基于空芯光子晶体光纤的气体受激拉曼散射效应
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
空芯光子晶体光纤(HC-PCF)可显著增强光与填充介质间的相互作用,利用HC-PCF可有效降低气体的受激拉曼散射(SRS)阈值。当采用近红外稀土掺杂光纤激光器泵浦,基于HC-PCF的气体SRS效应在非线性光学、激光技术、激光光谱学以及高精度痕量气体检测等领域具有重要应用前景。本论文开展了基于HC-PCF的气体SRS效应的研究,对HC-PCF全光纤高压气体腔的制作与气压控制、SRS泵浦光源的研制以及基于HC-PCF的气体SRS实现方法等关键理论技术问题进行了深入的研究,主要包括以下几个方面:
     给出了SRS的经典电磁场描述,由此得出了稳态条件下的SRS增益系数,并分析了瞬态过程导致的SRS增益下降问题,以及泵浦光的线宽对前后向SRS过程的影响。在此基础上,建立HC-PCF中的SRS理论模型,从而揭示出HC-PCF损耗与模式特性对SRS过程的影响。利用平面波展开法对HC-PCF的模式特性进行了分析,并实验测量了HC-PCF的模场分布。
     通过HC-PCF气体填充置换和泄漏实验,结合微管管流理论,研究了HC-PCF气体填充过程中的动力学行为和气体泄漏特性,结果表明,HC-PCF的气体填充过程极为缓慢,减小出口密封腔体积可有效缩短充气时间。通过对熔接参数的优化,利用商用光纤熔接机实现了HC-PCF与传统SMF之间的低损耗熔接。在上述两项工作的基础上,提出一种全光纤型HC-PCF高压气体腔制作方案,并通过测量单端气体泄漏速度随时间变化关系评估了所研制的高压气体腔的最终腔压。
     研制了一台非线性偏振旋转被动锁模掺镱光纤激光器,通过光纤耦合器进行脉冲堆积实现了脉冲宽度的加宽,通过滤波将光谱变窄后再经级联掺镱光纤放大器进行功率提升,最终获得重复频率11.68MHz,光谱宽度0.5nm,脉宽约800ps,峰值功率11.8W激光脉冲序列。通过研究不同结构调Q光纤激光器的脉冲输出特性发现,放大的自发辐射(ASE)对调O掺镱光纤激光器的输出脉冲有影响,无论是环形腔还是线形腔,宽带ASE均会消耗掉大量反转粒子数,不利于调Q激光脉冲振荡的形成;通过在腔内加入选频器件以抑制ASE,可将腔内光子数在Q开关打开时保持在较低的水平,使得增益远大于腔损耗,从而利于形成高峰值功率的调Q激光脉冲;此外,由于线形腔结构可利用掺杂光纤的双程增益,调Q运转时,阈值更低,输出脉冲宽度更窄、峰值功率更高。在对调Q光纤激光器结构的研究基础上,设计并研制了一种波长可在1064±5nm范围内调谐的调Q掺镱光纤激光器,获得了重复频率为5kHz、脉宽约30ns、最大峰值功率达85W的激光脉冲序列。
     利用研制的高峰值功率调Q掺镱光纤激光器作为拉曼泵浦光源,首次实现了单模光纤激光器泵浦的氢气SRS效应,避免了光源耦合的问题,大大提高了泵浦效率,实现了全光纤化的气体拉曼激光波长变换,有利于促进气体拉曼激光器件的小型紧凑化。
     以上研究结果对研制实用化的气体拉曼激光器件以满足特殊波段激光应用需求具有重要的参考价值。
Hollow-core photonic crystal fiber(HC-PCF) can be used for enhancing the nonlinear interaction between the guided light and the hydro-medium filled in it,in particular,the gases.It has been shown that the threshold pump power of stimulated Raman scattering(SRS) with gas-filled HC-PCF may be greatly reduced.This implies that the gas SRS effect based on such a HC-PCF technique may find applications in nonlinear optics,laser technology and spectroscopy,and high-resolution trace gas detection,when rare earth doped fiber lasers are used as the pump.In this dissertation,the technical issues for the SRS effect based on gas-filled HC-PCF,including all-fiber high-pressure gas cell based on the HC-PCF,the SRS pump sources,and the demonstration of the SRS effect of hydrogen-filled HC-PCF, are studied in details.The main research works are as follows.
     The gain coefficient of stable state SRS is deduced form the classical electromagnetic field theory and the gain decline caused by the transient process is analysed.The different influences of pump linewidth on forward and backward SRS process are discussed.Furthermore,the theoretical model of SRS in HC-PCF is established,and the influences of transmittion loss and mode characteristic on SRS process are opened out.Finally,the mode characteristic of HC-PCF is analysed using the plane wave expansion method and the mode filed distribution is tested experimentally.
     Based on gas filling and leaking experiments,combined with the micro-pipe flow theory,the gas-filling and leaking characteristics for HC-PCF are studied.The results show that,the gas-filling speed of the HC-PCF is very slow,and a very long time is needed to build pressure equilibrium between the inlet and the outlet of the HC-PCF.The time required for building the pressure equilibrium in the HC-PCF may be efficiently shortened by reducing the volume of the outlet cavity.The HC-PCF has been successfully spliced to the standard single-mode fibers with low splicing losses by just using a normal commercial fiber splicing machine with the splicing parameters suitably optimized.Moreover,a new method to build all-fiber high-pressure gas cell based on the HC-PCF is present,and such an all-fiber high-pressure gas cell is also made with its final equilibrious gas pressure valued by the measured leaking speed evolution behavior.
