大功率调速型液力偶合器轴向力研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
作为一种液力传动元件液力偶合器具有很多优点。尤其是调速型液力偶合器应用在风机、水泵等耗能设备上调速节能效果明显。当液力偶合器工作时,会产生较大的轴向力,加速轴承的疲劳和磨损,缩短轴承的使用寿命,进而影响整机的使用寿命。液力偶合器叶轮本身不存在磨损,其可靠性和寿命主要是由轴承和密封决定的。因此,研究轴向力对提高液力偶合器的寿命和可靠性具有重要意义。
     本文结合国家高技术研究发展计划(863计划)专题课题“大型泵与风机液力调速节能关键技术研究”(2007AA05Z256),采用计算流体动力学数值计算方法,对液力偶合器的流场和轴向力进行计算分析,找出其变化规律,并对轴向力进行试验研究。探讨液力偶合器轴向力的影响因素,并分析减小液力偶合器轴向力的措施。
     本文主要研究内容和结论如下:
     1、液力偶合器轴向力理论分析
     液力偶合器轴向力包括泵轮轴向力和涡轮轴向力,它们均由工作腔轴向力和辅腔轴向力两部分组成。工作腔轴向力产生原因有两个,一是由于工作腔内流体受离心力作用产生的静压力所致;二是由于工作腔内流体循环流动,速度方向改变导致动量变化而产生的轴向力。辅腔轴向力主要是离心力产生的静压力所致。要准确计算轴向力,关键是获得工作腔和辅腔内准确的流场分布。通过对调速型液力偶合器结构和工作特点分析知,辅腔内流体对泵轮和涡轮的轴向作用力是一对大小相等方向相反的力;同理,工作腔内流体对泵轮和涡轮的轴向作用力也是一对大小相等方向相反的力。那么泵轮轴向力合力与涡轮轴向力合力必然也是一对大小相等方向相反的力。在计算轴向力时只计算其中一个即可。
     2、液力偶合器气液两相流计算
     计算调速型液力偶合器轴向力的关键是计算内流场。液力偶合器工作时,其工作腔内是非定常、三维、不可压缩、粘性气液两相流动。为此采用将气液两相流视为连续流体的Mixture多相流模型来描述其流动;对湍流计算采用计算量小、注重反映流场综合效果的雷诺时均法和基于Boussinesq涡粘假设理论的Relizable k -ε湍流模型;考虑到涡轮和泵轮叶片间的耦合影响,采用将泵轮和涡轮一起计算的整体流道计算域,泵轮和涡轮两计算域间边界采用滑移网格技术进行处理;叶片和流道表面设置为无滑移壁面条件;基于有限体积法对控制方程离散,空间离散格式选用稳定性好、精度较高的二阶迎风离散格式;对两相流离散方程采用分离式解法,速度—压力耦合采用PISO算法。并以YOCQz465调速型液力偶合器为例给出计算过程。同时对液力偶合器辅腔流场也采用同样的方法进行计算。
     3、调速型液力偶合器轴向力及流场分析
     为得到液力偶合器轴向力的大小和变化规律,以YOCQz465调速型液力偶合器为例,对各充液率、不同转速比条件下的流场和轴向力进行计算。并对制动工况、典型牵引工况和额定工况下液力偶合器工作腔、辅腔流场和轴向力进行分析。在此基础上获得液力偶合器轴向力合力。通过分析得出以下结论:
     在充液率一定的情况下,液力偶合器轴向力随转速比的增大而减小;在制动工况下轴向力最大,在额定工况下最小。
     轴向力的变化规律是由工作腔内和辅腔内流场压力这一对矛盾决定的。工作腔内的压力随转速比增大而减小,因为随转速比增大,工作腔环流量减小,由于速度方向改变而产生的动反力减小;辅腔内压力随转速比增大而增大,是由于转速增大,离心力增大的缘故。但各工况下,工作腔内压力均大于辅腔内压力,对轴向力起主导作用,决定轴向力的方向,所以液力偶合器泵轮和涡轮的轴向力都是向外的,即有使泵轮和涡轮分开的趋势。
     4、调速型液力偶合器轴向力试验研究
     理论分析与计算的结果是否正确只能通过试验来验证。为此在大连液力机械有限公司对YOCQz465调速型液力偶合器轴向力进行试验测试。首次提出并采用通过测量推力盘轴向应变来测量液力偶合器轴向力的方法。该方法不需要对原液力偶合器结构进行改造,对原液力偶合器结构和性能影响小,简单、方便,适用于具有推力盘的大功率液力偶合器。对试验结果进行分析表明,工作时液力偶合器轴向力脉动较大,对液力偶合器轴承和结构都有较大影响,但其平均值较稳定。将理论计算结果与试验结果进行对比分析表明,理论计算值比试验值略大一些,平均误差为8%,最大误差22%。实验测试和理论计算的轴向力方向是一致的。说明基于CFD的轴向力计算方法是可行的。
     5、液力偶合器轴向力影响因素分析
     液力偶合器轴向力影响因素很多也很复杂,为控制液力偶合器轴向力过大,分析了减小轴向力的措施。本文采用对比的方法,从理论计算和流场分析的角度,对液力偶合器的充液率、腔型、循环圆直径、输入转速等参数对轴向力的影响进行了分析。分析结果表明:液力偶合器充液率大,轴向力大,并近似成正比关系;液力偶合器腔型对轴向力影响较大,并且桃形腔轴向力明显大于圆形腔;循环圆直径增大,轴向力迅速增大,轴向力与循环圆直径四次方近似成正比;输入转速增大,轴向力增大,轴向力与转速平方近似成正比。在此基础上分析了减小轴向力措施。一是在涡轮壳体上开卸荷孔,可减小工作腔与辅腔间压力差,从而减小轴向力;二是采用双腔结构,对称结构可使轴向力相互抵消。
Hydrodynamic coupling is a hydrodynamic transmission component with many advantages. Especially variable speed hydrodynamic coupling is a better reliable and economical speed regulator, which is widely used for fans and pumps because of its obvious energy-saving effect. However, greater axial force will be produced during its running, which will accelerates the bearing fatigue and wearing, shortening bearing’s life cycle and the coupling’s life cycle. In fact, hydrodynamic coupling itself doesn’t exist wearing owing to its hydrodynamic transmission, the lifespan and reliability of hydrodynamic coupling is mainly depended on bearing and its sealing. In a word, axial force has a significant impact on hydrodynamic coupling’s reliability.
