高重频高峰值功率掺Nd~(3+)倍频蓝光激光器的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
激光二极管泵浦的全固态激光器(DPSSL)具有高效率、高亮度、易于小型化的优点,成为近年来激光研究领域的一个热点。对于激光二极管(LD)端面泵浦的高重复频率、高峰值功率掺Nd~(3+)激光器,所属四能级激光系统的1.06μm脉冲激光器及其倍频绿光激光器已被广泛研究,其性能可满足激光雷达、光电对抗和激光加工等多个行业的需求;但作为准三能级激光系统的0.9μm激光器及其倍频蓝光激光器,受众多因素的制约,发展较为缓慢,而全固态蓝光激光器具有广阔的应用前景,尤其是脉冲蓝光激光在激光水下通信和探测等领域有着特殊的用途。鉴于此,本文致力于高重频高峰值功率蓝光激光器的研究,以期能为脉冲蓝光激光器的发展和应用做出一定的贡献。
     本论文首先对全固态蓝光激光器的发展状况做了系统的介绍和分析,明确了其中存在的问题和实现高重频高峰值功率蓝光激光输出的努力方向,针对掺Nd~(3+)准三能级激光器及其倍频蓝光激光的发展状况做了较为详细的介绍。对于新型的Nd:GdVO_4激光介质,采用有限元分析法和干涉条纹法,理论模拟和实验测量了LD端面泵浦下激光介质的端面热形变,确定了Nd:GdVO_4的杨氏模量和泊松比分别为E=135GPa和ν=0.35。针对掺Nd~(3+)准三能级激光器所受的严重热效应,实验测得了不同泵浦功率下912nm Nd:GdVO_4连续激光器的热透镜焦距,推导出了912nm连续激光器的热负载比约为ξ=0.36,并验证了取值的合理性。此外,分析了LD端面泵浦Nd:GdVO_4激光器激光介质的热炸裂极限,为后续激光器的设计提供了理论依据。
     室温下运转的掺Nd~(3+)准三能级激光系统,激光下能级存在着较多粒子数布居,由此而引起的再吸收效应影响着激光器的输出性能。根据激光速率方程理论,建立了包含再吸收效应的掺Nd~(3+)准三能级连续激光器理论模型,分析了再吸收效应对激光阈值功率、输出斜效率和功率的影响,并对激光介质的掺杂浓度和长度、泵浦光及振荡光的空间分布以及输出镜的透过率等参量进行了最佳化设计。经实验的优化,实现了高功率掺Nd~(3+)准三能级连续激光输出,分别获得了最高连续功率为16.2W的912nm激光、15.5W的914nm激光和17.2W的946nm激光输出。为衡量掺Nd~(3+)激光介质准三能级激光运转下的再吸收效应强弱,通过实验与理论计算结果对比,估算出912nm Nd:GdVO_4、914nm Nd:YVO_4和946nm Nd:YAG连续激光器的再吸收截面σr分别约为(1.0±0.5)×10-20cm~2、(0.5±0.5)×10-20cm~2和(0.5±0.5)×10-20cm~2。为改善LD端面泵浦固体激光器的散热条件,提高掺Nd~(3+)准三能级激光输出性能,设计并应用了高效的微通道散热器,并探索了铟封技术。
     为获得高重频、窄脉宽、高峰值功率的掺Nd~(3+)准三能级脉冲激光输出,从调Q理论出发,建立了高重频声光调Q激光器的理论模型,分析了声光调Q 912nm Nd:GdVO_4激光器主要性能与注入泵浦功率和重频的关系。在此基础上,实验研究了高重频声光调Q掺Nd~(3+)准三能级脉冲激光输出性能,10kHz运转重频下,获得了最高峰值功率为9.13kW、6.25kW和12.0kW的912nm、914nm、946nm激光输出,对应的脉宽和峰值功率分别为25.2ns、33.6ns、24.4ns。为补偿掺Nd~(3+)准三能级脉冲激光器更为严重的热透镜效应,提高输出激光的性能,设计了凸-平非稳腔热补偿技术并应用于946nm Nd:YAG脉冲激光的实验研究,10kHz重频下获得了最高峰值功率为31.5kW的946nm激光输出,对应的脉宽为13.7ns,且激光光束质量也得到了显著地改善。最后,理论模拟了Cr~(4+):YAG被动调Q脉冲激光器的输出性能,分析了影响其激光性能的主要因素,并开展了被动调Q 912nm脉冲激光实验研究。
     为获得高重频高峰值功率脉冲蓝光激光输出,采用热不灵敏V型腔结构,实验研究了腔内倍频声光调Q脉冲蓝光激光的输出性能。重频10kHz时,获得了最高峰值功率为3.51kW、2.25kW和4.0kW的456nm、457nm、473nm脉冲蓝光激光输出,对应的脉宽分别为37ns、37.4ns、33.1ns。相同V型腔结构下,实验研究了腔内倍频Cr~(4+):YAG被动调Q 456nm脉冲激光性能。为压缩输出激光脉宽,进一步提高蓝光激光峰值功率,采用腔外倍频声光调Q掺Nd~(3+)准三能级激光的方法,结合非稳腔热补偿技术和高效倍频技术的应用,获得了高重频高峰值功率蓝光激光输出。重频10kHz下,456nm和473nm脉冲蓝光激光的最高峰值功率为2.3kW和16.7kW,对应的脉宽分别为21.3ns和9ns,最高运转重频分别可达到100kHz和50kHz。其中,473nm脉冲蓝光激光最高输出功率下的光束质量为Mx2=1.5、My2=1.36,且20分钟内功率不稳定性小于1%。
Diode-pumped solid-state lasers (DPSSL) have attracted much attention in recent years for the advantages of high efficiency, high brightness and compactness. For diode-end-pumped high repetition rate, high peak power Nd~(3+)-doped lasers, the four-level laser system at the wavelength of 1.06μm and green laser by frequency-doubling have been studied extensively, and the laser performances of them can satisfy the requirements in many industries, such as laser radar, laser processing, and optoelectronic countermeasures so on. As the quasi-three-level laser system, the lasers emission at the wavelength around 0.9μm and blue lasers by frequency-doubling are developed slowly for they are restricted by many factors. However, blue lasers have many important applications. Especially, the pulsed blue lasers can be used in the laser underwater communication and underwater detection. In view of this condition and background, this dissertation intends to make efforts on the investigation of the high repetition rate high peak power blue lasers, and hopefully we can make some contribution on the development and the application of pulsed blue lasers.