     A passively mode-locked ytterbium-doped fiber laser(YDFL) is prepared with the nonlinear polarization rotation mechanism.By broadening the pulse duration with the pulse stacking technique based on a fiber ring,narrowing the pulse linewidth with a filter,and enhancing the pulse peak power with cascaded YDF amplifiers,a pulse train with repetition of 11.68MHz,3dB linewidth of 0.5nm,duration of about 800ps and peak power of 11.8W is obtained when the mode-locked YDFL is used as the seed source.On the other hand,the experimental investigations of the output characteristics for actively Q-switched fiber lasers with different configurations show that,the amplified stimulated emissions(ASEs) affect the generation process of the Q-switched laser pulses.Since the broadband ASE depletes most of the inversion population,it may be an adverse effect for the formation of the Q-switched laser pulses for either ring or linear cavity fiber lasers.When the ASE is suppressed with a narrow filter inserted in the cavity,the photon number may be limited at a low level right after the Q-switch is opened,which results in the gain much higher than the cavity loss at that time,and thus,benefitting the formation of the high-power Q-switched pulses.Moreover,the experimental results show that the Q-switched fiber lasers with linear cavity may be better than that with ring cavity because the former uses double-pass gain of the doped fiber.Based on the experimental results,a wavelength-tunable Q-switched YDFL with linear cavity is designed and built,and the pulse train with repetition of 5 kHz,duration of 30ns,peak power of 85W,and wavelength tuning range between 1060 and 1069nm is obtained finally.
     With the all-fiber high-pressure gas cell based on the HC-PCF described above, the SRS phenomenon for hydrogen gas,for the first time to our best knowledge,has been observed with such a Q-swithced ytterbium-doped single mode fiber laser as the pump source.For the compatibility of the pump laser with the single mode fibers, such SRS effects may be complemented with all-fiber structure,and thus may be useful for developing compact Raman devices,for instance,such as gas Raman lasers.
     The investigation results described above may be very helpful in developing gas Raman laser devices for satisfying the application requirements of new spectral region.
引文
[1]E.Yablonovitch,Inhibited spontaneous emission in solid-state physics and electronic,Phys.Rev.Lett.,1987,58:2059-2062.
    [2]S.John,Strong localization of photonics in certain disordered dielectric super lattices,Phys.Rev.Lett.,1987,58:2486-2489.
    [3]S.Y.Lin,E.Chow,V.Hietala,Experimental demonstration of guiding and bending of electromagnetic waves in a photonic crystal,Science,1998,282:274-276.
    [4]R.Colombelli,K.Srinivasan,M.Troccoli,et al.Quantum cascade surface-emitting photonic crystal laser,Science,1998,302:1374-1377.
    [5]H.Matsubara,S.Yoshimoto,H.Saito,et al.GaN photonic-crystal surface-emitting laser at blue-violet wavelengths,Science,2008,319:445-447.
    [6]Y.Akahane,T.Asano,B.S.Song,et al.High-Q photonic nanocavity in a two-dimensional photonic crystal,Nature,2003,425:944-947.
    [7]T.Yoshie T,A.Scherer,J.Hendrickson J,et al.Vacuum Rabi splitting with a single quantum dot in a photonic crystal nanocavity,Nature,2004,432:200-203.
    [8]John,D.M.Robert,N.W.Joshua.Photonic Crystal:Molding the flow of light.Princeton University Press 1995.
    [9]P.St.J.Russell,Recent progress in photonic crystal fibers,OFC,2000,Paper TuCl.
    [10]J.C.Knight.T.A.Birks,P.St.J.Russell et al.All-silica single-mode optical fiber with photonic crystal cladding,Opt.Lett.,1996,21:1547-1549.
    [11]T.A.Birks,J.C.Knight,P.St.J.Russell,Endlessly single-mode photonic crystal fiber,Opt.Lett.1997,22:961-963.
    [12]P.St.J.Russell,Photonic Crystal fiber,IEEE J.of Lightwave Technol.,2006,24:4729-4749.
    [13]F.Couny,F.Benabid,P.J.Roberts et al.Generation of multi-octave optical-frequency combs in a Kagome lattice hollow core photonic crystal fiber,IEEE CLEO/QELS,2008:1973-1974.
    [14]F.Couny,F.Benabid,P.J.Roberts et al.Generation and photonic guidance of multi-octave optical-frequency combs,Science,2007,318:1118-1121.
    [15]X.M.Liu,Four-wave mixing self-stability based on photonic crystal fiber and its applications on erbium-doped fiber lasers,Opt.Commun.,2006,260:554-559.
    [16]W.H.Liu,X.Z.Song,Experimental research of supercontinuum generation by femtosecond pulse in highly nonlinear photonic crystal fiber,Acta Phys.Sin.,2008,57:917-922.
    [17]K.Furusawa,A.Malinowski,J.H.V.Price,et al.Cladding pumped Ytterbium-doped fiber laser with holey inner and outer cladding,Opt.Express,2001,9:714-720.
    [18]W.J.Wadsworth,R.M.Percival,G.Bouwmans,et al.High power air-clad photonic crystal fibre laser,Opt.Express,2003,11:48-53.
    [19]A.O.Blanch,J.C.Knight JC,W.J.Wadsworth,et al.Highly birefringent photonic crystal fibers,Opt.Lett.,2000,25:1352-1327.
    [20]T.P.Hansen,J.Broeng,et al.Highly birefringent index-guiding photonic crystal fibers,IEEE Photon.Technol.Lett.,2001,13:588-590.
    [21]S.G.Johnson,M.Ibannescu,M.Skorobogatiy,et al.Low-loss aspmptotically single-mode propagation in large-core omniguide fibers.Opt.Express,2001,9:748-779.
    [22]T.Katagiri,Y.Matsuura,M.Miyagi,Photonic bandgap fiber with a silica core and multilayer dielectric cladding.Opt.Lett.,2004,29:557-559.
