盐胁迫与赤霉素(GA_3)处理下水稻幼苗的蛋白质组学分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
盐胁迫常造成植物的生长受抑制,而植物逆境响应过程大多与内源激素的信号转导相关,研究激素调控植物对环境适应的机制对提高植物的耐盐性具有重要的意义。目前,外源水杨酸(SA)、脱落酸(ABA)、茉莉酸甲酯(Me-Ja)对盐胁迫下粳稻日本晴(Oryza sativa L. Nipponbare)种子萌发生长的影响尚未明确,虽然有研究认为赤霉酸(GA3)可以缓解盐胁迫对水稻生长的抑制作用,但对该过程内在机理的研究还有待深入展开。
     本文研究了盐胁迫对日本晴萌发生长的影响;外源SA、ABA、Me-Ja和GA3对日本晴盐胁迫的作用;从蛋白质组学的角度研究了盐胁迫与GA3对水稻幼苗生长的影响,并从中找出与提高水稻幼苗耐盐性相关的蛋白。将水稻幼苗分别以H2O,5 g/L NaCl,5 g/L NaCl + 100μmol/L GA3,100μmol/L GA3培养48 h后提取其芽部的蛋白质,利用双向电泳(2-DE)技术分离分析出相关的差异表达蛋白质斑点,将蛋白质斑点酶切后,采用基质辅助激光解吸电离飞行时间质谱(MALDI-TOF MS)进行分析鉴定。同时,本文对基于Pro-Q Diamond荧光染色的蛋白质磷酸化修饰研究方法以及荧光差异凝胶电泳(2-D DIGE)分离技术在本课题中的应用进行了初步探索。通过上述研究,获得主要结果如下:
     1.盐胁迫能够显著抑制日本晴种子的萌发;外源水杨酸、脱落酸和茉莉酸甲酯对日本晴的5 g/L NaCl胁迫无显著缓解作用,在高浓度时使盐胁迫对种子萌发的抑制效应更加明显;外源GA3可以显著的缓解5 g/L NaCl的抑制作用。
     2.经双向电泳分离分析,得到12个受盐胁迫调控和1个受GA3调控的差异表达蛋白质斑点,其中11个蛋白质斑点分别被鉴定为谷氨酰-tRNA还原酶(Glutamyl-tRNA reductase,GluTR)、烯醇酶(Enolase)、Salt stress-induced protein (Salt protein)、Os09g0249700、Hypothetical protein OsJ_014066、Putative chaperonin 21 precursor、Os04g0659300、Hypothetical protein OsJ_025258、RuBisCO activase small isoform precursor、Isoflavone reductase-like蛋白和葡萄糖磷酸变位酶(phosphoglucomutase)。而isoflavone reductase-like蛋白与葡萄糖磷酸变位酶可能在外源GA3提高水稻幼苗耐盐性的途径中发挥了一定的作用。
     3.利用Pro-Q Diamond荧光染料,在H2O,5 g/L NaCl,5 g/L NaCl + 100μmol/L GA3,100μmol/L GA3培养的四组材料的2-DE凝胶图谱中分别平均检测到602、566、649和697个磷酸化蛋白;在2-D DIGE分离试验所得的凝胶图谱中,平均有2 703个蛋白质斑点被检出。
Salt-stress always leads to growth inhibition of plants. For plant stress response process is mostly associated with endogenous hormone-related signal transduction, Study on the mechanism how hormones adapt plant to the environment is very important to improve the salt tolerance of plants. Hitherto, the effect of exogenous salicylic acid (SA), Abscisic Acid (ABA), methyl jasmonate (Me-JA) on salt-stressed rice (Oryza sativa L. Nipponbare) seed germination is uncertain. Though studies have shown that exogenous gibberellic acid (GA3) can alleviate salt stress on rice growth inhibition, the internal mechanism of this process yet need to be well studied.
     In this paper, we studied the inhibition effect of salt stress on seed germination, and the effect of exogenous SA, ABA, Me-JA and GA3 on the inhibition of salt stress. We also traced the effect of salt-stress and GA3 on rice seedlings from the perspective of proteomics, and then found out proteins which relate to the mechanism GA3 promote salt tolerance of rice. Rice shoots of 5-day-old seedlings grown on H2O, 5 g/L NaCl, 5 g/L NaCl + 100μmol/L GA3, and 100μmol/L GA3 for 48 h were used for protein extraction. The differential expressed proteins revealed by two-dimensional polyacrylamide gel electrophoresis (2-DE) were digested and then analyzed and identified by Matrix Assisted Laser Desorption/Ionization Time of Flight Mass Spectrometry (MALDI-TOF MS). This paper also preliminary studied on the application of protein phosphorylation research technology based on the Pro-Q Diamond fluorescent staining as well as fluorescence two dimensional difference gel electrophoresis (2-D DIGE) technology on the proteomics analysis affected by salt and GA3 in rice.
