Chirp信号的调制及其在锚杆检测中的试验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着各类工程的不断建设,锚杆应用范围的不断扩展,导致锚杆用量急剧增长,也使得锚杆质量对工程安全性的影响越来越受重视,因此提高锚杆检测精度的呼声也越来越高。
     作为国家自然科学基金资助项目(50874035)“基于伪随机信号的锚杆动态响应与智能检测研究”的一个子项,本文从完善锚杆检测体系出发,提出以可控震源技术实现对应力波检测信号的精确控制,并调制出具有良好自相关特性的Chirp信号作为震源信号。笔者利用编制的Delphi应用程序,借助对扫频方式和频谱范围的变换,实现了包括正弦信号、雷克子波信号和三类Chirp信号等多种检测信号。通过一系列室内试验对信号自相关特性和衰减特性等特点进行的对比研究,验证了Chirp信号频带宽、能量大、自相关性良好、易于检测等特点,非常适合作为锚杆检测震源信号。
     借助计算机声卡和超磁共振等技术,将Chirp信号和可控震源引入到锚杆质量检测领域,也成为本论文的创新所在。基于以上先进理念,笔者实现了一套试验装置,并利用它进行了一系列室内模拟试验,从而对各类信号的自相关特性以及衰减特性有了更深入的认识,主要的研究成果如下:
     (1)正弦波信号自相关特性非常差,不适合作为激振信号。雷克子波信号虽然自相关特性较好,但由于是短脉冲信号,信号传播过程中衰减过快,也不适合作为锚杆检测所用震源信号。
     (2)三类Chirp信号均具有良好的自相关特性,即使当其反射信号叠加在一起时,其相关信号仍然十分清晰,具有良好的抗噪性能。三类Chirp信号均存在一个最佳频谱区间,并大致存在于2k-20kHz至4k-20kHz这一区段内,但准确的区间位置有待进一步深入研究。
     (3)在室内模拟试验条件下,正弦波信号自相关特性表现仍然很差,而雷克子波信号在接收信号振幅较小情况下,自相关性效果也非常差。在相同试验条件下,试验Chirp信号即使在振幅很小的极端条件下,仍能保持良好的自相关性效果,初至时间非常明显。
     (4)通过对衰减系数的计算比较,发现试验Chirp信号传播过程中能量衰减均较小,并且自相关特性变差的速度要明显慢于振幅的衰减速度。同等试验条件下,试验Chirp信号的能量衰减特性基本接近,相对来说,2k-20k线性Chirp信号或4k-20k指数Chirp信号的表现更加优异。
     对震源信号形式的定量控制技术,特别是对信号频率的控制,是目前该方向研究的处女地,本课题的研究完善了锚杆质量检测研究体系,也为应力波检测方法的发展贡献了微薄的力量。试验装置在室内试验的应用效果较好,基本实现了预期目标,但由于该技术涉及范围广泛,相关内容仍需进一步完善。
With the continuous construction of various projects, the application of rockbolt is expending, which leads to sharp increase in use of rockbolt, and also makes more and more attention to the relationship between quality of rockbolt and safety of projects. And the voice of demanding for improving detection accuracy becomes stronger and stronger.
     For perfecting the detecting system of bolt-anchoring quality, we put forward vibroseis technique to accurately realize the control of stress wave signal, and Chirp signal, which has good autocorrelation, is adopted as vibroseis signal. With application compiled by Delphi, many kinds of signals are modulated by changing sweep mode and frequency range, like sinusoidal signal, ricker wavelet signal and three types of Chirp signals, et al. Through a series of laboratory tests on signals' autocorrelation and attenuation, we verify that Chirp signal has wider frequency band, higher energy, better autocorrelation, and is easier to be detected, which is quite suitable to be detecting signal for vibroseis.
     With computer sound card, supraconduction magnetic resonance, and other technologies, Chirp signal and vibroseis are introduced to the field on testing of bolt-anchoring quality, which is also my innovation in this thesis. Based on the advanced idea, we realize a test device, and carry out a series of laboratory experiments with it. Therefore, we comprehend more about autocorrelation and attenuation of the signals, and the main results are as follows:
     (1) The autocorrelation of sinusoidal signal is so poor that it's unsuitable as detecting signal for vibroseis. Although ricker wavelet signal has better autocorrelation, because it's short pulse signal, and the attenuation of signal is too fast, which makes it excluded also.