    [23]A.Mizrahi,L.Schachter,Bragg reflection waveguides with a matching layer,Opt.Express,2004,12:3156-3170.
    [24]S.O.Konorov et al.Diamond-shaped-core hollow photonic-crystal fiber.Laser Phys.Lett., 2005,2,366-368.
    [25]T.A.Birks,P.J.Roberts,P.St.J.Russell,et al.Full 2-D photonic band gaps in silica/air structures.Electron.Lett.1995,31:1941-1943.
    [26]J.Broeng et al.Analysis of air-guiding photonic bandgap fibers.Opt.Lett.,2000,25:96-98.
    [27]R.F.Cregan,B.J.Mangan et al.Single-mode photonic band gap guidance of light in air.Science,1999,285:1537-1539.
    [28]A.Ferrando,E.Silvester,J.J.Miret,E Andr(?)s,and M.V.Andr(?)s,Full vector analysis of a realistic photonic crystal fiber,Opt.Lett.,1999,24:pp.276-278.
    [29]A.Ferrando,E.Silvestre,J.J.Miret,and P.Andr(?)s,Vector description of higher-order modes in photonic crystal fibers,J.Opt.Soc.Amer.A,2000,17:1333-1340.
    [30]J.Broeng,S.E.Barkou,T.Sφndergaard,and A.Bjarklev,Analysis of air-guiding photonic bandgap fibers,Opt.Lett.,2000,25:96-98.
    [31]J.T.Lizier and G.E.Town,Splice losses in holey optical fibers,IEEE Photon.Technol.Lett.,2001,13:794-796.
    [32]M.Qiu,Analysis of guided modes in photonic crystal fibers using the finite-difference time-domain method,Microw.Opt.Technol.Lett.,2001,30,327-330.
    [33]T.P.White,R.C.McPhedran,L.C.Botten,G.H.Smith,andC.M.de Sterke.,Calculations of air-guided modes in photonic crystal fibers using the multipole method.Opt.Express,2001.9:721-732.
    [34]T.P.White,B.T.Kuhlmey,R.C.McPhedran,D.Maystre,et al.Multipole method for microstructured optical fibers.Ⅰ.Formulation,J.Opt.Soc.Amer B,2002,19:2322-2330.
    [35]T.Kuhlmey,T.P.White,G.Renversez,D.Maystre et al.Multipole method for microstructured optical fibers.Ⅱ.Implementation and results,J.Opt.Soc.Amer.B,2002,19:2331-2340.
    [36]G.B.Ren,Z.Wang et al.Full-vectorial analysis of complex refractive-index photonic crystal fibers.Opt.Express,2004,12:1126-1135.
    [37]Z.Wang et al.Supercell lattice method for photonic crystal fibers.Opt.Express,2003,11:980-991.
    [38]S.Kunimasa,K.Masanori.Full-vectorial imaginary-distance beam propagation method based on finite element scheme:application to photonic crystal fibers.IEEE J.of Quantum Electron,2002,38:927-933.
    [39]K.N.Park,K.S.Lee.Improved effective-index method for analysis of photonic crystal fibers,Opt.Lett.,2005,30:958-960.
    [40]S.Kunimasa,K.Masanori.Full-vectorial imaginary-distance beam propagation method based on finite element scheme:application to photonic crystal fibers.IEEE J.of Quantum Electronics,2002,38:927-933.
    [41]G.Bouwmans,F.Luan,J.C.Knigt et al.Properties of a hollow-core photonic bandgap fiber at 850nm wavelength.Opt.Express,2003,11:1613-1620.
    [42]S.O.Konorov,A.B.Fedotov,A.M.Zheltikov et al.Phase-matched four-wave mixing and sensing of water molecules by coherent anti-Stokes Raman scattering in large-core-area hollow photonic-crystal fiber.Opt.Soc.Am.B.2005,22:2049-2053.
    [43]Crystal Fibre A/S HC-520-01 product information,www.crystal-fibre.com
    [44]Crystal Fibre A/S HC-630-01 product information,www.crystal-fibre.com
    [45]Crystal Fibre A/S HC-1060-02 product information,www.crystal-fibre.com
    [46]Crystal Fibre A/S HC-1550-02 product information,www.crystal-fibre.com
    [47]J.Legsgaard,N.A.Mortensen et al.Material effects in air-guiding photonic bandgap fibers.J.Opt.Soc.Am.B.2003,20:2046-2051.
    [48]G.J.Pearee,J.M.Pottage et al.Hollow-core PCF for guidance in mid to far infra-red.Opt.Express,2005,13:6937-6946.
    [49]J.D.Shephard,W.N.Macpherson,R.R.J.Maier,J.D.C.Jones,D.P.Hand,Single-mode mid-IR guidance in a hollow-core photonic crystal fiber.Opt.Express,2005,13:7139-7144.
    [50]K.Saitoh,M.Koshiba,Leakage loss and group velocity dispersion in air-core photonic bandgap fibers.Opt.Express,2003,11:3100-3109.
    [51]K.Saitoh,Confinement losses in air-guiding photonic bandgap fibers.IEEE Photon.Technol.Lett.,2003,15:236-238.
    [52]N.Venkataraman et al.Low loss(13dB/km) air core photonic band-gap fibre.ECOC 2002,paper PD 1.1,Copenhagen,Denmark.
    [53]J.Mangan,L.Farr et al.Low loss(1.7dB/km) hollow core photonic bandgap fiber.OFC 2004,paper PDP24,Los Angeles,USA.
    [54]P.J.Roberts,F.Couny et al.Ultimate low loss of hollow-core photonic crystal fibres.Opt.Express,2005,13,236-244.
    [55]X.Chen,M.J.Li,N.Venkataraman,M.T.Gallagher,et al.Highly birefringent hollow-core photonic bandgap fiber.Opt.Express,2004,12:3888-3893.