     The main results of this experiment are as follows:
     1. Salt stress can significantly inhibit seed germination Nipponbare; Exogenous Salicylic Acid, Abscisic Acid and Methyl Jasmonate can not relieve the inhibition of 5 g/L NaCl stress. While high concentrations of these hormones lead to more significant of the inhibition effect induced by salt; Exogenous GA3 can significantly relieve the inhibitory effect of 5 g/L NaCl.
     2. After separated and analyzed by 2-DE, twelve salt regulated and 1 GA3 regulated protein were obtained. Eleven of these proteins were identified as Glutamyl-tRNA reductase (GluTR), Enolase, Salt stress-induced protein (Salt protein), Os09g0249700, Hypothetical protein OsJ_014066, Putative chaperonin 21 precursor, Os04g0659300, Hypothetical protein OsJ_025258, RuBisCO activase small isoform precursor, Isoflavone reductase-like protein and phosphoglucomutase. Isoflavone reductase-like protein and phosphoglucomutase may play important role in the mechanism, through which exogenous GA3 relieved the salt induced inhibition of rice seedlings.
     3. By using Pro-Q Diamond fluorescent dye, an average of 602, 566, 649 and 697 phosphorylated proteins were detected from 2-DE gels from the four treatment groups (H2O, 5 g/L NaCl, 5 g/L NaCl + 100μmol/L GA3 and 100μmol/L GA3); In 2-D DIGE images, an average of 2 703 protein spots were detected.
引文
[1]刘兵,张世权,郭家保.植物抗逆研究概况[J].安徽农学通报,2006,12(8):39.
    [2]杨少辉,季静,王罡等.盐胁迫对植物影响的研究进展[J].分子植物育种,2006,4(3):139-142.
    [3] Munns R. Physiological processes limiting plant growth in saline soils: some dogmas and hypotheses [J]. Plant Cell Environ, 1993, 16(1):15-24.
    [4] Kuiper D, Schmt J, Kuiper P J C. Actual cytokinin concentrations in plant tissue as an indicator for salt resistance in cereals [J]. Plant Soil, 1990, 123(2):243-250.
    [5] Tattini M, Gucci R, Coradeschi M A et al. Growth, gas exchange and ion content in Olea europaea plants during salinity stress and subsequent relief [J]. Physiol Plant, 1995, 95(2): 203-210.
    [6] Storey R, Walker R R. Citrus and salinity [J]. Scientia Horticulturae, 1999, 78(1-4):39-81.
    [7] Radi? S, Proli? M, Pavlica M et al. Cytogenetic effects of osmotic stress on the root meristem cells of Centaurea ragusina L. [J]. Environmental and Experimental Botany, 2005, 54(3):213-218.
    [8]祁栋灵,郭桂珍,李明哲等.水稻耐盐碱性生理和遗传研究进展[J].植物遗传资源学报,2007,8(4): 486-493.
    [9] Kim D W, Shibato J, Agrawal G K et al. Gene transcription in the leaves of rice undergoing salt-induced morphological changes (Oryza sativa L.) [J]. Mol Cells, 2007, 24(1): 45-59.
    [10] Kawasaki S, Borchert C, Deyholos M et al. Gene expression profiles during the initial phase of salt stress in rice [J]. Plant Cell, 2001, 13(4): 889-905.
    [11]高继平,林鸿宣.水稻耐盐机理研究的重要进展--耐盐数量性状基因SKC1的研究[J].生命科学, 2005, 17(6):563-565.
    [12] Jefferson R A, Kavanagh T A, Bevan M W. GUS fusions:β-glucuronidase as a sensitive and versatile gene fusion marker in higher plants [J]. EMBOJ, 1987, 6 (13):3901-3907.
    [13] Nohzadeh Malakshah S, Habibi Rezaei M, Heidari M et al.. Proteomics reveals new salt responsive proteins associated with rice plasma membrane [J]. Biosci Biotechnol Biochem, 2007, 71(9):2144-2154.