     First of all, we make a comprehensive overview and analysis on the development of all-solid-state blue lasers. The main problems existing in these subjects are concluded and the direction for realizing the high repetition rate high peak power blue laser is pointed out. Furthermore, a detailed overview on the development of diode-pumped Nd~(3+)-doped quasi-three-level lasers and frequency-doubling blue lasers are present. According to the methods of finite element analysis and interferometry, the end-face thermal deformation of Nd:GdVO_4 laser medium is calculated theoretically and measured experimentally. Then, the Yong’s modulus of elasticity and the Poisson’s ratio for Nd:GdVO_4 is estimated to be E=135GPa andν=0.35, respectively. To evaluate the serious thermal effect in Nd~(3+)-doped quasi-three-level laser operation, the thermal focus length as a function of incident pump power is measured for continuous wave (CW) 912nm Nd:GdVO_4 laser. The fractional thermal loading is deduced to be 0.36 during CW 912nm laser operation, and the rationality is certified by modelling the end-face deformation of Nd:GdVO_4 crystal. Moreover, the thermal rupture limit of the laser medium in diode-end-pumped CW Nd:GdVO_4 laser is analyzed, and it provides a theoretical basis for the following laser design.
     When the Nd~(3+)-doped quasi-three-level lasers are operated at room temperature, there are thermal population on the lower laser level, and the reabsorption of the oscillating laser is induced, which will influence the output laser performance. Based on the rate equations, the theoretical model including reabosrption effect for CW Nd~(3+)-doped quasi-three-level lasers is established. Considering reabosrption effect, the laser threshold, slope efficiency and output power are calculated, and the parameters of Nd~(3+)-doped concentration, length of laser medium, space distribution of pump laser and oscillating laser, and the transmissivity of output mirror are optimized. After optimization in experiments, high power CW Nd~(3+)-doped quasi-three-level lasers are obtained, with the highest output power of 16.2W 912nm laser, 15.5W 914nm laser and 17.2W 946nm laser, respectively. To evaluate the reabosrption effect during quasi-three-level laser operation using different Nd~(3+)-doped laser mediums, the reabosrption cross-sectionσr is estimated by comparing the experimental results with calculational results, withσr about (1.0±0.5)×10-20cm~2, (0.5±0.5)×10-20cm~2 and (0.5±0.5)×10-20cm~2 for 912nm, 914nm and 946nm lasers, respectively. To improve the thermal dissipation in diode-end-pumped Nd~(3+)-doped quasi-three-level lasers, the micro-channel heat-sink is designed and applied, and the technology of indium-solder is explored initially.
