPGBull.,1988,72(3):347~366.
    [3] 庄博.火成岩储集层的地震识别方法探讨—以罗家地区为例.复式油气田,1998,4:27~31.
    [4] 高印军,郭春东,余忠,等.综合解释技术在孔南地区火成岩油藏研究中的应用.石油勘探与开发,2000,27(3):81~83.
    [5] 徐丽英,陈振岩,常金焕,等.地震技术在辽河油田黄沙坨地区火山岩油藏勘探中的应用.全国火山岩油气藏勘探开发技术研讨会论文集. 2002:169~173.
    [6] 孙淑艳,李艳菊,杨泽蓉.火成岩体的地震识别及构造描述方法.全国火山岩油气藏勘探开发技术研讨会论文集,2002:180~186.
    [7] 赵澄林,孟卫工,金春爽,等.辽河盆地火山岩与油气.北京:石油工业出版社,1999.
    [8] Haw lander H M. Diagenesis and reservoir potential of vol-canogenic sandstones-Cretaceous of the Surat Basin,Aus-tralia[J].Sedimentary Geology,1990,66(3/4):181~195.
    [9] Mark E M, John G M.Volcaniclastic deposits: implications for hydrocarbon exploration[A].In: Richard V, Fisher,Smith G A, eds.Sedimentation in volcanic settings[C].So-ciety for Sedimentary Geology, Special Publication,1991,45:20~27.
    [10] Grant Heiken,Kenneth Wohletz. Fragmentation processe in explosive volcanic eruptions[A].In: Richard V, Fishe and Smith G A, eds[C].Society for Sedimentary Geology Special Pubilication, 1991,45:19~26.
    [11] Davis D K, Almon W R, Bonis S B, Hunter B E. Deposition and diagenesis of Tertiary_Holocene volcaniclstics, Guatem_ala[A].In: Scholle P A, Schluger P R, eds. Aspects of Dia-genesis[C]. Society of Economic Paleontologistsand M iner-alogists Specia lPublication,1979,26:281~306.
    [12] Allen P A, Allen J R. Basin analysis principles and applica-tion[M]. Oxford London. Blackwell scientific publication,1990.
    [13] Wood D A. Relationships between thermal maturation in-dices calculated using Arrhenius equations and Lopation method: implications for petroleum exploration[J].AAPG Bull.,1988,72(2):115~134.
    [14] Price L C. Geologic time as a parameter in organic meta-morphism and Vitrinite reflectance as an absolute pale-othermometer[J].Journal of petroleum Geology,1983,6(1):5~38.
    [15] Sweeney J J, Burnham A K. Evaluation of a simple model of vitrinite reflectance based on chemical kinetics[J]. AAPG Bull,1990,74(10):1559~1570.
    [16] Green P F, Duddy I R, Gleadow A J W, Lovering J F. Ap-atite fission track analysis as a paleotemperature indicator for hydrocarbon exploration[A].In: Naeser N D, Mcculloh T H,eds. Thermal history of sedimentary basin_methods and case histories[C]. NewYork,Springer_verlag,1989:191~196.
    [17] Green P F, Duddy I R, Laslett G M,etal. Thermal annealing of fission track in apatite 4.Quantitative modeling techniques and extension to geological time_scale[J].Chem Geol.,1989,79(1/4):155~182.
    [18] Gleadow A J W, Duddy I R, Lovering J F. Fission track analysis:a new tool for the evaluation of the thermal histo-ries and hydrocarbon potential[J].APEA Journal,1983,23(1):93~102.
    [19] Huang W L, Longo J M, Pevear D R.An experimentally derived kinetic model for smectite to illite and its use as a geothermometer[J].Clays and clay minerals,1993,41(2)162~177.
    [20] Pytte A M, Reynolds R C.The thermal transformation of smectite to illite[A].In:Naeser N D, Mcculloh T H, eds. Thermal history of sedimentary basin_methods and casehis-tories:New York, Springer_verlag[C]. 1989:133~140.
    [21] Robert C B. Paleotemperatures from fluid inclusions: ad-vances in theory and technique[A]. In:Naeser N D, Mc-culloh T H,eds. Thermal history of sedimentary basin_methods and case histories: New York, Springer_verlag[C].1989:119~131.