    [56]M.S.Alam,K.Saitoh,M.Koshiba,High group birefringence in air-core photonic bandgap fibers.Opt.Lett.,2005,30:814-826.
    [57]K.Saitoh,M.Koshiba,Photonic bandgap fibers with high birefringence.IEEE Photo.Technol.Lett.,2002,14:1291-1293.
    [74]F.Couny,P.S.Light.et al.Electromagnetically induced transparency and saturable absorption in all-fiber devices based on ~(12)C_2H_2-filled hollow-core photonic crystal fiber.Opt.Commun.2006,263:28-31.
    [75]P.S.Light,F.Benabid,F.Couny et al.Electromagnetically induced transparency in Rb-filled coated hollow-core photonic crystal fiber,Opt.Lett.2007,32:1323-1325.
    [76]P.S.Light,F.Benabid,M.Maric et al.Electromagnetically induced transparency in Rubidium-filled Kagome HC-PCF,IEEE CLEO/QELS,2008,1:281-3282.
    [77]S.O.Konorov,A.B.Fedotov,Enhanced four-wave mixing in a hollow-core photonic-crystal fiber,Opt.Lett.2003,28:1448-1450.
    [78]S.O.Konorov,E.E.Serebryannikov,Phase-matched four-wave mixing of isolated waveguide modes of high-intensity femtosecond pulses in a hollow photonic-crystal fiber,Jetp Lett.2004,79:395-398.
    [79]S.O.Konorov et al.Phase-matched four-wave mixing of sub-100-TW/cm2 femtosecond pulses in isolated air-guided modes of a hollow photonic-crystal fiber.Phys.Rev.E,2004,70:
    [80]A.B.Fedotov,S.O.Konorov,V.P.MItrokhin,et al.Coherent anti-stokes raman scattering in isolated air-guided modes of a hollow-core photonic-crystal fiber.Phy.Rev.A.2004,70:045802.
    [81]S.O.Konorov,A.B.Fedotov,et al.Phase-matched coherent anti-stokes raman scattering in isolated air-guided modes of a hollow-core photonic-crystal fiber.J.of Raman Spectr.2005,36:129-133.
    [82]S.O.Konorov et al.Laser ablation of dental tissues with picosecond pulses of 1.06-mu m radiation transmitted through a hollow-core photonic-crystal fiber.Appl.Opt.,2004,43:2251-2256.
    [83]J.D.Shephard,G.Bouwmans et al.High energy nanosecond laser pulses delivered single-mode through hollow-core PBG fibers.Opt.Express,2004,12:717-723.
    [84]G.Humbert,D.P.Williams et al.Hollow core photonic crystal fibers for beam delivery.Opt.Express,2004,12:1477-1484.
    [85]D.Shephard,F.Couny,P.St.J.Russell,et al.Improved hollow-core photonic crystal fiber design for delivery of nanosecond pulses in laser micromachining applications.Appl.Opt.2005,44:4582-4588.
    [86]F.Luan,J.C.Knight,P.St.J.Russell et al.Femtosecond soliton pulse delivery at 800nm wavelength in hollow-core photonic bandgap fibers.Opt.Express,2004,12:835-840.
    [87]G.Ouzounov,F.R.Ahmad,D.Muller,et al.Generation of megawatt optical solitons in hollow-core photonic band-gap fibers.Science,2003,19:1702-1704.
    [88]A.D.Bessonov,A.M.Zheltikov,Pulse compression and multimegawatt optical solitons in hollow photonic-crystal fibers.Phy.Rev.E.2006,73:066618.
    [89]Gerome,P.Dupriez,J.Clower,et al.High power tunable femtosecond soliton source using hollow-core photonic bandgap fiber,and its use for frequency doubling.Opt.Express,2008,16:2381-2386.
    [90]H.Lim,F.W.Wise,Control of dispersion in a femtosecond ytterbium laser by use of hollow-core photonic bandgap fiber,Opt.Express,2004,12:2231-2235.
    [91]C.K.Nielsen,K.G.Jespersen,S.R.Keiding,A 158 fs 5.3nJ fiber-laser system 1um using photonic bandgap fibers for dispersion control an pulse compression.Opt.Express,2006,14:6063-6068.
    [92]T.Ritari,J.Tuominen,H.Ludvigsen et al.Gas sensing using air-guiding photonic bandgap fibers.Opt.Express,2004,12:4080-4087.
    [93]S.Smolka,M.Barth,O.Benson,Highly efficient fluorescence sensing with hollow core photonic crystal fibers.Opt.Express,2007,15:12783-12791.
    [94]S.Smolka,M.Barth,O.Benson,Selectively coated photonic crystal fiber for highly sensitive fluorescence detection.Appl.Phy.Lett.2007,90:111101.
    [95]S.P.Tai,M.C.Chan,et al.Two-photon fluorescence microscope with a hollow-core photonic crystal fiber.Opt.Express 2004,12:6122-6128.
    [96]H.Yan,C.Gu,C.Yang,J.Liu,et al.Hollow core photonic crystal fiber suface-enhanced Raman probe.Appl.Phy.Lett.2006,89:201401.
    [97]H.Yan,C.Gu,CH.X.Yang,J.Liu,G..F.Jin,J.T.Zhang,L.T.Hou,Y.Yao.Hollow core photonic crystal fiber surface enhanced Raman probe.Proc.SPIE.2007,6433,643307.
    [98]Y.Zhang,C Shi,C.Gu,et al.Liquid core photonic crystal fiber sensor baser on surface enhanced Raman scattering.Appl.Phy.Lett.2007,90:193504.
    [99]Y.Han,Y.Zhu,L.Xiao,et al.Index-guiding liquid-core photonic crystal fiber for solution measurement using normal and surface-enhanced Raman scattering.Opt.Engineering.2008,47:040502.