    [14] Chitteti B R, Peng Z. Proteome and phosphoproteome differential expression under salinity stress in rice (Oryza sativa) roots [J]. J Proteome Res, 2007, 6(5):1718-1727.
    [15] Dooki A D, Mayer-Posner F J, Askari H et al. Proteomic responses of rice young panicles to salinity [J]. Proteomics, 2006, 6(24):6498-507.
    [16] Parker R, Flowers T J , Moore A L et al. An accurate and reproducible method for proteome profiling of the effects of salt stress in the rice leaf lamina [J]. J Exp. Bot., 2006, 57(5): 1109-1118.
    [17] Kim D W, Rakwal R, Agrawal G K et al. A hydroponic rice seedling culture model system for investigating proteome of salt stress in rice leaf [J]. Electrophoresis, 2005, 26(23):4521-4539.
    [18]王振英,彭永康,郑坚瑜.盐胁迫下水稻和黑麦幼苗蛋白质组份的变化[J].南开大学学报, 2001,34(3):112-115.
    [19]吴敏,薛立,李燕.植物盐胁迫适应机制研究进展[J].林业科学,2007,43(8):111-117.
    [20] Xiong L M, Schumaker K S, Zhu J K. Cell signaling during cold, drought and salt stress[J]. Plant Cell, 2002, 14(Supplement):S165-183.
    [21]张晓磊,聂玉哲,李玉花.盐胁迫下植物的细胞信号转导[J].生物技术通讯,2008, 19(3):468-471.
    [22]李彦,张英鹏,孙明等.盐分胁迫对植物的影响及植物耐盐机理研究进展[J].植物生理科学,2008,24(1): 258-265.
    [23]肖望,扬艳芹.水杨酸对NaCl胁迫下水稻(Oryza Saliva L.)幼苗生理活性的影响[J].广东教育学院学报,2002,22(2):76-78.
    [24]叶梅荣.NaCl胁迫下水杨酸浸种对水稻幼苗生长的影响[J].安徽技术师范学院学报,2002,16(4): 44-46.
    [25] Xie Z, Zhang Z L, Hanzlik S et al. Salicylic acid inhibits gibberellin-induced alpha-amylase expression and seed germination via a pathway involving an abscisic-acid-inducible WRKY gene [J]. Plant Mol Biol, 2007, 64(3):293-303.
    [26] Rajjou L, Belghazi M, Huguet R et al. Proteomic investigation of the effect of salicylic acid on Arabidopsis seed germination and establishment of early defense mechanisms [J]. Plant Physiol. 2006, 141(3):910-923.
    [27] Leung J, Giraudat I. Abscisic acid signal transduction [J]. Annu Rev Plant Physiol Plant Mol Biol, 1998, 49:199-222.
    [28] Rohde A, Kurup S, Holdsworth M. ABI3 emerges from the seed [J]. Trends in Plant Science, 2000, 5(10):418-419.
    [29]胥寿玲,沈思师.通过荧光差异显示PCR法分离水稻中由ABA调节的基因[J].实验生物学报,2002,35(4):257-262.
    [30] Shinozaki K, Yamaguchi-Shinozaki K. Molecular responses to dehydration and low temperature: differences and cross-talk between signaling pathways [J]. Curr. Opin. Plant Biol, 2000, 3(3):217-223.
    [31] Hamilton D W A, Hills A, Kohler B et al. Ca2+ channels at the plasma membrane of stomatal guard cells are activated by hyperpolarization and abscisic acid [J]. Proc Natl Acad Sci USA, 2000, 97(9):4967-4972.
    [32] Gomez-Cadenas A, Zentella R, Walker-Simmons M et al. Gibberellin/acscisic acid antgonism in barley aleurone cells: Site of action of the protein kinase PLABA1 in relation to gibberellin signaling molecules [J]. Plant Cell, 2002, 13(3):667-679.
    [33] Ghassemian M, Nambara E, Cutler S et al. Regulation of abscisic acid signaling by the ethylene response pathway in Arabidopsis [J]. Plant Cell, 2000, 12(7):1117-1126.
    [34] Gawronska H, Deji A, Sakakibara H et al. Hormone-mediated nitrogen signaling in plants: Implication of participation of abscisic acid in negative regulation of cytok in in-inducible expression of maize response regulator [J]. Plant Physiol Biochem, 2003, 41(6-7):605-610.