     (2) Three kinds of Chirp signals all have good autocorrelation, even when the reflected signals add together, which reveals its antinoise performance is satisfying. The Chirp signals all have a optimal frequency range that generally exists in the section between 2k-20kHz and 4k-20kHz, but further research is needed for its exact location.
     (3) In our testing condition, the autocorrelation of sinusoidal signal remains badness. When the amplitude of received signal is smaller, the autocorrelation of ricker wavelet signal becomes extremely poor. In the same condition, Chirp signal could maintain good autocorrelation, and the first arrival time is very obvious, even on the extreme conditions when the amplitude of received signal attenuates observably.
     (4) Through the comparison of attenuation coefficient, we find, for testing Chirp signals, the energy of received signals attenuates more slowly, and the rate of autocorrelation's deterioration is evidently smaller than the rate of amplitude's decay. In the same condition, their character is close to each other in energy attenuation. Relatively, the linear Chirp signal of 2k-20k and the exponential Chirp signal of 4k-20k have more excellent performance than others.
     The quantitative control of vibroseis signal, especially for the control of signal's frequency, is still the virgin land in this field. The research on this subject perfects the testing system of bolt-anchoring Quality, and definitely makes some contribution to the development of stress wave detection method. The performance of our test device in laboratory tests is satisfying comparatively, and we generally achieve the anticipated result. As the technology involves plentiful knowledge of many fields, there still needs further improvement.
引文
[1]肖炀燚.锚杆锚固质量应力波无损检测技术研究[J].安徽理工大学学报(自然科学版),2007,27(S1):119-121.
    [2]卢黎,张四平,张永兴等.压力型锚索力学机理现场试验研究[J].岩土力学,2010,31(08):2435-2458.
    [3]叶观宝,何志宇,高彦斌等.软土地区压力分散型锚索极限抗拔力的现场试验研究[J].建筑科学,2010,26(11):62-65.
    [4]岳向红,刘明贵,李祺.锚杆检测技术研究进展[J].土工基础,2005,19(03):83-85.
    [5]龙景奎,杨乐,蒋斌松.巷道松动圈地质雷达探测应用研究[J].山东大学学报(工学版),2009,39(S2):136-139.
    [6]于远祥,谷拴成,吴璋等.黄土地层下预应力锚索荷载传递规律的试验研究[J].岩土力学与工程学报,2010,29(12):2573-2580.
    [7]刘道涵,汤型正,胡祥云.锚杆锚固质量电磁法检测的理论研究[J].人[民长江,2010,41(15):87-90.
    [8]聂艺.反射波法评价锚固质量的BP神经网络研究[D].武汉:武汉理工大学,2010.
    [9]D.H.Steve Zou, Jiulong Cheng, Renjie Yue, et al. Grout quality and its impact on guided ultrasonic waves in grouted rock bolts[J]. Journal of Applied Geophysics,2010,72(02):102-106.
    [10]Beard M D, Lowe M J S. Non-destructive testing of rock bolts using guided ultrasonic waves[J]. International Journal of Rock Mechanics & Mining Sciences,2003, (40):527-536.
    [11]方陆鹏,杨海元,佟振勋等.对共振频率法检测裂纹扩展量的研究[J].实验力学,1993,8(01):34-44.
    [12]Wauter Hartman, Benoit Lecinq, John Higgs, et al. Non destructive integrity testing of rock reinforcement elements in Australian mines[C]//2010 Underground Coal Operators'Conference. New South Wales:The AusIMM Illawarra Branch,2010,161-170.
    [13]柯玉军,薛有平,苗天德.超声应力波法检测锚杆的机理分析及应用[J].岩土力学,2005,26(S 1):145-150.
    [14]许明.锚固系统质量的无损检测与智能诊断技术研究[D].重庆:重庆大学,2002.
    [15]钟宙灿.基于时频分析的锚杆无损检测技术研究[D].成都:成都理工大学,2010.
    [16]尹健民,秦强,肖国强.声波在不同长度锚杆锚固体中传播规律研究[J].2011,42(03):95-111.
    [17]曾鼎华,王闪闪.完整锚杆横向动力响应问题的求解与分析[J].地下空间与工程学报,2010,6(04):742-746.
    [18]王致富.低应变反射波法振源特性仿真分析[D].成都:西南交通大学,2010.
    [19]郭世明,高才坤.弹性应力波法锚杆质量检测初探[J].西部探矿工程,1999,11(02):9-10.