     To obtain the pulsed Nd~(3+)-doped quasi-three-level lasers with high repetition rate, short pulse width and high peak power output, the model of high repetition rate acoustic-optically (AO) Q-switched laser is established, and the AO Q-switched 912 nm performance as a function of incident pump power and repetition rate is calculated. On this basis, the high repetition rate AO Q-switched Nd~(3+)-doped quasi-three-level laser output performance is investigated experimentally, and the highest peak power of 9.13kW 912nm laser, 6.25kW 914nm laser, 12.0kW 946nm laser are obtained at 10kHz, with the pulse width of 25.2ns, 33.6ns, 24.4ns, respectively. To compensate the serious thermal focal lensing effect during Q-switched Nd~(3+)-doped quasi-three-level laser operation, the thermal compensation plano-convex unstable cavity is designed and applied in the pulsed 946nm laser operation, and the highest peak power of 31.5kW 946nm laser is obtained at 10kHz, with the pulse width of 13.7ns. Moreover, the beam quality is improved obviously. Finally, the output performance of Cr~(4+):YAG passively Q-switched laser is modeled on theory, and the passively Q-switched 912nm Nd:GdVO_4 laser is investigated experimentally.
     To realize a pulsed blue laser with high repetition rate and high peak power output, the intracavity frequency-doubling AO Q-switched blue laser is investigated experimentally using a thermal insensitive V-type laser cavity. The highest peak power of 3.51kW 456nm laser, 2.25kW 457nm laser, and 4.0kW 473nm laser are obtained at 10kHz, with the pulse width of 37ns, 37.4ns, 33.1ns, respectively. Furthermore, the intracavity frequency-doubling of Cr~(4+):YAG passively Q-switched 456nm pulsed laser is also studied in the same V-type laser cavity. To compress the pulse width and to improve the peak power of blue laser, by using an extracavity frequency-doubling of AO Q-switched Nd~(3+)-doped quasi-three-level laser configuration, the high repetition rate high peak power blue lasers are obtained combining with the technologies of thermal compensation unstable cavity and high efficiency frequency-doubling. The highest peak power of 2.3kW 456nm laser and 16.7kW 473nm laser are obtained at 10kHz, with the pulse width of 21.3ns and 9ns, respectively, and the maximum operating repetition rate are 100kHz and 50kHz, respectively. The beam quality factors for 473nm laser at the maximum output power are Mx2=1.5 and My2=1.36, and the power instability is less than 1% in 20 minutes test.
引文
[1] D. P. Pacheco, H. R. Aldag, D. E. Klimek, P. S. Rostler and J. F. Myers. High-average-power blue-green laser for underwater communications[C]. Proceedings of the International Conference on Lasers. 1990: 376.
    [2] W. C. Cox, J. A. Simpson, C. P. Domizioli, J. F. Muth and B. L. Hughes. An underwater optical communication system implementing Reed-Solomon channel coding[C]. IEEE Conference of Oceans. 2008: 1-6.
    [3] D. Pompili and I. Akyildiz. Overview of networking protocols for underwater wireless communications[J]. IEEE Journal of Communications Magazine. 2009, 47(1): 97-102.
    [4] E. Y. S. Young and A. M. Bullock. Underwater-airborne laser communication system: Characterization of the channel[C]. Proc. of SPIE. 2003, 4975: 146-150.
    [5] J. H. Smart. Underwater optical communications systems part 1: variability of water optical parameters[C]. IEEE Military Communications Conference. 2005: 1140-1146.
    [6]许祖彦.激光显示—新一代显示技术[J].激光与红外. 2006, 36(S): 737-741.
    [7]沈全洪,徐端颐,齐国生,张启程,胡恒,宋洁.高密度蓝光存储及其扩展技术[J].光学技术. 2005, 31(6): 921-927.