    [35] Shakirova F M , Sakhabutdinova A R, Bezrukova M V et al. Changes in the hormonal status of wheat seedlings induced by salicylic acid and salinity [J]. Plant Sci, 2003, 164(3):317-322.
    [36] Cheong Y H, Chang H S, Gupta R et al. Transcriptional profiling reveals novel interactions between wounding, pathogen, abiotic stress and hormonal responses in Arabidopsis [J]. Plant Physiol, 2002, 129(2):661-677.
    [37] Himmeldbach A, Yang Y, Grill E. Relay and control of abscisic acid signaling [J]. Curr Opin Plant Biol, 2003, 6(5):470-479.
    [38] Finkelstein R R, Gampala S S L, Rock C D. Abscisic acid signaling in seeds and seedlings [J]. Plant Cell, 2002, 14:S15-S45.
    [39]张宜麟,赵帆,赵洁.脱落酸对水稻种子萌发及相关基因表达的影响[J].武汉植物学研究,2005,23(3):203-210.
    [40]王远敏,王光明.ABA浸种对水稻生长发育及产量的效应研究[J].西南师范大学学报, 2007,32(1):91-96.
    [41]王熹,陶龙兴,黄效林等.外源ABA抑制水稻种子发芽的生理机制[J].作物学报,2004,30(12):1250-1253.
    [42]周翔,吴晓岚,李云等.盐胁迫下玉米幼苗ABA和GABA的积累及其相互关系[J].应用与环境生物学报,2005,11(4): 412-415.
    [43]洪忠,张永忠,陈虎保等.天然生理活性物质茉莉酸及其甲酯的生理作用与生物化学合成[J].农药,2000,39(5):8-11.
    [44]吴劲松,种康.茉莉酸作用的分子生物学研究[J].植物学通报, 2002, 19(2): 164-170.
    [45]庞延军,戎鑫,施丽丽.外源茉莉酸甲酯缓解盐对水稻种子萌发的抑制作用[J].华南农业大学学报, 2006, 27(1):113-116.
    [46] Esther V D K, Jacoueix S, Kende H. Expression of an ortholog of replication protein A1 (RPA1) is induced by gibberellin in deepwater rice [J]. Proc Natl Acad Sci USA, 1997, 94(18):9979-9983.
    [47]娄沂春,董海涛,李德葆.水稻叶绿体ATP合成酶基因转录丰度受赤霉素诱导调节[J].中国水稻科学, 2001, 15(1):17-20.
    [48]卢利方,冯仁军,张银东.赤霉素信号转导的分子生物学研究进展[J].生命科学研究,2005, 9(4):66-71.
    [49] Kabar K. Alleviation of salinity stress by plant growth regulators on seed germination [J]. Journal of Plant Physiol, 1987, 128(1-2):179-183.
    [50]侯振安,李品芳,龚元石.激素对植物耐盐性影响的研究现状与展望[J].石河子大学学报(自然科学版), 2000, 4(3):239-245.
    [51]蔡蕾,丁同楼,王宝山.外源GA3、ABA和Ca(NO3)2缓解盐对小麦种子萌发的抑制作用[J].西北植物学报, 2004, 24(4):583-587.
    [52]华春,周泉澄,王小平等.外源GA3对盐胁迫下北美海蓬子种子萌发及幼苗生长的影响[J].南京师大学报(自然科学版), 2007, 30(1):82-87.
    [53] Rodríguez A A, Stella A M, Storni M M et al. Effects of cyanobacterial extracellular products and gibberellic acid on salinity tolerance in Oryza sativa L [J]. Saline Systems, 2006, 2:7.
    [54] Hoffmann-Benning S, Kende H. On the role of abscisic acid and gibberellin in the regulation of growth in rice [J]. Plant Physiol, 1992, 99(3):1156-1161.
    [55] Raskin I, Kende H. Role of gibberellin in the growth response of submerged deep water rice [J]. Plant Physiol, 1984, 76(4):947-950.
    [56] Kefford N P. Auxin-Gibberellin interaction in rice coleoptile elongation [J]. Plant Physiol, 1962, 37(3):380-386.
    [57] Konishi H, Yamane H, Maeshima M et al. Characterization of fructose-bisphosphate aldolase regulated by gibberellin in roots of rice seedling [J]. Plant Mol Biol, 2004, 56(6):839-848.