     Aiming at the axial force calculation of variable speed high-power hydrodynamic coupling, an indispensable part of the special subject“Key Technological Research on Hydrodynamic Variable Speed and Energy Saving of Large Pump and Fan”from the National High Technology Research and Development Plan (863) (2007AA05Z256), in the paper, multi-phase CFD method is effectively made use of to carry out the flow field calculation and analysis of hydrodynamic coupling and reveal its flow law, and axial force exeperimental measuring is carried on. Based on this, the influencing factors to hydrodynamic coupling axial force are discussed so as to find the measures of reducing hydrodynamic coupling axial force. The research method, content and conclusions are as follows:
     1.Theoretical analysis of axial force in Hydrodynamic coupling
     Hydrodynamic couplings axial force includs the pump axial force and turbine axial force. Both consist of working chamber axial force and secondary chamber axial force. Working chamber axial force can be attributed to two aspects, on the one hand, it is resulted from the static pressure initiated from centrifugal force due to flow in the working chamber, on the other hand, it is produced by the circulated flow with direction variation of velocity and variation of momentum. But, secondary chamber axial force is mainly resulted from static pressure owing to centrifugal force. To accurately calculate the axial force, the key is to get the accurate flow field in both the working chamber and the secondary chamber.
     It can be seen that from the structural and working characteristics of hydrodynamic coupling that there exists an action and reaction axial force pair between the pump and turbine in the secondary chamber; it is same situation as in the working chamber. Therefore, the resultant force of pump and turbine is an force pair; they are the same in size and opposite in direction. In calculating the axial force, anyone calculation of these two forces will be enough.
     2.Numerical Calculation of Gas-liquid Two-phase Flow in Variable Speed Hydrodynamic Coupling
     The inner flow field calculation of hydrodynamic coupling is the key to decide the axial force, which is unsteady, incompressible and viscous two-phase flow. In solving this complex flow, a multi-phase model Mixture is adopted to describe the gas-liquid continuous flow; for turbulent calculation, a Relizable k-εturbulent model based on Boussinesq eddy viscosity assumption is chosen to characterize the turbulent flow by using Reynolds time-averaged method at the result of shorter calculation time and better calculation results; taking into account the hydrodynamic coupling effect between the pump and turbine, the computational domain of pump and turbine is integrated, while the interface of the pump and turbine is dealt with sliding mesh theory; boundary conditions of blade and wall surfaces are set as non-slip wall condition; the N-S equation based on finite volume method is differentiated by a more stable and accurate second-order upwind scheme; PISO algorithm is used in velocity-pressure hydrodynamic coupling algorithm; the two-phase differentiation equation is solved by variable separation method. Finally, YOCQz465 variable speed hydrodynamic coupling is taken for example to show the complete simulation process. For hydrodynamic coupling secondary chamber flow field calculation, the above method validates.