    [100]M.Cox,A.Argyros,M.C.J.Large,S.Kalluri.Surface enhanced Raman scattering in a hollow core microstructured optical fiber.Opt.Express.2007,15:13675-13681.
    [101]Benabid F,J.C.Knight and P.St.J.Russell,Particle levitation and guidance in hollow-core photonic crystal fiber.Opt.Express,2002,10:1195-1203.
    [102]M.J.Renn,R.Pastel,H.J.Lewandowski,Laser guidance and trapping of mesoscale in hollow-core optical fibers.Phys.Rev.Lett.1999,82:1574-1577.
    [103]S.O.Konorov et al.Experimental demonstration of a photonic-crystal-fiber optical diode.Appl.Phys.B,2004,78:547-550.
    [104]R.Thapa,K.Knabe,K.L.Corwin,B.R.Washburn,Arc fusion splicing of hollow-core photonic bandgap fibers for gas-filled fiber cells.Opt.Express,2006,14:9576-9583.
    [105]L.M.Xiao,M.S.Demokan,W.Jin,Fusion splicing photonic crystal fibers and conventional single-mode fibers:microhole collapse effect.IEEE J.of Lightwave Technol.,2007,25:3563-3574.
    [106]L.M.Xiao,W.Jin,M.S.Demokan,Fusion splicing small-core photonic crystal fibers and single-mode fibers by repeated arc discharges.Opt.Lett.2007,32:115-118.
    [107]T.P.Hansen,J.Broeng et al.Air-guiding photonic bandgap fibers:spectral properties,macrobending loss,and practical handling.IEEE J.of Lightwave Technol.,2004,22:11-15.
    [1]J.A.Giordmaine,W.Kaiser,Light scattering by coherently driven lattice vibration,Phys.Rev,1966,144:678-688.
    [2]W.Kaiser,M.Maier,Stimulated Raylegh,Brillouin and Raman spectroscopy,1972,1077-1150.
    [3]E.E.Hagenlocker,R.W.Minck,W.G.Rodo.Effects of photon lifetime on stimulated optical scattering in gases.Phys.Rev.,1967,154:226-233.
    [4]C.S.Wang.Theory of stimulated Raman scattering.Phys.Rev.,1969,182:482-494.
    [5]P.Lallemand,P.Simova,G.Bret.Pressure-induced line shift and collisional narrowing in hydrogen gas determined by stimulated Raman emission.Phys.Rev.Lett.,1966,17:1239-1241.
    [6]J.R.Murray,A.Javan,Effects of collision on Raman line profiles of hydrogen and deuterium gas.J.Mol.Spectrosc.,1972,42:1-26.
    [7]W.R.Trutna.Y.K.Park,R.L.Byer.The dependence of Raman gain on pump laser bandwidth.IEEE J.Quantum Electron.,1979,15:648-655.
    [8]N.M,Kroll,P.L.Kelly.Temporal and spatial gain in stimulated Raman scattering.Phys.Rev.A,1971,4:763-776.
    [9]A.A.Betin,G.A.Pasmanik.Converion of spatial coherence of Stokes beams amplified in a multimode pumping field.JETP Lett.,1976,23:528-531.
    [10]J.R.Murray,J.Goldhar,A.Szoke.Backward Raman gain measurements for KrF laser radiation scattered by CH_4.Appl.Phys.Lett.,1978,32:551-553.
    [11]A.Laubereau,W.Kaiser,Vibrational dynamics of liquids and solids investigated by picosecond light pulses,Rev.Mod.Phys.,1978,50:607-665.
    [12]G.P.Agrawal,Nonlinear Fiber Optics & Applications of Nonlinear Fiber Optics,2002.
    [13]D.J.John,D.M.Robert,N.W.Joshua.Photonic Crystal:Molding the flow of light.Princeton University Press 1995.
    [14]R.D.Meade,A.M.Rappe,K.D.Brommer et al.Accurate Theoretical Analysis of Photonic Band-Gap Materials.Phys.Rev.Lett.,1993,48:8434-8437.
    [15]J.Broeng,S.E.Barkou,T.Sondergaard,and A.Bjarklev,Analysis of air-guiding photonic bandgap fibers,Opt.Lett.,2000,25:96-98.
    [16]A.Ferrando,E.Silvester,J.J.Miret,P.Andr(?)s,and M.V.Andr(?)s,Full vector analysis of a realistic photonic crystal fiber,Opt.Lett.,1999,24:pp.276-278.
    [17]A.Ferrando,E.Silvestre,J.J.Miret,and P.Andr(?)s,Vector description of higher-order modes in photonic crystal fibers,J.Opt.Soc.Amer.A,2000,17:1333-1340.
    [18]S.E.Barkou,J.Broeng,and A.Bjarklev,Silica-air photonic crystal fiber design that permits waveguiding by a true photonic bandgap effect,Opt.Lett.,1999,24:46-48.
    [19]R.D.Meade,A.M.Rappe,K.D.Brommer et al.Accurate Theoretical Analysis of Photonic Band-Gap Materials.Phys.Rev.Lett.,1993,48:8434-8437.
    [1]F.Benabid,J.C.Knight and P.St.J.Russell.Stimulate Raman scattering in hydrogen-filled hollow-core photonic crystal fiber.Science,2002,298:399-402.
    [2]J.Henningsen,J.Hald et al.Saturated absorption in acetylene and hydrogen cyanide in hollow-core photonic bandgap fibers.Opt.Express,2005,13:10475-10482.
    [3]F.Couny,F.Benabid,P.S.Light,P.St.J.Russell,Electromagnetically-induced transparency grid in acetylene-filled hollow-core PCF.Opt.Express,2005,13:5694-5703.
    [4]Ritari T,Tuominen J.et al.Gas sensing using air-guiding photonic bandgap fibers.Opt.Express,2004,12:4080-4087.