    [22] Tilley B J, Nesbitt B E, Longstaffe F J. Thermal history of Alberta Deep Basin:Comparative study of fluid inclusion and vitrinite reflectance date[J].AAPG Bull.,1989,73(10):1206~1222.
    [23] 罗静兰,曲志浩,孙卫等.风化店火山岩成因,储集孔隙类型及其火山岩相与油气的关系.石油学报,1996,17(1):32O39.
    [24] Luo Jinglan, Zhang Chengli, Qu Zhihao.Volcanic reservoir rocks: a case study of the cretaceous fenghuadian suite,Hua nghua Basin,Eastern China.Journal of Petroleum Geology,1999,22(4):397O415.
    [25] 陈振岩,李军生,张戈,等.辽河坳陷火山岩与油气关系.石油勘探与开发,1996,23(3):1~5.
    [26] 尚斌,姜在兴,操应长,等.火山岩油气藏分类初探.石油实验地质,1999,21(4):324~327.
    [27] 王鸿祯. Megastages in the tectonic development of Asia. Science in china,1980,3:
    [28] 王鸿祯.中国地壳构造发展的主要阶段.地球科学-中国地质大学学报,1982,3:
    [29] 王骏、王东坡等,东北亚沉积盆地的形成演化及其含油气远景,地质出版社,1997.
    [30] 高瑞祺、程学儒、文享范等,松辽盆地北部不同成因类型天然气地化特征和早期资源评价,大庆石油管理局,1989。
    [31] 高瑞祺、牛克智、李庶琴等,松辽盆地北部深层地质特征与致密砂岩气藏形成条件,大庆石油勘探开发研究员院,1990。
    [32] 程裕淇主编,中国区域地质概论,地质出版社,1994
    [33] 郭占谦,松辽盆地的类型及形成与演化,地球科学 1998,23(增刊)
    [34] 迟元林、李景明等,松辽盆地莺山—庙台子断陷深层油气综合评价,石油勘探开发科学研究院廊坊分院,2000
    [35] 陈发景、王德发,松辽盆地徐家围子断陷石油地质综合评价及勘探目标选择,大庆油田责任有限公司勘探开发研究院,2000
    [36] 高名修.中国东部盆地系与美国西部盆地山脉构造对比及其成因机制探讨[A].见:朱夏.中国中新生代盆地构造和演化[M].北京:科学出版社,1983.65-77
    [37] 刘和甫,沉积盆地地球动力学分类及构造样式分析,地球科学,1993,18(6):704。
    [38] 刘和甫.中国沉积盆地演化与旋回动力学环境[J].地球科学,1996,21(4):345~356.
    [39] 刘和甫,梁慧社,李晓清,等.中国东部中新生代裂陷盆地与伸展山岭耦合机制.地学前缘,2000,7(4):477-486.
    [40] 陈发景,赵海玲,陈昭年,等.中国东部中-新生代伸展盆地构造特征及地球动力学背景[J].地球科学,1996,21(4):357~365.
    [41] 陈文涛、张晓东、陈发景.松辽盆地晚侏罗世火山岩分布与油气.中国石油勘探,2001,6(2):
    [42] 朱德丰,吴相梅,张庆晨.松辽盆地构造演化对油气运聚及成藏的控制作用,科研报告,2000:10-40.
    [43] 殷进垠,刘和甫,迟海江.松辽盆地徐家围子断陷构造演化.石油学报,2002,23(2):26-29.
    [44] 付晓飞,王朋岩,吕延防等.松辽盆地西部斜坡北段构造特征及对油气成藏的控制.地质科学,2007(待刊).
    [45] 王璞郡,杜小弟,王 俊,等.1995.松辽盆地白垩系年代地层研究及地层时代划分.地质学报,69(4):372-380.
    [46] 方立敏,李玉喜,殷进垠.松辽盆地断陷末期反转构造特征与形成机制.石油地球物理勘探,2003,38(2):190-193.
    [47] 高瑞琪,蔡希源.松辽盆地油气田形成条件与分布规律.石油工业出版社,北京:1997,12-40.