     3.Axial Force and Flow Field Analysis in Variable Speed High-power Hydrodynamic coupling
     To identify the value and variation law of hydrodynamic coupling axial force, taking YOCQz465 variable speed hydrodynamic coupling for example, flow field and axial force are respectively calculated at different filling rate and speed ratio, further, the flow field and axial force in working chamber and secondary chamber are analyzed under braking condition, traction condition and rated condition to finally obtain the resultant force of hydrodynamic coupling axial force. The following conclusions can be drawn from the analysis:
     The axial force of hydrodynamic coupling deceases with the increasing of speed ratio at a constant filling rate; the axial force reaches the maximum at braking condition while minimum at rated condition. Variation law of axial force lies in the contradiction between working chamber pressure and secondary chamber pressure. The pressure in working chamber decrease with the increase of speed ratio because the circulation flow reduces with the increase of speed ratio, which results in decreasing the reaction force due to direction alteration of velocity. However, the pressure in the secondary chamber increases with the rising of speed ratio because of the increment of centrifugal force. To sum up, pressure in working chamber is always greater than that in the secondary chamber, thus, the axial force of working chamber plays a dominant role in determining the direction of axial force, both axial forces of pump and turbine are opposite in direction, tending to disengage the pump and turbine.
     4.Axial Force Experimental Mmeasuring in Variable Speed High-power Hydrodynamic Coupling
     Theoretical analysis and calculation results must be verified before application, for this purpose, a series of proof tests are done on YOCQz465 in Dalian Hydrodynamic Machinery Company. An innovative method is proposed for measuring axial force of hydrodynamic coupling by virtue of measuring axial strain of thrust plate. This new method is simple and convenient, doesn’t need modification of the original hydrodynamic couplings, has little influence on the structure and properties of hydrodynamic coupling and is suitable for large-scale high-speed hydrodynamic coupling. Analysis of the test results shows that the axial force fluctuation is greater but the axial force average is stable during running, which has a greater impact on its structure and bearings. The comparison of the theoretical results with the experimental ones shows that the calculated values are slightly larger than the experimental ones.The mean error is 8%, and the maximum error is 22%; the direction of axial force is identical. Therefore, the calculation method based on CFD is feasible.
     5.Influencing Factors on Axial Force in Hydrodynamic Coupling
     For the control of greater hydrodynamic coupling axial force, the influencing factors must be found. It is hard to decide the influencing factors, thus, a comparative method is used from the viewpoint of theoretical calculation and flow field analysis by focusing on filling rate, chamber shape, circulation diameter and input speed. The analytical results demonstrates that the greater the filling rate, the larger the axial force, existing approximate direct proportional relationship; chamber shape has a greater impact on the axial force, and the axial force of peach-type chamber is significantly greater than circle-type chamber; circulation diameter increasing brings about rapid increase of axial force, which is proportional to the fourth power of the circulation diameter; the greater input speed will produce greater axial force, being proportional to the square of input speed. Based on the above analysis, measures for decreasing axial force are as follows: the first is to open unloading holes in turbine housing so as to reduce the pressure difference between the working chamber and the secondary chamber; the second is the use of dual-chamber structure which can counterbalance the axial forces.
引文
[1]马文星.液力传动理论与设计[M].北京:化学工业出版社,2004.
    [2]杨乃乔.液力偶合器[M].北京:机械工业出版社,1989.
    [3]杨乃乔.液力调速与节能[J].通用机械,2008,(6) :25-29.
    [4]杨乃乔.风机和泵类产品的节能减排[J].通用机械,2009,(8) :23-28.
    [5]杨乃乔,邹铁汉.国外液力偶合器在中国的应用[J].现代零部件,2006,(1) :101-104.
    [6]刘应诚,杨乃乔.液力偶合器应用与节能技术[M].北京:化学工业出版社,2006.
    [7]童祖楹.液力偶合器[M].上海:上海交大出版社,2000.
    [8]罗邦杰.工程机械液力传动[M].北京:机械工业出版社,1991.