    [5]Benabid F,Couny F,Knight J C.et al.Compact,stable and efficient all-fiber gas cells using hollow-core photonic ctystal fibers.Nature,2005,434:488-491.
    [6]H.R.Berg,C.A.Seldam,P.S.Gulik,Compressible laminar flow in a capillary,J.Fluid Mech.1993,246:1-20.
    [7]J.C.Harley,Y.Huang,H.H.Bau,N.Zemel,Gas flow in micro-channels,J.Fluid Mech.1995,284:257-274.
    [8]A.Beskok,G.E.Karniadakis.A model for flows in channels,pipes,and ducts at micro and nano scales.Microscale Thermophysical Engineering,1999,3(1):43-77.
    [9]E.B.Arkilic,M.A.Schmidt,K.S.Breuer,Gaseous slip flow in long microchannels,J.Microelectromechnical Systems 1997,6:167-178.
    [10]秦丰华,孙德军,尹协远,长微管道气体流动的近似解析解.空气动力学学报,2002,20:48-56.
    [11]秦丰华,孙德军,尹协远,长微圆管道气体流动的简化计算.中国科学技术大学学报,2001-31:436-442.
    [12]Qin F H.Study on the characteristic of microscale gas flow.Ph.D Thesis,Univ.of Sci.and Technol.2005.
    [13]A.Beskok,Simulations and models for gas flows in micro geometries.Ph.D Thesis,Princeton Univ.1996.
    [14]F.Couny,P.S.Light.et al.Electromagnetically induced transparency and saturable absorption in all-fiber devices based on ~(12)C2_H_2-filled hollow-core photonic crystal fiber.Opt.Commun.2006,263:28-31.
    [15]Y.Y.Huang,Y.Xu,A.Yariv.Fabrication of functional microstructured optical fibers through a selective-filling technique.Appl.Phys.Lett.2004,85:5182-5184.
    [16]T.P.Hansen,J.Broeng et al.Air-guiding photonic bandgap fibers:spectral properties,macrobending loss,and practical handling.IEEE J.of Lightwave Technol.,2004,22:11-15.
    [17]R.Thapa,K.Knabe,K.L.Corwin,B.R.Washburn,Arc fusion splicing of hollow-core photonic bandgap fibers for gas-filled fiber cells.Opt.Express,2006,14:9576-9583.
    [18]L.M.Xiao,M.S.Demokan,W.Jin,Fusion splicing photonic crystal fibers and conventional single-mode fibers:microhole collapse effect.J.of Lightwave Technol.,2007,25:3563-3574.
    [19]L.M.Xiao,W.Jin,M.S.Demokan,Fusion splicing small-core photonic crystal fibers and single-mode fibers by repeated arc discharges.Opt.Lett.2007,32:115-118.
    [20]J.P.Meunier,S.I.Hosain.An accurate splice loss analysis for single-mode grade-index fibers with mismatched parameters.IEEE J.of Lightwave Technol.,1992,10:1521-1525.
    [1]F.Benabid F,J.C.Knight and P.St.J.Russell,Stimulate Raman scattering in hydrogen-filled hollow-core photonic crystal fiber.Science,2002,298:399-402.
    [2]F.Benabid,G.Antonopoulos,J.C.Knight,P.St.J.Russell,Stokes amplification regimes in quasi-cw pumped hydrogen-filled hollow-core photonic crystal fiber.Phys.Rev.Lett.,2005,95:213903.
    [3]F.Benabid,F.Couny,J.C.Knight et al.Compact,stable and efficient all-fiber gas cells using hollow-core photonic crystal fibers.Nature,2005,434:488-491.
    [4]F.Couny,F.Benabid,P.S.Light,Subwatt threshold cw raman fiber-gas laser based on H_2-filled hollow-core photonic crystal fiber.Phys.Rev.Lett.,2007,99:143903.
    [5]A.V.Avdokhin,S.V.Popov,J.R.Taylor,Totally fiber integrated figure-of-eight femtosecond source at 1065nm.Opt.Express,2003,11:265-269.
    [6]A.Isom(a|¨)ki,O.G.Okhotnikov,All-fiber ytterbium soliton mode-locked laser with dispersion control by solid-core photonic bandgap fiber.Opt.Express,2006,14:4368-4373.
    [7]E.Yoshida,M.Nakazawa,80 similar to 200GHz erbium doped fibre laser using a rational harmonic mode-locking technique.IEEE Electron.Lett.1996,32:1370-1372.
    [8]E.Tamura,E.P.Ippen,H.A.Haus and L.E.Nelson,77-fs pulse generation from a stretched-pulse mode-locked all-fiber ring laser.Opt.Lett.1993,18:1080-1082.
    [9]C.K.Nielsen,K.G.Jespersen,S.R.Keiding,A 158 fs 5.3nJ fiber-laser system 1um using photonic bandgap fibers for dispersion control an pulse compression.Opt.Express,2006,14:6063-6068.
    [10]S.Kivisto,R.Herda,O.G.OKhotnikov,All-fiber supercontinuum source based on a mode-locked ytterbium laser with dispersion compensation by linearly chirped bragg grating.Opt.Express,2008,16:265-270.
    [11]A.Isomaki,O.G.Okhotnikov,All-fiber ytterbium soliton mode-locked laser with dispersion control by solid-core photonic bandgap fiber.Opt.Express,2008,16:4368-4373.
    [12]A.Isomaki,O.G.Okhotnikov,Femtosecond soliton mode-locked laser based on ytterbium-doped photonic bandgap fiber.Opt.Express,2008,16:9238-9243.
    [13]H.Lim,F.O.Ilday,F.W.Wise,Femtosecond ytterbium fiber laser with photonic crystal fiber for dispersion contral,Opt.Express,2002,10:1497-1502.