    [48] M. O. Withjack,W.R.Jamison.Deformation Produced by Oblique Rifting.Tectonophysics,1986,126:99-124.
    [49] Virginie Tron and Jean-Pierre Brun. Experiments on oblique rifting in brittle-ductile systems. Tectonophysics,1991,188:71-84.
    [50] Olivier Dauteuil,Jean Pierre Brun.Oblique rifting in a slow-spreading ridge.Nature,1993,361:145-149.
    [51] O.Dauteuil , J.P.Brun.Deformation partitioning in a slow spreading ridge undergoing oblique extension:mohns Ridge,Norwegian Sea[J].Tectonics,1996,15(4):870-884.
    [52] 周建勋,漆家福. 曲折边界斜向裂陷伸展的砂箱实验模拟[J]. 地球科学—中国地质大学学报,1999a,24(6):630-634.
    [53] 周建勋,漆家福. 伸展边界方向对伸展盆地正断层走向的影响—来自平面砂箱实验的启示[J]. 地质科学,1999b,34(4):491-497.
    [54] A. E. Clifton,R. W. Schlische,M. O. Withjack,et al.. Influence of rift obliquity on fault-population systematics: results of experimental clay models[J]. Journal of Structural Geology,2000,22:1491-1509.
    [55] Yossi Mart,Olivier Dauteuil.Analogue experiments of propagation of oblique rifts[J].Tectonophysics,2000,316:121-132.
    [56] 周建勋,漆家福. 伸展边界方向对伸展盆地正断层走向的影响—来自平面砂箱实验的启示[J]. 地质科学,1999,34(4):491-497.
    [57] M. O. Withjack,Jon Olson,Eric Peterson. Experimental Models of Extensional Forced Folds.AAPG,1990,74(7):1038-1054.
    [58] 云金表,金之钧,殷进垠.松辽盆地继承性断裂带特征及其在油气聚集中的作用.大地构造与成矿,2002,26(4):379-385.
    [59] 张文军,胡望水,官大勇,等.松辽裂陷盆地反转期构造分析.中国海上油气,2004,16(4):230-234.
    [60] 侯贵廷,冯大晨,王文明,等.松辽盆地的反转构造作用及其对油气成藏的影响.石油与天然气地质,2004,25(1):49-53.
    [61] 韩守华,余和中.松辽盆地北部反转构造带与油气聚集的关系.大庆石油地质与开发,15(3):1-5.
    [62] 胡望水.松辽盆地北部正反转构造与油气聚集.天然气工业,1996,16(5):20-24.
    [63] 陈昭年,陈布科.松辽盆地反转构造与油气聚集.成都理工学院学报,1996,23(4):50-56.
    [64] 陈昭年,陈发景.松辽盆地反转构造运动学特征.现代地质,10(3):390-396.
    [65] 张功成,徐宏,刘和甫,等.松辽盆地反转构造与油气田分布.石油学报,17(2):9-14.
    [66] 张功成,朱德丰.松辽盆地伸展和反转构造样式.石油勘探与开发,23(2):16-20.
    [67] 罗笃清,云金表,李玉喜.松辽盆地的正构造反转及其形成机制探讨.大庆石油学院学报,1994,18(2):17-21.
    [68] 刘学锋,钟广法,王正允,等.松辽盆地北部徐家围子断陷构造格局及其成因.西安石油学院学报(自然科学版).21(4):6-10.
    [69] 戴金星,王庭斌,宋岩。中国大中型天然气田形成条件与分布规律。北京:地质出版社。1997
    [70] Prinzhofer A,Huc,A Y.Genetic and post-geneticmolecular and isotopic fractiontions in natural gaser[J].Chem Geol,1995,126:281~290.
    [71] 赵孟军,曾凡刚,秦胜飞,卢双舫. 塔里木发现和证实两种裂解气,2001,21(1):35~38.
    [72] 谢增业,魏国齐,李剑,杨威,张林. 川东北飞仙关组鲕滩储层沥青与天然气成藏过程[J].天然气工业,2004;24(12):17-19.
    [73] 尹长河,王廷栋,王顺玉,等.威远震旦系天然气与油气生运聚[J].地质地球化学,2000,28(1):78-82.