    [8] L. Marshall. Many variant lasers compete in the blue[J]. Laser Focus World, 2004, 40(10): 79-83.
    [9] K. Komori, Y. Takasu, M. Kumakura Y. Takahashi, and T. Yabuzaki. Injection-locking of blue laser diodes and its application to the laser cooling of neutral ytterbium atoms[J]. Japanese Journal of Applied Physics. 2003, 42(10): 5059-5062.
    [10] J. B. Snow, J. P. Flatley, D. E. Freeman, M. A. Landry, C. E. Lindstrom, J. R. Longacre and J. A. Schwartz. Underwater propagation of high data rate laser communications pulses[C]. Proc. of SPIE. 1992, 1750: 419-427.
    [11] J. W. Giles and I. N. Bankman. Underwater optical communications systems part 2: basic design considerations[C]. IEEE Military Communications Conference. 2005: 1700-1705.
    [12] M. A. Haase, J. Qiu, J. M. Depuydt, and H. Cheng. Blue-green laser diodes made from II-VI semiconductors[J]. IEEE Transactions on Electron Devices. 1991, 38(13): 2708.
    [13] H. Okuyama, E. Kato, S. Itoh, N. Norikazu, O. Toyoharu, and I. Akira. Operation and dynamics of Znse/ZnMgSSe double heterostructure blue laser diode at room temperature[J]. Applied Physics Letters. 1995, 66(6): 656-658.
    [14] B. Witzigmann, M. Tomamichel, S. Steiger, R. G. Veprek, K. Kojirna, U. T. Schwarz. Analysis of gain and luminescence in violet and blue GaInN-GaN quantum wells[J]. IEEE Journal of Quantum Electronics. 2008, 44(2): 144-149.
    [15] T. Tojyo, T. Asano, M. Takeya T. Hino, S. Kijima, S. Goto, S. Uchida and M. Ikeda. GaN-based high power blue-violet laser diodes[J]. Japanese Journal of Applied Physics. 2001, 40(8): 3026-3210.
    [16] B. P. Scott, F. Zhao, R. S. F. Chang and N. Djeu. Upconversion-pumped blue laser in Tm:YAG[J]. Optics Letters, 1993, 18(2): 113-115.
    [17] D. C. Nguyen, G. E. Faulkner and M. Dulick. Blue-green (450-nm) upconversion Tm3+:YLF laser[J]. Applied Optics, 1989, 28(17): 3553-3555.
    [18] M. P. L. Flohic, J. Y. Allain, G. M. Stéphan and G. Mazé. Room-temperature continuous-wave upconversion laser at 455nm in a Tm3+ fluorozirconate fiber[J]. Optics Letters, 1994, 19(23): 1982-1984.
    [19] S. Sanders, R. G. Waarts, D. G. Mehuys and D. F. Welch. Laser diode pumped 106mW blue upconversion fiber laser[J]. Applied Physics Letters. 1995, 67(13): 1815-1817.
    [20] G. Qin, S. Huang, Y. Feng, A. Shirakawa, M. Musha and K. I. Ueda. Power scaling of Tm3+ doped ZBLAN blue upconversion fiber lasers: modeling and experiments[J]. Applied Physics B. 2006, 82(1): 65-70.
    [21] R. Zhou, E. Li, H. Li, P. Wang and J. Yao. Continuous-Wave, 15.2 W Diode-End-Pumped Nd:YAG Laser Operating at 946 nm[J]. Optics Letters. 2006, 31(12): 1869-1871.
    [22] Y. Chen, H. Peng, W. Hou, Q. Peng, A. Geng, L. Guo and Z. Xu. 3.8 W of cw blue light generated by intracavity frequency doubling of a 946-nm Nd:YAG laser with LBO[J]. Applied Physics B. 2006, 83(2): 241-243.
    [23] M. Schmidt, E. Heumann, C. Czeranowsky, G. Huber, S. Kutovoi and Y. Zavartsev. Continuous Wave Diode Pumped Nd:GdVO4 Laser at 912 nm and Intracavity Doubling to the Blue Spectral Range[C]. Advanced Solid-State Lasers (ASSL). 2001: 470-474.
    [24] Zheng Quan, Yao Yi, Li Bin, Zhou Kai, Liu Yang and Zhao Ling. Experimental study of the generation of a blue laser by intracavity frequency doubling of a cw Nd:GdVO4 laser with lithium borate[J]. Applied Optics. 2009, 48(16): 2979-2982.