    [9]马文星,何延东,刘春宝.液力传动研究现状分析与展望[J].农业机械学报,2008,39(7) :51-55.
    [10] BAI L,FIEBLG M,MITRA N K.Numerical Analysis of Turbulent Flow in Fluid Hydrodynamic couplings[J].ASME Journal of Fluids Engineering,1997,119:569-576.
    [11] HUITENGA H,MITRA N K.Improving Startup Behavior of Fluid Hydrodynamic couplings Through Modification of Runner Geometry:Part I—Fluid Flow Analysis and Proposed Improvement [J].Journal of Fluids Engineering,2000(4):683-688.
    [12] HUITENGA H,MITRA N K.Improving Startup Behavior of Fluid Hydrodynamic couplings Through Modification of Runner Geometry:Part II—Modification of Runner Geometry and Its Effects on the Operation Characteristics[J].Journal of Fluids Engineering,2000(4):689-693.
    [13] DONG Y,LAKSHMINARAYANA B,MADDOCK D.Steady and Unsteady Flow Field at Pump and Turbine Exit of a Torque Converter[J].ASME Journal of Fluid Engineering 1998,120:538-548.
    [14] LEE CHINWON,JANG WOOKJIN,LEE JANG MOO,et al. Three Dimensional Flow Field Simulation to Estimate Performance of a Torque Converter[C].SAE Paper 2000-01-1146, 2000.
    [15] YANG SEUNGHAN,SHIN SEHYUN,BAE INCHEOL,et al. A Computer-integrated Design Strategy for Torque Converters Using Virtual Modeling and Computational Flow Analysis[C].SAE Paper 1999-01-1046,1999.
    [16]马文星,张斌,罗邦杰.液力变矩器三维粘性流动的计算[J].吉林工业大学学报,1992(03):57-62.
    [17]马文星.液力变矩器三维流动计算―流线曲率法[J].建筑机械. 1991(1): 28-32.
    [18]李雪松,马文星,吴允柱.液力偶合器制动工况三维流场数值模拟及制动转矩计算[C].第四届全国流体传动及控制学术会议论文集.大连,2006.
    [19]李雪松.车辆液力减速器三维流场分析与特性计算[D].长春:吉林大学,2006.
    [20]杨威嵬,吴凡,虞俊.液力偶合器流场的技术仿真[J].机械设计与研究,2009,25(2) :79-82.
    [21]何延东,马文星,刘春宝.液力偶合器部分充液流场数值模拟与特性计算[J].农业机械学报,2009,40(5) :24-28.
    [22]姚子生.液力偶合器部分充液两相流动数值模拟与分析[D].长春:吉林大学,2008.
    [23]吴开府.液力偶合器流场数值模拟及其分离流动控制研究[D].长春:吉林大学,2007.
    [24]陈应坚.液力变矩器轴向力的理论分析及试验研究[D].长春:吉林工业大学,1987.
    [25]王奎升.石油钻井液力变矩器轴向力的分析与计算[J].石油大学学报,1995(5) :53-56.
    [26]刘春孝,王海燕.液力耦合器的轴向力及实用计算[J].安阳工学院学报,2008 (2) :35-36.
    [27]许睿.基于三维流场数值解的液力变矩器轴向力研究[D].长春:吉林大学,2006.
    [28]孔珑.两相流体力学[M].北京:高等教育出版社,2005.
    [29]马根娣,孙鸿元.气液两相流研究概述[J].力学进展,1986,16(1):65-73.
    [30]林宗虎.多相流体力学及其工程应用[J].自然杂志,2007,28(4):200-204.
    [31]周云龙,洪文鹏,孙斌.多相流体力学理论及其应用[M].北京:科学出版社,2008.
    [32]李光.鼓泡塔反应器气液两相流数值模拟[D].上海:华东理工大学,2010.
    [33]李易松,魏建峰.小粒径固液两相流在旋流泵内运动的数值模拟[J].流体机械,2010,38(7) :20-23.
    [34]王聪慧.稠密液固两相湍流混合的数值分析及应用[D].长春:吉林大学,2010.
    [35]徐海良,屈科辉.双流道泵固液两相流的数值计算与分析[J].广西大学学报(自然科学版),2010,35(2) :249-253.
    [36]刘建瑞,苏起钦.自吸泵气液两相流数值模拟分析[J].农业机械学报,2009,40(9) :73-76.
    [37]明平剑.基于非结构化网格气液两相流数值方法及并行计算研究与软件开发[D].哈尔滨:哈尔滨工程大学,2008.