    [58] Komatsu S, Konishi H. Proteome analysis of rice root proteins regulated by gibberellin [J]. Genomics Proteomics Bioinformatics, 2005, 3(3):132-142.
    [59] Komatsu S, Zang X, Tanaka N. Comparison of two proteomics techniques used to identify proteins regulated by gibberellin in rice [J]. J Proteome Res, 2006, 5(2):270-276.
    [60] Konishi H, Maeshima M, Komatsu S. Characterization of vacuolar membrane proteins changed in rice root treated with gibberellin [J]. J Proteome Res, 2005, 4(5):1775-1780.
    [61] Shen S, Sharma A, Komatsu S. Characterization of proteins responsive to gibberellin in the leaf-sheath of rice (Oryza sativa L.) seedling using proteome analysis [J]. Biol Pharm Bull, 2003, 26(2):129-136.
    [62] Ueguchi-Tanaka M, Ashikari M, Nakajima M et al. GIBBERELLIN INSENSITIVE DWARF1 encodes a soluble receptor for gibberellin [J]. Nature, 2005, 437:693-698.
    [63] Jiang C, Fu X. GA action: turning on de-DELLA repressing signaling [J]. Curr Opin Plant Biol, 2007, 10(5):461-465.
    [64] Feng S, Martinez C, Gusmaroli G et al. Coordinated regulation of Arabidopsis thaliana development by light and gibberellins [J]. Nature, 2008, 451:475-479.
    [65] Achard P, Cheng H, De Grauwe L et al. Integration of plant responses to environmentally activated phytohormonal signals [J]. Science, 2006, 311(5757):91-94.
    [66] Wilkins M R, Sanchez J C, Gooley A A et al. Progress with proteome projects: why all proteins expressed by a genome should be identified and how to do it [J]. Biotech & Genetic Engineering Rev, 1996, 13:19-50.
    [67] Wasinger V C, Cordwell S J, Cerpa-Poljak A et al. Progress with gene-product mapping of the Molicutes: Mycoplasma genitaliun [J].Electrophoresis, 1995, 16(7):1090-1094.
    [68] Rabilloud T. Two-dimensional gel electrophoresis in proteomics: Old, old fashioned, but it still climbs up the mountains [J]. Proteomics, 2002, 2(1):3-10.
    [69] Huber L A, Pfaller K, Vietor I. Organelle proteomics-Implications for subcellular fractionation in proteomics [J]. Circulation Research, 2003, 92(9): 962-968.
    [70] Wagner K, Miliotis T, Marko-Varga G et al. An automated on-line multidimensional HPLC system for protein and peptide mapping with integrated sample preparation [J]. Anal Chem, 2002, 74(4):809-820.
    [71] Link A J, Eng J, Schieltz D M et al. Direct analysis of protein complexes using mass spectrometry [J]. Nat Biotechnol, 1999, 17(7):676-682.
    [72] Zhu K, Miller F R, Barder T J et al. Identification of low molecular weight proteins isolated by 2-D liquid separations [J]. J Mass Spectrom, 2004, 39(7):770-780.
    [73] Carol J, Gorseling M C, de Jong C F et al. Determination of denaturated proteins and biotoxins by on-line size-exclusion chromatography–digestion–liquid chromatography–electrospray mass spectrometry [J]. Analytical Biochemistry, 2005, 346(1):150-157.
    [74] Chen E I, Hewel J, Felding-Habermann B et al. Large scale protein profiling by combination of protein fractionation and multidimensional protein identification technology (MudPIT) [J]. Mol Cell Proteomics, 2006, 5(1):53-56.
    [75] Sluyterman L A A E, Elgersma O. Chromatofocusing: isoelectric focusing on ion exchange columns I. General principles [J]. J Chromatogr A, 1978, 150(1):17-30.
    [76] Sluyterman L A A E, Wijdeness J. Chromatofocusing: isoelectric focusing on ion exchange columns II [J]. Experimental verification J Chromatogr A, 1978, 150(1):31-44.
    [77]贾韦韬.生物质谱新技术与新方法及其在蛋白质组学中的应用研究[D].复旦大学; 2006.
    [78] Zolnierowicz S, Bollen M. Protein phosphorylation and protein phosphatases De Panne, Belgium, September 19-24, 1999. [J]. EMBO J, 2000, 19(4):483-488.