    [25] Q. H. Xue, Q. Zheng, Y. K. Bu, F. Q. Jia and L. S. Qian. High-power efficientdiode-pumped Nd:YVO4/LiB3O5 457 nm blue laser with 4.6 W of output power[J]. Optics Letters. 2006, 31(8): 1070-1072.
    [26] Zheng Quan, Yao Yi, Li Bin, Qu Dapeng and Zhao Ling. 13.2 W laser-diode-pumped Nd:YVO4/LBO blue laser at 457nm[J]. Journal of the Optics Society America B. 2009, 26(6): 1238-1242.
    [27] S. Knoke, K. pachomis and G. Hollemann. Generation of 2 W CW Output Power at 457 nm Based on a Frequency Doubled Nd:YVO4 Thin Disk Laser[C]. Conference on Lasers and Electro-Optics (CLEO). 2004: CFE5.
    [28] L. Zhang, C. Y. Zhang, Z. Y. Wei, C. Zhang, Y. B. Long, Z. G. Zhang, H. J. Zhang and J. Y. Wang. Compact Diode-Pumped Continuous-Wave Nd:LuVO4 Lasers Operated at 916 nm and 458 nm[J]. Chinese Physics Letters. 2006, 23(5): 1192-1194.
    [29] L. Reekie, I. M. Jauncey, S. B. Poole and D. N. Payne. Diode-Laser-Pumped Nd3+-Doped Fiber Laser Operating at 938 nm[J]. Electronics Letters. 1987, 23(17): 884-885.
    [30] D. B. S. Soh, S. W. Yoo, J. K. Sahu, L. J. Cooper, S. Baek, J. Nilsson and K. Oh. A Cladding Pumped Neodymium-Doped Fiber Laser Tunable From 932 nm to 953 nm[C]. Advanced Solid-State Photonics (ASSP). 2004: MD9.
    [31] X. Ding, R. Wang, H. Zhang, W. Q. Wen, L. Huang, P. Wang, J. Q. Yao, X. Y. Yu and Z. Li. Generation of 3.5 W high efficiency blue-violet laser by intracavity frequency-doubling of an all-solid-state tunable Ti:sapphire laser[J]. Optics Express. 2008, 16(7): 4582-4587.
    [32]贾富强,郑权,薛庆华,谭成桥,钱龙生.全固态Cr:LiSAF/LBO腔内倍频蓝光激光器[J].激光杂志. 2005,26(4): 16-17.
    [33]张冠杰,舒永春,刘如彬,舒强,林耀望,姚江宏,王占国,许京军.光抽运垂直外腔面发射激光器的特性与研究进展[J].激光技术. 2006,30(4): 351-354.
    [34] M. Fallahi, J. V. Moloney, and L. Fan. High power vertical-external-cavity surface-emitting lasers and their applications[C]. Proc. of SPIE. 2006, 6127: 61270C1-9.
    [35] P. N. Kean, R. W. Standley and G. J. Dixon. Generation of 20mW of blue laser radiation from a diode-pumped sum-frequency laser[J]. Applied Physics Letters. 1993, 63(3): 302-304.
    [36] E. Herault, F. Balembois and P. Georges. 491nm generation by sum-frequency mixing of diode pumped neodymium lasers[J]. Optics Express. 2005, 13(15): 5653-5661.
    [37] E. Herault, F. Balembois, P. Georges and T. Georges. 1064nm Nd:YVO4 laserintracavity pumped at 912nm and sum-frequency mixing for an emission at 491nm[J]. Optics Letters. 2008, 33(14): 1632-1634.
    [38]熊壮,宋慧营,曲大鹏,姚矣,郑全. LD泵浦Nd:YVO4双波长运转腔内和频491nm激光器[J].强激光与粒子束. 2009, 22(6): 1211-1214.
    [39] E. Herault, M. Lelek, F. Balembois and P. Georges. Pulsed blue laser at 491 nm by nonlinear cavity dumping[J]. Optics Express. 2008, 16(24): 19419-19426.
    [40] X. C. Lin, H. B. Zhang, H. Q. Li, Y. P. Kong Y. Bi, Z. P. Sun and Z. Y. Xu. Continuous tuning high power blue light by frequency doubling in BiB3O6 crystals[C]. Proc. of SPIE. 2005, 6028: 60280C1-6.