    [38]齐建波,罗丽华,董平省.基于双流体模型的管内气液两相流稳态计算方法[J].油气储运,2009,28(2) :46-49.
    [39]张强,曹义华,李栋.采用欧拉两相流法对翼型表面霜冰的数值模拟[J].北京航空航天大学学报,2009,35(3) :351-355.
    [40]胡桂荣,李意民,贾晓娜.离心风机内气固两相流的数值模拟[J].煤矿机械,2008,29(3) :37-39.
    [41]罗玮,周玮,程文.曝气池中气液两相流数值模拟[J].水资源与水工程学报,2007,18(2) :69-71.
    [42]沈宗沼,杨定军,刘爱圆.液固两相流泵叶轮内流场数值分析与试验研究[J].煤矿机械,2010,31(1) :56-59.
    [43]杨敏官,吴小莲,康灿.轴流泵叶轮内气液两相流动分析[J].中国农村水利水电,2009 (1) :93-95.
    [44]张锴,Brandani Stefano.流化床内颗粒流体两相流的CFD模拟[J].化工学报,2010,61(9) :2192-2207.
    [45]虞育松,李国岫.基于气液两相流大涡模拟研究柴油喷射的雾化过程[J].内燃机工程,2009,30(3) :39-44.
    [46]何延东.基于CFD的大功率调速型液力偶合器设计[D].长春:吉林大学,2009.
    [47]吴海燕,陶玉静,王昱.大涡模拟超声速两相流混合层的非线性分析[J].航空动力学报,2009,24(1) :25-31.
    [48]冯宜彬.基于CFD分析的液力减速器设计研究:[D].武汉:武汉理工大学,2008.
    [49]李雪松.基于非稳态流场分析的车辆液力减速器参数优化方法研究[D].长春:吉林大学,2010.
    [50]刘春宝.轿车扁平化液力变矩器研究[D].长春:吉林大学,2009.
    [51]王福军.计算流体动力学分析——CFD软件原理与应用[M].北京:清华大学出版社, 2004.
    [52]刘春宝,马文星,许睿.液力变矩器轴向力的CFD计算与分析[J].吉林大学学报(工学版),2009,39(5) :1181-1185.
    [53]吴正人,程友良.风机主要调速节能技术的比较[J].华北电力技术,2002(12) :50-52.
    [54]陈叶,杨达文,方耀清.调速型液力偶合器的研究及应用[J].煤矿机械,2002(7):14-15.
    [55]周玉辉.模型水轮机轴向力测试方法[J].西北水力发电,2006,22(1) :85-86.
    [56]李斌,戚蒿,郭岳新.圆盘泵叶轮结构改进及固液两相流的数值模拟[J].排灌机械,2009,27(2) :95-99.
    [57]孔繁余,高翠兰,张旭锋.PBN65-40-250型屏蔽泵轴向力平衡计算及其试验[J].农业工程学报,2009,25(5) :68-72.
    [58]胡敬宁,潘金秋,杨孙圣.海水淡化用高压泵轴向力数值模拟计算与试验对比[J].流体机械,2009,37(7) :8-12.
    [59]冯进,丁凌云,张慢来.离心式气液分离器流场的全三维数值模拟[J].长江大学学报(自然版),2006,3(4):112-115.
    [60]施卫东,李启锋,陆伟刚,张德胜.基于CFD的离心泵轴向力计算与试验[J].农业机械学报,2009,40(1) :60-63.
    [61]辛文涛,金晓琼.推广调速型液力偶合器的可行性研究[J].内燃机车,2008 (6) :1-3.
    [62]占梁梁.水力机械空化数值计算与试验研究:[D].北京:清华大学,2002.
    [63]张伟伟.基于CFD技术的高效气动弹性分析方法研究[D].西安:西北工业大学,2006.
    [64]胡敬宁,肖霞平,叶晓琰.反渗透海水淡化提升泵轴向力和径向力平衡的研究[J].流体机械,2009,37(10) :19-23.
    [65]才委.双涡轮液力变矩器转矩分配特性研究[D].长春:吉林大学,2009.
    [66]武首香,王学魁,沙作良.工业结晶过程的多相流与粒数衡算的CFD耦合求解[J].化工学报,2009,60(3) :593-600.
    [67]郭刘洋,杜明刚.CFD为基的液力减速器结构优化仿真[J].现代制造工程,2009 (1) :104-106.