    [14]H.Lim,F.W.Wise,Control of dispersion in a femtosecond ytterbium laser by use of hollow-core photonic bandgap fiber,Opt.Express,2004,12:2231-2235.
    [15]F.Gerome,P.Dupriez,J.Clower,et al.High power tunable femtosecond soliton source using hollow-core photonic bandgap fiber,and its use for frequency doubling.Opt.Express,2008,16:2381-2386.
    [16]B.Ortac,O.Schmidt,T.Schreiber,et al.High-energy fimtosecond Yb-doped dispersion compensation free fiber laser.Opt.Express,2007,15:10725-10732.
    [17]A.D.Bessonov,A.M.Zheltikov,Pulse compression and multimegawatt optical solitons in hollow photonic-crystal fibers.Phy.Rev.E.2006,73:066618.
    [18]V.P.Kalosha,L.L.Chen.X.Y.Bao,Ulra-short pulse operation of all-optical fiber passively mode-locked ytterbium laser.Opt.Express,2006,14:4935-4945.
    [19]F.O.Ilday,H.Lim,J.R.Buckley,F.W.Wise,Practical all-fiber source of high-power,120-fs pulses at 1um.Opt.Lett.2003,28:1362-1364.
    [20]E.Tamura,E.P.Ippen,H.A.Haus and L.E.Nelson,77-fs pulse generation from a stretched-pulse mode-locked all-fiber ring laser.Opt.Lett.1993,18:1080-1082.
    [21]F.O.Ilday,J.R.Buckley,L.Kuznetsova,et al.Generation of 36-femtosecond pulses from a ytterbium fiber laser.Opt.Express,2003 11:3550-3554.
    [22]F.O.Ilday,J.Chen.F.X.Kartner,Generation of sub-100-fs pulses at up to 200 MHz repetition rate form a passively mode-locked Yb-doped fiber laser.Opt.Express,2005,13:2716-2721.
    [23]M.Tang,X.L.Tian,P.Shum et al.Four-wave mixing assisted self stable 4×10GHz actively mode-locked Erbium fiber ring laser.Opt.Express,2006,14:1726-1730.
    [24]K.Vlachos,K.Zoiros et al.10×30 GHz pulse train generation from semiconductor amplifier fiber ring laser.IEEE Photon.Technol.Lett.,2000,12:25-27.
    [25]V.N.Fiippov,A.V.Kiryanov,A.N.Starodumov,All-fiber passively Q-switched low-threshold erbium laser.OFC,2001,3.
    [26]D.W.Huang,W.F.Liu,C.C.Yang,Actively Q-switched all-fiber laser with a fiber bragg grating of variable reflectivity.OFC,2000,2:224-226.
    [27]H.W.Cai,J.Z.Xia,H.Zhao,et al.All fiber Q-switched erbium laser using a fiber bragg grating placed in loop mirror as a wavelength-selective intensity modulator.OFC,2002:654-655.
    [28]夏江珍,蔡海文,任虹等,全光纤调Q掺铒光纤激光器的脉冲研究,光子学报,2002(31):989-992.
    [29]徐之光,戴武涛,樊亚仙等,可调谐的调Q掺Yb3+双包层光纤激光器,光子学报,2003(32):520-522.
    [30]D.W.Huang,W.F.Liu,C.C.Yang,Actively Q-switched all-fiber laser with a fiber bragg grating of variable reflectivity.OFC,2000,2:224-226.
    [31]A.Wang,H.Ming,J.P.Xie et al.Single frequency Q-switched erbium-doped fiber ring laser by combination of a distributed Bragg reflector laser an a Mach-Zender interferometer.Appl.Opt.,2003,42:3528-3530.
    [32]N.A.Russo,R.Duchowicz,J.Mora et al.High-efficiency Q-switched erbium fiber laser using a Bragg grating-based modulator.Opt.Commun..,2002,210:361-366.
    [33]Y.Wang and C.Q.Xu,Modeling and optimization of Q-switched double-clad fiber lasers,Appl.Opt.45,2006,2058-2071.
    [34]P.Myslinski,J.Chrostowski.J.A.K.Koningstein et al.Self-mode locking in a Q-switched erbium-doped fiber laser.Appl.Opt.1993,32:286-290.
    [35]C.C.Renaud,H.L.Offerhaus,J.A.Alvarez-Chavez et al.Characteristics of Q-switched cladding-pumped ytterbium-doped fiber lasers with different high energy fiber designs,IEEE J.Quantum Electron.2001,37:199-206.
    [36]J.Swiderski,A.Zajac,P.Konieczny,M.Skorczakowski,Numerical model of a Q-switched double-clad fiber laser,Opt.Express 2004,12:3554-3559.
    [37]高存孝,赵卫,王屹山,朱少岚,掺Yb3+全光纤环形腔主动调Q光纤激光器,中国激光,2008,35:651-654.
    [38]宁继平,张伟毅,尚连聚等,掺镱包层光纤激光腔的全光纤调Q技术,中国激光,2008,35:483-487.
    [39]赵宏明,楼祺洪,周军等,不同腔结构下的声光调Q双包层光纤激光器特性研究,物理学报,2008,57:3525-3530.
    [40]J.A.Alvarez-Chavez,H.L.Offerhaus,J.Nilsson,P.W.Turner,W.A.Clarkson and D.J.Richardson,"High-energy,high power ytterbium-doped Q-switched fiber laser,Opt.Lett.2000,25:37-39.
    [41]C.C.Renaud,R.J.Selvas-Aguilar,J.Nilsson,P.W.Turner,and A.B.Grudinin,Compact high-energy Q-switched cladding-pumped fiber laser with a tuning range over 40nm,IEEE Photon.Technol.Lett,.1999,11:976-978.