    [41] Y. F. Chen, Y. S. Chen T. H. Ou and K. W. Su. Compact efficient diode-pumped Nd:YVO4 Q-switched blue laser with intracavity frequency tripling[J]. Applied Physics B. 2005, 81(5): 517-520.
    [42] H. B. Peng, W. Hou, Y. H. Chen, D. F. Cui, Z. Y. Xu, C. T. Chen, F. D. Fan and Y. Zhu. Generation of 7.6-W blue laser by frequency tripling of a Nd:YAG laser in LBO crystals[J]. Optics Express. 2006, 14(14): 6543-6549.
    [43] H. Y. Zhu, G. Zhang, C. H. Huang, Y. Wei, L. X. Huang and Z. Q. Chen. Multi-watt power blue light generation by intracavity sum-frequency-mixing in KTiOPO4 crystal[J]. Optics Express. 2008, 16(5): 2989-2994.
    [44] N. G. Basov, E. M. Dianov, V. I. Kozlovski?, A. B. Krysa, A. S. nasibov, Y. M. Popov, A. M. Prokhorov, P. A. Trubenko and E. A. Shcherbakov. Room-temperature laser cathode-ray tube based on a ZnCdSe/ZnSe superlattice[J]. Quantum Electronics. 1995, 25(8): 726-728.
    [45] S. Nakamura, M. Senoh, S. Nagahama, N. Lwasa, T. Yamada and K. Chocho. High-power, long-lifetime InGaN/GaN/AlGaN-based laser diodes grown on pure GaN substates[J]. Japanese Journal of Applied Physics. 1998, 37(6): L309-L312.
    [46] H. Zellmer, A. Tünnermann, H. Welling and S. Buteau. All-fiber-laser system with 0.3 W output power in the blue spectral range. Conference on Lasers and Electro-Optics (CLEO). 1998: 78
    [47] J. Chilla, S. Butterworth, A. Zeitschel, J. Charles, A. Caprara, M. Reed and L. Spinelli. High power optically pumped semiconductor lasers[C]. Proc. of SPIE. 2004, 5332: 143-150.
    [48] A. Jechow, M. Schedel, S. Stry, J. Sacher and R. Menzel. Highly efficient single-pass frequency doubling of a continuous-wave distributed feed back laser diode using a PPLN waveguide crystal at 488 nm[J]. Optics Letters. 2007, 32(20): 3035-3037.
    [49] Y. Lutz, D. Rytz, and C. Gaudillat. Pulsed blue-light generation by thefrequency doubling of the 4F3/2 to 4I9/2 transition in Nd:YAG and Nd:YalO3[J]. Applied Physics B. 2000, 70(4): 479-482.
    [50] A. Chakraborty, B. A. Haskell, H. Masui, S. Keller, J. S. Speck, S. P. Denbaars, S. Nakamura and U. K. Mishra. Nonpolar m-plane blue-light-emitting diode lamps with output power of 23.5 mW under pulsed operation[J]. Japanese Journal of Applied Physics. 2006, 45: 739-741.
    [51] O. Casel, D. Woll, M. A. Tremont, H. Fuchs, R. Wallenstein, E. Gerster, P. Unger, M. Zorm and M. Weyers. Blue 489-nm picosecond pulses generated by intracavity frequency doubling in a passively mode-locked optically pumped semiconductor disk laser[J]. Applied Physics B. 2005, 81(4): 443-446.
    [52] S. K. Rong, Y. W. Feng, and W. B. Chen. Design of high energy, single frequency, all solid-state blue laser[J]. Chinese Optics Letters. 2007, 5(2): S89-S91.
    [53] T. Y. Fan and R. L. Byer. Model and CW operation of a quasi-three-level 946nm Nd:YAG laser[J]. IEEE Journal of Quantum Electronics. 1987, 23(5): 605-612.
    [54] W. P. Risk and W. Lenth. Room-temperature, continuous-wave, 946-nm Nd:YAG laser pumped by laser-diode array and intracavity frequency doubling to 473 nm[J]. Optics Letters. 1987, 12(12): 993-995.
    [55] P. Zeller and P. Peuser. Efficient, Multi, Continous-Wave Laser Operation on the 4F3/2→4I9/2 Transitions of Nd:YVO4 and Nd:YAG[J]. Optics Letters. 2000, 25(1): 34-36.