    [68]何仁,严军,鲁明.液力缓速器三维数值模拟及性能预测[J].汽车工程,2009,31(3) :250-252.
    [69]谢洁飞,李香桂,杨辉.基于CFD的离心泵内部流场数值模拟与性能预测[J].中南林业科技大学学报,2010,30(3) :129-132.
    [70]孙景泉,李金龙,毕庶力.动态水力旋流器内部流场CFD模拟研究[J].化学工程与装备,2010 (1) :24-26.
    [71]张德生,赵继云,刘立宝.基于CFD的桃形腔偶合器流场分析及结构优化[J].中国矿业大学学报,2010,39(5) :687-692.
    [72]王春林,吴志旺,司艳雷.旋流自吸泵气液两相流数值模拟[J].排灌机械,2009,27(3) :163-167.
    [73]程根生.调速型液力偶合器的性能及应用[J].淮南职业技术学院学报,2005(1):47-48.
    [74]田华.液力变矩器现代设计理论的研究[D].长春:吉林大学,2005.
    [75]过学迅,郑慕桥.液力变矩器流场计算的压力修正法[J].汽车工程,1996,18(2):89-93.
    [76]闫国军,董泳,吴剑威.液力变矩器部分充液特性研究及应用[J].工程机械,2007(5):47-50.
    [77]朱荣生,付强,李维斌,等.基于混合模型的离心泵叶轮内汽蚀两相流的CFD分析[J].中国农村水利水电,2006(8):51-53.
    [78]严鹏,吴光强,谢硕.液力变矩器泵轮流场数值分析[J].汽车工程,2004(2):183-186.
    [79]刘正先,曹淑珍,谷传纲,等.离心叶轮内三维湍流流场的实验研究[J].工程热物理学报,1999(5):558-562.
    [80]齐迎春.数值模拟技术在液力变矩器流场分析中的应用[D].长春:吉林大学,2004.
    [81]王峰.基于流场分析的液力减速器制动性能研究[D].北京:北京理工大学,2007.
    [82]陈秀维.混流式水轮机转轮CFD优化[D].哈尔滨:哈尔滨工业大学,2004.
    [83]伍晓芳.空调用多翼离心风机现代设计的CAD/CFD研究[D].武汉:华中科技大学, 2004.
    [84] SINIBALDI E,BEUX F,SALVETTI MV.A Numerical Method for 3D Barotropic Flows in Turbomachinery[J].Flow Turbulence and Combustion,2006(4):371-381.
    [85]陈见.基于三维流动计算的液力减速器性能仿真研究[D].武汉:武汉理工大学,2008.
    [86]张惠民.叶轮机械中的三元流理论及其应用[M].北京:机械工业出版社,1984.
    [87]张永学,李振林.流体机械内部流动数值模拟方法综述.流体机械,2006,34(7):34-38.
    [88]蔡兆麟,罗晟.流体机械叶轮内二次流及尾迹发展[J].华中科技大学学报,2001(A01): 7-10.
    [89]任涛,闫永强,梁武科.CFD技术在离心泵优化设计中的应用[J].排灌机械,2007, 25(1):25-28.
    [90]杨凯华,阎清东.车辆液力减速器仿真计算研究[J].液压与气动,2002(7):1-3.
    [91]侯树强,王灿星,林建中叶轮机械内部流场数值模拟研究综述[J].流体机械,2005(5):1-6.
    [92]韩东劲.调速型液力偶合器系统设计方法[J].煤矿机电,2006(5):25-29.
    [93]韩东劲.调速型液力偶合器叶轮强度的有限元分析[J].煤矿机电,2001(6):31-35.
    [94] LIM GIWOO,JANG JAEDUK.Effects of Stator Shapes on Hydraulic Performances of an Automotive Torque Converter with a Squashed Torus[C]//SAE 2002-01-0886.
    [95] FLACK R,BRUN K.Fundamental Analysis of the Secondary Flows and Jet-Wake in a Torque Converter Pump-Part I : Model and Flow in a Rotating Passage[J] . Journal of Fluids Engineering,2005(1):66-74.
    [96] FLACK R,BRUN K.Fundamental Analysis of the Secondary Flows and Jet-Wake in a Torque Converter Pump-Part II:Flow in a Curved Stationary Passage and Combined Flows[J].Journal of Fluids Engineering,2005(1):75-82.
    [97] VON BACKSTROM T , LAKSHMINARAYANA B . Perspective : Fluid Dynamics and Performance of Automotive Torque Converters:An Assessment[J].ASME Journal of Fluids Engineering,1996,118:665-676.