    [74] 张大江,黄第藩等.我国不同地质时期沉积有机质中稳定碳同位素组成特征及其意义.科学通报,1991;36(4):302~305.
    [75] Behar F, Tang Y, Liu J. Comparison of rate constants for some molecular tracers generated during artificial maturation of kerogens: Influence of kerogen type[J]. Org Geochem, 1997, 26(3- 4): 281~ 287.
    [76] Rooney M A, Cloypool G E , Chung H M. Modeling thermogenic gas generation using carbon isotope ratios of natural gas hydrocarbons. Chemical Geology, 1995; 126: 219~232.
    [77] 王廷栋. 生物标志物在凝析气藏天然气运移和气源对比中的应用. 石油学报, 1990, 11(1): 25 ~ 30.
    [78] 李景坤,刘伟,宋兰斌,徐家围子断陷深层烃源岩生烃条件研究,天然气工业,2006,26(6):21-24.
    [79] 卢双舫,王振平,冯亚丽,赵孟军.塔里木盆地泥质气源岩有效性判别标准,石油与天然气地质,1999,20(4):299~301
    [80] 张义纲,陈焕疆.论生物气的生成和聚集[J].石油与天然气地质,1983,4(2):160-170.
    [81] 王璞珺, 陈树民 , 刘万洙.松辽盆地火山岩相与火山岩储层的关系 .石油与天然气地质,2003,24(1):18-23.
    [82] 程日辉, 王璞珺, 刘万洙, 等.徐家围子断阶带对火山岩体和沉积相带的控制 .石油与天然气地质,2003,4(002):126-129.
    [83] 王卓卓, 罗静兰, 刘银太, 等.徐家围子火山岩及火山碎屑岩岩石学特征、成岩作用及其对储层物性的影响 .西北大学学报(自然科学网络版) 2004,2(4):1-8.
    [84] 程日辉,王璞珺,刘万洙等.徐家围子断陷火山岩充填的层序地层.吉林大学学报(地球科学版)2005,35(4):469-474.
    [85] 王璞珺,迟元林,刘万洙,等.松辽盆地火山岩相:类型、特征和储层意义.吉林大学学报(地球科学版), 2003,33(4):449-456.
    [86] 杨辉,张研,邹才能,等.松辽盆地北部徐家围子断陷火山岩分布及天然气富集规律.地球物理学报.2006,49(4):1136-1143.
    [87] 杨懋新.松辽盆地断陷期火山岩的形成及成藏条件.大庆石油地质与开发.2002,21(5):15-17.
    [88]金晓辉,林任子,邹华耀,等。松辽盆地徐家围子断陷火山岩活动期次与烃源岩演化。石油与天然气地质。2005,26(3):349-555.
    [89] 邵奎政,梁晓东.徐家围子地区天然气成藏期次及其模式。大庆石油地质与开发。2002,21(6):4-5.
    [90] 陈庆春,朱东亚,胡纹瑄,曹学伟.2003.试论火山岩储层的类型及其成因特征.地质论评. 2003,49(3):286-281.
    [91] 王廷斌.中国气田的成藏特征分析.石油与天然气地质.2003,24(2)103-110.
    [92] 李伍平,李献华.燕山造山带中段中晚侏罗世中酸性火山岩的成因及其意义.岩石学报 2004,20(3):501-510.
    [93] 任延广,朱德丰,万传彪等.松辽盆地徐家围子断陷天然气聚集规律与下步勘探方向.大庆石油地质与开发 2004,23(5):26-30.
    [94] 綦敦科,齐景顺,王革.徐家围子地区储层特征研究.特种油气藏. 2002,9(4):30-32.
    [95] 刘为付.松辽盆地徐家围子断陷深层火山岩储层特征及有利区预测.石油与天然气地质 2004,25(1):115-119.
    [96] 闫全人,高山林,王宗起,等.松辽盆地火山岩地同位素年代地球化学特征及意义.地球化学 2002,31(2):169-179.
    [97] 刘德汉.包裹体研究—盆地流体追踪的有利工具.地学前缘.1995,2(3-4):149-154.
    [98] 覃建雄.矿物包裹体研究在油气评价和预测中的应用.天然气地球科学.1993,4(1):57-59.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700