    [20]Wang Mingwu, Wang Heling. Nondestructive testing of grouted bolts system.[J] Chinese Journal of Geotechnical Engineering,2001,23(01):109-113.
    [21]汪天翼,肖国强,成传欢.声频应力波法检测水布垭工程锚杆施工质量[J].长江科学院院报,2004,21(04):22-24.
    [22]秦莹.基于系统动力响应的锚固结构无损检测及模型试验研究[D].武汉:武汉理工大学,2009.
    [23]孙冰.不同围岩中锚杆锚固系统的低应变动力响应分析[D].长沙:中南大学,2010.
    [24]Chirp signals for communications [P]. America, Proc. of The Western Electronic Show and Convention (WESCON), Vol.14.2, August 1962.
    [25]Kenro Nozaki. Application of FM/CW Techniques to Ionosondes [EB/OL]. http://www. ips. gov.au/IPSHosted/INAG/uag-104/text/nozakil.html,2002-07-30/2008-03-28.
    [26]陈付彬,王胜,张军.调频步进雷达信息处理试验平台的构建[J].系统仿真学报,2009,21(19):6067-6072.
    [27]柴治媛.可控震源伪随机扫描方法与地震响应的数值模拟[D].长春:吉林大学,2007.
    [28]Nigel A. Anstey. Vibroseis[M]. New Jersey, USA:Prentice Hall PTR,1991:102-108.
    [29]陶知非.改善可控震源高频信号输出品质的探讨[J].物探装备,2008,18(02):71-77.
    [30]张艳娜,罗德宏.宽带Chirp技术的应用[J].现代电子技术,2009,(09):11-14.
    [31]宋美丽,周亮,罗迎等.线性调频步进信号雷达目标微多普勒效应分析[J].空军工程大学学报(自然科学版),2009,10(06):4145.
    [32]蒋忠进.弹性波Chirp信号检测与时延估计研究[D].长春:吉林大学,2004.
    [33]冯维婷.高精度LFM信号参数估计[J].西安邮电学院学报,2009,14(05):36-39.
    [34]徐楚林,冯海泓,蒋国岩.线性调频信号检测的快速调频变换算法[J].声学技术,2009,28(02):196-199.
    [35]于晓辉.噪声背景下chirp信号参数估计理论与方法研究[D].长春:吉林大学,2007.
    [36]胡颖睿CHIRP子脉冲非线性频率步进信号处理技术研究[D].成都:电子科技大学,2009.
    [37]中国岩石力学与工程学会岩石锚固与注浆技术专业委员会.锚固与注浆技术手册[M].北京:中国电力出版社,1999.
    [38]许明.锚固系统质量的无损检测与智能诊断技术研究[D].重庆:重庆大学,2002.
    [39]张东方.锚杆锚固质量动力无损检测数值模拟研究[D].郑州:郑州大学,2010.
    [40]陶知非2008 EAGE年会中的可控震源[J].物探装备,2008,18(05):281-320.
    [41]于凤芹.多分量Chirp信号的时频表示与参数估计的研究及其应用[D].上海:上海大学,2005.
    [42]Stephen D. Robertson, Henry L. Gray, Wayne A. Woodward. The generalized linear chirp process[J]. Journal of Statistical Planning and Inference,2010,140:3676-3687.
    [43]Billur Barshan, Birsel Ayrulu. Comparative analysis of different approaches to target differentiation and localization with sonar[J]. Pattern Recognition,2003,36:1213-1231.
    [44]施春强.基于LMS算法的自适应干扰消除[J].中国科技信息,2011,(01):62-64.
    [45]黄苏豫.线性调频多载波系统抗多普勒性能[J].现代电子技术,2011,34(03):46-48.
    [46]Steven J.Schiff, David Colella, Gary M. Jacyna, et al. Brain chirps:spectrographic signatures of epileptic seizures[J]. Clinical Neurophysiology,2000,111:953-958.
    [47]肖丹,胡剑锋.运动想象脑电信号识别研究[J].计算机工程与应用,2010,46(33):169-190.
    [48]鞠萍华,秦树人,赵玲.基于LMD的能量算子解调方法及其在故障特征信号提取中的应用[J].振动与冲击,2011,30(02):1-23.
    [49]韦俊霞,施国全.浅地层剖面仪信号处理技术研究[J].声纳系统的设计和预报,2007,26(05):66-68.
    [50]董亮,汪敏,郝龙飞等.基于DSP Builder的Chirp信号源设计[J].现代电子技术,2009,(16):92-99.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700