    [98] WU YULIN.Three-dimension Calculation of Oil-bubble Flows through a Centrifugal Pump Impeller[C].Proceedings of the Third Internal Conference on Pump and Fan.Tsinghua University Press,1998(10):526-532.
    [99] SHIN SEHYUN,KIM KYUNG-JOON,KIM DONG-JIN,et al.The Effect of Reactor Blade Geometry on the Performance of an Automotive Torque Converter[C]//SAE 2002-01-0885.
    [100] DONG Y,LAKSHMINARAYANA B.Experimental Investigation of the Flow Field in an Automotive Torque Converter Stator[J].ASME Journal of Fluids Engineering,1999,121 788-797.
    [101] CIGARINI MARCO,JONNAVITHULA SREENADH.Fluid Flow in an Automotive Torque Converter:Comparison of Numerical Results with Measurements[C]//SAE 950673.
    [102] CHARLES N,MCKINNON,BRENNEN DANAMICHELE,et al.Hydraulic Analysis of a Reversible Fluid Hydrodynamic coupling[J].Journal of Fluids Engineering,2001(2):249-255.
    [103] BY R R,LAKSHMINARAYANA B.Measurement and Analysis of Static Pressure Field in a Torque Converter Turbine[J].Journal of Fluids Engineering,1995(3):473-478.
    [104] MINEMURA KIYOSHI,UCHIYAMA TOMOMI.Three-Dimension Calculation of Air-Water Two-phase Flow in Centrifugal Pump Impeller Based on a Bubbly Flow Model[J].Journal of Fluids Engineering,1993,115(4):781-783.
    [105] DEGOND PIERRE,DIMARCO GIACOMO,MIEUSSENS LUC.A Moving Interface method for Dynamic Kinetic–fluid Hydrodynamic coupling[J].Journal of Computational Physics,2007(2):1176-1188.
    [106] SHIN SEHYUN,CHANG HYUKJAE,ATHAVALE MAHESH.Numerical Investigation of the Pump Flow in an Automotive Torque Converter[C]//SAE 1999-01-1056.
    [107]卢金铃,席光,祁大同.离心泵叶轮内气液两相三维流动数值研究[J].工程热物理学报,2003(2):237-240.
    [108]班耀涛,赵宏,薛敦松.螺旋轴流式油气多相泵的性能预测模型[J].工程热物理学报,2000,21(2):187-190.
    [109]周华,夏南.油气分离器内气液两相流的数值模拟[J].计算力学学报,2006(6):706-711.
    [110]周帼彦.螺旋片导流式分离器气液两相流的数值模拟与试验研究[D].南京:南京工业大学,2003.
    [111]余志毅,曹树良,王国玉.叶片式混输泵内气液两相流的数值计算[J].工程热物理学报,2007(1):46-48.
    [112]何志霞,袁建平,李德桃,等.柴油机喷嘴喷孔内气液两相湍流场三维数值模拟[J].内燃机工程,2005(6):18-21.
    [113]宋月兰.多层浆搅拌槽内气液两相流的数值模拟[D].北京:北京化工大学,2006.
    [114]肖兴均.轴流式混输泵单个压缩级设计及内部流场的CFD模拟分析[D].兰州:兰州理工大学,2007.
    [115] ROLLET-MIET,LAURENCE D,JFERZIGER.LES and RANS of Turbulent Flow in Tube Bundles [J].International Journal of Heat and Fluid Flow,1999,20(3):241-254.
    [116]常思勤.三维流动数值模拟中网格划分方法的研究[J].武汉汽车工业大学学报,1998 (2):1-5.
    [117]江帆,黄鹏.Fluent高级应用与实例分析[M].北京:清华大学出版社,2008.
    [118]苏铭德,黄素逸.计算流体力学基础[M].北京:清华大学出版社,1997.
    [119]严谨.井筒气液两相流动数值模拟研究[D].南充:西南石油学院,2005.
    [120]卢家才,李永光,林宗虎,等.气液两相流体绕方柱流动的数值模拟[J].工程热物理学报, 2001,22(6):751-754.
    [121]万天虎,赵道利,梁武科,等.基于CAD/CFD分析系统的流体机械翼型优化[J].流体机械,2005,33(11):37-39.
    [122]谭立新.水气二相流数值模拟研究[D].成都:四川大学,1999.