    [79] Mann M, Ong S E, Gronborg M et al. Analysis of protein phosphorylation using mass Spectrometry: deciphering the phosphoproteome [J].Trends Biotechnol, 2002, 20(6):261-268.
    [80]张倩,杨振,安学丽等.蛋白质的磷酸化修饰及其研究方法[J].首都师范大学学报(自然科学版), 2006, 27(6):43-94.
    [81] Hedtke B, Alawady A, Chen S et al. HEMA RNAi silencing reveals a control mechanism of ALA biosynthesis on Mg chelatase and Fe chelatase [J]. Plant Mol. Biol, 2007, 64(6): 733-742.
    [82] Riccardi F, Gazeau P, de Vienne D et al. Protein changes in response to progressive water deficit in maize. Quantitative variation and polypeptide identification [J]. Plant Physiol, 1998, 117(4):1253-1263.
    [83] Lal S K, Lee C, Sachs M M. Differential regulation of enolase during anaerobiosis in maize [J]. Plant Physiol, 1998, 118(4):1285-1293.
    [84] Forsthoefel N R, Cushman M A, Cushman J C. Posttranscriptional and posttranslational control of enolase expression in the facultative Crassulacean acid metabolism plant Mesembryanthemum Crystallinum L [J]. Plant Physiol, 1995, 108(3):1185-1195.
    [85] Umeda M, Hara C, Matsubayashi Y et al. Expressed sequence tags from cultured cells of rice (Oryza sativa L.) under stressed conditions: analysis of transcripts of genes engaged in ATP-generating pathways [J]. Plant Mol. Biol, 1994, 25(3):469-478.
    [86] Umeda M, Uchimiya H. Differential Transcript Levels of Genes Associated with Glycolysis and Alcohol Fermentation in Rice Plants (Oryza sativa L.) under Submergence Stress [J]. Plant Physiol, 1994, 106(3):1015-1022.
    [87] Yan S, Tang Z, Su W et al. Proteomic analysis of salt stress-responsive proteins in rice root [J]. Proteomics, 2005, 5(1):235-244.
    [88] Garcia A B, Engler Jde A, Claes B et al. The expression of the salt-responsive gene salT from rice is regulated by hormonal and developmental cues [J]. Planta, 1998, 207(2):172-180.
    [89] Claes B, Dekeyser R, Villarroel R et al. Characterization of a rice gene showing organ-specific expression in response to salt stress and drought [J]. Plant Cell, 1990, 2(1):19-27.
    [90] Kim S T, Kim S G, Hwang D H et al. Expression of a salt-induced protein (SALT) in suspension-cultured cells and leaves of rice following exposure to fungal elicitor and phytohormones [J]. Plant Cell Rep, 2004, 23(4):256-262.
    [91] Salekdeh G H, Siopongco J, Wade L J et al. Proteomic analysis of rice leaves during drought stress and recovery [J]. Proteomics, 2002, 2(9):1131-1145.
    [92] Petrucco S, Bolchi A, Foroni C et al. A maize gene encoding an NADPH binding enzyme highly homologous to isoflavone reductases 1s activated in response to sulfur starvation [J]. Plant Cell, 1996, 8(1):69-80.
    [93] Babiychuk E, Kushnir S, Belles-Boix E et al. Arabidopsis thaliana NADPH oxidoreductase homologs confer tolerance of yeasts toward the thiol-oxidizing drug diamide [J]. J Biol Chem, 1995, 270(44):26224-26231.
    [94] Lers A, Burd S, Lomaniec E et al. The expression of a grapefruit gene encoding an isoflavone reductaselike protein is induced in response to UV irradiation [J]. Plant Mol Biol, 1998, 36(6): 847-856.
    [95] Caspar T, Huber S C, Somerville C. Alterations in growth, photosynthesis, and respiration in a starchless mutant of Arabidopsis thaliana (L.) deficient in chloroplast phosphoglucomutase activity [J]. Plant Physiol, 1985, 79(1):11-17.
    [96] Hanson K R, McHale N A. A starchless mutant of Nicotiana sylvestris containing a modified plastid phosphoglucomutase [J]. Plant Physiol, 1988, 88(3):838-844.
    [97]柯玉琴,潘廷国,艾育芳.盐胁迫对发芽水稻种子质膜透性及物质转化的影响[J].中国生态农业学报,2002,10(4):10-12.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700