    [56] S. Bjurshagen, D. Evekull and R. Koch. Generation of Blue Light at 469 nm by Efficient Frequency Doubling of Diode-Pumped Nd:YAG[J]. Electronics Letters. 2002, 38(7): 324-325.
    [57] C. Czeranowsky, E. Heumann and G. Huber. All-Solid-State Continuous-Wave Frequency-Doubled Nd:YAG-BiBO Laser with 2.8-W Output Power at 473 nm[J]. Optics Letters. 2003, 28(6): 432-434.
    [58] J. W. Dawson, R. Beach, A. Drobshoff, Z. Liao, D. M. Pennington, S. A. Payne, L. Taylor, W. Hackenberg and D. Bonaccini. Scalable 11 W 938 nm Nd3+ Doped Fiber Laser[C]. Advanced Solid-State Photonics (ASSP). 2004: MD8.
    [59] J. Gao, J. Speiser and A. Giesen. 25-W Diode-Pumped Continuous-Wave Quasi-Three-Level Nd:YAG Thin Disk Laser[C]. Advanced Solid-State Photonics (ASSP). 2005: TuB34.
    [60] F. Jia, Q. Xue, Q. Zheng, Y. Bu and L. Qian. 5.3 W deep-blue light generation by intra-cavity frequency doubling of Nd:GdVO4[J]. Applied Physics B. 2006, 83(2): 245-247.
    [61] M. Castaing, E. Hérault, F. Balembois, P. Georges, C. Varona, P. Loiseau and G. Aka. Diode-Pumped Nd:YAG Laser Emitting at 899 nm and Below[J]. Optics Letters. 2007, 32(7): 799-801.
    [62] Yanfei Lv, Xihe Zhang, Zhihai Yao and Fengdong Zhang. 6.2-W deep blue light generation by intracavity frequency-doubled Nd:GdVO4 using BiBO[J]. Chinese Optics Letters. 2007, 5(7): 407-409.
    [63] N. Pavel, K. Lünstedt, K. Petermann and G. Huber. Multipass Pumped Nd-Based Thin-Disk Lasers: Continuous-Wave Laser Operation at 1.06 and 0.9μm with Intracavity Frequency Doubling[J]. Applied Optics. 2007, 46(34): 8256-8263.
    [64] A. Drobshoff, J. W. Dawson, D. M. Pennington, S. A. Pavne and R. Beach. 469 nm fiber laser source[C]. Proc. of SPIE. 2005, 5709: 193-198.
    [65]石朝辉,樊仲维,王培峰,张晶,牛岗,崔建丰.高效率连续波运转的激光二极管端面抽运914 nm Nd:YVO4激光器[J].中国激光. 2008, 35(3): 328-332.
    [66] D. Krennrich, R. Knappe, B. Henrich and R. Wallenstein. A comprehensive study of Nd:YAG, Nd:YAlO3, Nd:YVO4 and Nd:YGdVO4 lasers operating at wavelengths of 0.9 and 1.3μm. Part 1: cw-operation[J]. Applied Physics B. 2008, 92(1): 165-174.
    [67] W. Gong, Y. Qi and Y. Bi. A comparative study of continuous laser operation on the 4F3/2-4I9/2 transitions of Nd:GdVO4 and Nd:YVO4 crystals[J]. Optics Communications. 2009, (282): 955-957.
    [68] Jing Gao, Xin Yu, Fei Chen, Xudong Li, Renpeng Yan, Junhua Yu and Yuezhu Wang. 12.0-W continous-wave diode-end-pumped Nd:GdVO4 laser with high brightness operating at 912-nm[J]. Optics Express. 2009, 17(5): 3574-3580.
    [69] F. Hanson. Efficient operation of a room-temperature Nd:YAG 946-nm laser pumped with multiple diode arrays[J]. Optics Letters. 1995, 20(2): 148-150.
    [70] I. D. Lindsay and M. Ebrahimzadeh. Efficient continuous-wave and Q-switched operation of a 946-nm Nd:YAG laser pumped by an injection-locked broad-area diode laser[J]. Applied Optics. 1998, 37(18): 3961-3970.