    [42]H.M.Zhao,Q.H.Lou,J.Zhou et al.An acousto-optic Q-switched fiber laser using China-made double-cladding fiber,Chin.Opt.Lett.,2007,5:522-523.
    [43]P.Myslinski and J.Chrostowski,High power Q-switched erbium doped fiber laser,IEEE J.Quantum.Electron.1992,28:371-377.
    [44]S.Adachi and Y.Koyamada,Analysis and design of Q-switched erbium-doped fiber lasers and their application to OTDR,J.Lightwave Technol.2002,20:1506-1511.
    [45]P.R.Morkel,K.P.Jedrzejewski,E.R.Taylor and D.N.Payne,Short-pulse high-power Q-switched fiber laser,IEEE Photon.Technol.Lett.1992,4:545-547.
    [46]G.P.Lees and T.P.Newson,Diode pumped high power simultaneously Q-switched and self modelocked erbium doped fiber laser,Electron.Lett.1996,32:332-333.
    [47]M.Sejka and C.V.Poulsen,High repetition rate Q-switched ring laser in Er3+-doped fiber,Opt.Fiber Technol.1995,1:167-170.
    [48]P.Roy and D.Pagnoux,Analysis and optimization of a Q-switched erbium doped fiber laser working with a short rise time modulator,Opt.Fiber Technol.1996,2:235-240.
    [49]Y.Huo,R.T.Brown,G.G.King and P.K.Cheo,Kinetic modeling of Q-switched high-power ytterbium-doped fiber lasers,Appl.Opt.2004,43:1404-1411.
    [50]许党朋,李明中,王建军等,基于PLZT开关的全光纤单模调Q掺Yb3+光纤激光器,中国激光,2008,35:1177-1180.
    [51]Y.Wang and C.Q.Xu,Understanding multipeak phenomena in actively Q-switched fiber lasers,Opt.Lett.2004,29:1060-1062.
    [52]Y.Wang,A.Martinez-Rios and Hong Po,Analysis of a Q-switched ytterbium-doped double-clad fiber laser with simultaneous mode locking,Opt.Commun.2003,224:113-123.
    [53]Y.Wang and C.Q.Xu,Switching-induced perturbation and influence on actively Q-switched fiber lasers,IEEE J.Quantum Electron.2004,40:1583-1596.
    [54]Y.Wang,Alejando Martinez-Rios and Hong Po,Pulse evolution of a Q-switched ytterbium-doped double-clad fiber laser,Opt.Eng.2003,42:2521-2526.
    [55]Y.Wang,Alejando Martinez-Rios and Hong Po,Experimental study of stimulated Brillouin and Raman scatterings in a Q-switched cladding-pumped fiber laser,Opt.Fiber Technol.2004,10,201-214.
    [56]C.C.Cutler,Why does linear phase shift cause mode locking? IEEE J.Quantum Electron.1992,28:282-288.
    [57]B.N.Upadhyaya,U.Chakravarty,et al.Mechanisms of generation of multi-peak and mode-locked resembling pulses in Q-switched Yb-doped fiber laser.Opt.Express 2007,15:11576-11588.
    [58]Q.H.Mao,John W.Y.Lit,Optical bistability in an L-band dual-wavelength erbium-doped fiber laser with overlapping cavities.IEEE Photon.Technol.Lett.,2002,14:1252-1254.
    [59]Q.H.Mao,John W.Y.Lit,Widely tunable L-band erbium-doped fiber laser with fiber Bragg gratings based on optical bistability.Appl.Phys.Lett.2003,82:1335.
    [1]F.Benabid F,J.C.Knight and P.St.J.Russell,Stimulate Raman scattering in hydrogen-filled hollow-core photonic crystal fiber.Science,2002,298:399-402.
    [2]F.Benabid,G.Bouwmans,J.C.Knight,P.St.J.Russell,Ultrahigh efficiency laser wavelength conversion in a gas-filled hollow core photonic crystal fiber by pure stimulated rotational raman scattering in molecular hydrogen,Phys.Rev.Lett.,2004,93:123903.
    [3]F.Benabid,G.Antonopoulos,J.C.Knight,P.St.J.Russell,Stokes amplification regimes in quasi-cw pumped hydrogen-filled hollow-core photonic crystal fiber.Phys.Rev.Lett.,2005,95:213903.
    [4]F.Benabid,F.Couny,J.C.Knight et al.Compact,stable and efficient all-fiber gas cells using hollow-core photonic crystal fibers.Nature,2005,434:488-491.
    [5]F.Couny,F.Benabid,P.S.Light,Subwatt threshold cw raman fiber-gas laser based on H_2-filled hollow-core photonic crystal fiber.Phys.Rev.Lett.,2007,99:143903.
    [6]F.Couny,F.Benabid,O.Carraz,Enhanced SRS in H2 filled hollow core photonic crystal fiber by use of fiber Bragg grating.J.Opt.A,2007,9:156-159.
    [7]A.B.Fedotov,S.O.Konorov,V.P.MItrokhin,et al.Coherent anti-stokes raman scattering in isolated air-guided modes of a hollow-core photonic-crystal fiber.Phy.Rev.A.2004,70:045802.
    [8]S.O.Konorov,A.B.Fedotov,et al.Phase-matched coherent anti-stokes raman scattering in isolated air-guided modes of a hollow-core photonic-crystal fiber.J.of Raman Spectr.2005,36:129-133.
    [9]叶震寰,楼祺洪,董景星,甲烷和氢气混合气体中的多波长拉曼转换,中国激光,2004,31:677-680.
    [10]W.K.Bischel,M.J.Dyer.Temperature dependence of the Raman linewidth and line shift for the Q(1) and Q(0) transitions in normal and para-H_2.Phys.Rev.A,1986,33:3113-3123.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700