    [123]朱保林.离心泵内流三维数值模拟[D].杭州:浙江工业大学,2005.
    [124]卢金铃,席光,祁大同.气液两相流泵的研究进展.流体机械[J].2001,29(12):12-15.
    [125]赵兴艳,苏莫明,张楚华,等.CFD方法在流体机械设计中的应用[J].流体机械,2000,28(3):22-25.
    [126] LEE C W,PALMA P C,SIMMONS K.Comparison of Computational Fluid Dynamics and Particle Image Velocimetry Data for the Air flow in an Aeroengine Bearing Chamber[J].Journal of Engineering for Gas Turbines and Power,2005(4):697-703.
    [127] SALEWSKI MIRKO,STANKOVIC DRAGAN,FUCHS LASZLO.A Comparison of Single and Multiphase Jets in a Crossflow Using Large Eddy Simulations[J].Journal of Engineering for Gas Turbines and Power,2007(1):61-68.
    [128] KADAMBI J R,MARTIN W T,AMIRTHAGANESH S et al.Particle Sizing Using Particle Imaging Velocimetry for Two-phase Flows[J].Powder Technology,1998(3):251-259.
    [129] SHIN SEHYUN,LEE BYUNG-CHEOL,HONG JONG-HAE,et al.Performance Improvement Using a Slotted Stator of an Automotive Torque Converter[C]//SAE 2003-01-0247.
    [130] WATANABE HISASHI,YOSHIDA KAZUNORI,YAMADA MASATOSHI,et al.Flow Visualization and Measurement in the Stator of a Torque Converter[J].SAE 9541263:25-30.
    [131] CARIDAD JOSE A,KENYERY FRANK.Slip Factor for Centrifugal Impellers Under Single and Two-Phase Flow Conditions[J].Journal of Fluids Engineering,2005(2):317-321.
    [132] BRUN KLAUS,FLACK RONALD D.The Flow Field Inside an Automotive Torque Converter:Laser Velocimeter Measurements[C]//SAE 960721.
    [133] STEPHANE V.Local Mesh Refinement and Penalty Methods Dedicated to the Direct Numerical Simulation of Incompressible Multiphase Flows[C].Proceedings of the ASME/JSME Joint Fluids Engineering Conference,2003.
    [134] YERMAKOV ALEXANDER,FLACK RONALD D,CLAUDEL WARREN D.Average Velocity Measurements in Six Automotive Torque Converters : PartⅡ—Turbine Measurements[J].Tribology Transactions.2001,44:615-625.
    [135]刘建瑞,苏起钦.自吸泵气液两相流数值模拟分析[J].农业机械学报,2009,40(9):73-76.
    [136]董建福.液力偶合器力矩系数与轴向力的试验研究[J].传动技术,1995(1):8-13.
    [137]夏焕文,张景香.液力偶合器强度及轴向力分析[J].测试技术学报,1996,10(2):411-417.
    [138]赵国社.调速型液力偶合器的应用研究[J].中州煤炭,2008(3):17-29.
    [139]高红俐,杨继隆,叶力.分段式多级离心泵的轴向力计算[J].水泵技术,2000(2):8-12.
    [140]郑建华,孙玉琢,刘志军.多级离心泵的轴向力研究[J].水泵技术,1999(4):7-14.
    [141]邵万珍.调速型液力偶合器运行效率计算及节能分析[J].节能,2005(9):12-18.
    [142] WISSINK J G.DNS of Separating Low Reynolds Number Flow in a Turbine Cascade with Incoming Wakes[J].International Journal of Heat and Fluid Flow,2003(4):626-635.
    [143] WATANABE HISASHI,KURAHASHI TETSUO,et al.Flow Visualization and Measurement of Torque Converter Stator Blades Using a Laser Sheet Lighting Method and a Laser Doppler Velocimeter[C]//SAE 970680.
    [144] MIDDELMANN VOLKER,GUNDLAPALLI RACISHANKAR,HALENE CLEMENS,etal . Development of Axially-squashed Torque Converters for Newer Automatic Transmissions[J].ASME Fluids Engineering Division Summer Meeting.2000.FEDSM 2000-111326.
    [145] SAKAMOTO HARUO,SUYAMA KIYOTO,SAKA TOKIMORI.Study on Torque Converter Circuit Profile[C]// SAE 920765.
    [146]岳明,徐行,杨茂林.离心式喷嘴内气液两相流动的数值模拟[J].工程热物理学报, 2003,24(5):888-890.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700