    [71] T. J. Axenson, N. P. Barnes, D. J. Reichle and E. E. Koehler. High-energy Q-switched 0.946-μm solid-state diode pumped laser[J]. Journal of the Optics Society America B. 2002, 19(7): 1535-1538.
    [72] T. J. Kane, G. Keaton and M. A. Arbore. 3-Watt Blue Source Based on 914-nm Nd:YVO4 Passively-Q-Switched Laser Amplified in Cladding-Pumped Nd:Fiber[C]. Advanced Solid-State Photonics (ASSP). 2004: MD7.
    [73] L. Zhang, C. Y. Li, B. H. Feng, Z. Y. Wei, D. H. Li, P. M. Fu and Z. G. Zhang. Diode-Pumped Passive Q-Switched 946-nm Nd:YAG Laser with 2.1-W Average Output Power[J]. Chinese Physics Letters. 2005, 22(6): 1420-1422.
    [74] P. Blandin, F. Druon, F. Balembois and P. Georges. Diode-Pumped Passively Mode-Locked Nd:YVO4 Laser at 914 nm[J]. Optics Letters. 2006, 31(2):214-216.
    [75] C. Zhang, C. Gao, Z. Lin, M. Gao, L. Zhang, Z. Wei, C. Zhang, Z. Zhang, H. Zhang and J. Wang. Laser Diode-Pumped Nd:LuVO4[J], Acousto-Optic Q-Switched Laser at 916 nm. Chinese Physics Letters. 2006, 23(10): 2763-2765.
    [76] Y. Chen, W. Hou, H. Peng, H. Zhang, L. Guo, H. Zhang, D. Cui and Z. Xu. Intracavity Frequency Doubling of an Active Q-Switched Nd:YAG Laser with 2.25 W Output Power at 473 nm[J]. Optics Communications. 2007, 270: 58-62.
    [77] Y. P. Huang, K. W. Su, A. Li, Y. F. Chen and K. F. Huang. High-peak-power passively Q-switched Nd:YAG laser at 946 nm[J]. Applied Physics B. 2008, 91(2): 429-432.
    [78] Q. Li, S. Wang, S. Du, Y. Shi, J. Xing, D. Zhang, B. Feng, Z. Zhang and S. Zhang. Self-Q-Switched and Mode-Lock 946 nm Cr,Nd:YAG[J]. Optics Communications. 2008, 281: 2184-2188.
    [79] F. Kallmeyer, X. Wang, M. Dziedzina, H. Rhee and H. J. Eichler. Nd:GSAG Laser at 943 nm with High Pulse Energy[C]. Advanced Solid-State Photonics (ASSP). 2008: WB8.
    [80] Gao Jing, Yu Xin, Chen Fei, Li Xudong, Zhang Zhen, Yu Junhua and Wang Yuezhu. High power continuous-wave and acousto-optic Q-switched Nd:GdVO4 laser operated at 912 nm[J]. Chinese Physics Letters. 2008, 25(1): 119-121.
    [81] J. Gao, X. Yu, F. Chen, X. D. Li, R. P. Yan, Z. Zhang, J. H. Yu and Y. Z. Wang. Pulsed 456 nm deep-blue light generation by acousto-optical Q-switching and intracavity frequency doubling of Nd:GdVO4[J]. Laser Physics Letters. 2008, 5(8): 577-581.
    [82] J. Gao, X. Yu, X. D. Li, F. Chen, Z. Zhang, J. H. Yu and Y. Z. Wang. Diode-end-pumped acousto-optically Q-switched 914 nm laser and the pulsed blue light generation by intracavity frequency doubling[J]. Laser Physics Letters. 2008, 5(6): 433-436.
    [83] E. Herault, F. Balembois and P. Georges. Gain competition in a dual-wavelength Nd:GdVO4 laser at 1063nm and 912nm and intracavity sum-frequency[C]. Advanced Solid-State Photonics (ASSP). 2005: MF36.
    [84] K. Lünstedt, N. Pavel, K. Petermann and G. Huber. Continuous-wave simultaneous dual-wavelength operation at 912nm and 1063nm in Nd:GdVO4[J]. Applied Physics B. 2007, 86(1): 65-70.
    [85] W. P. Risk. Modeling of longitudinally pumped solid-state lasers exhibiting reabsorption losses[J]. Journal of the Optics Society America B. 1988, 5(7): 1412-1423.
    [86] Y. F. Chen, Y. P. Lan and S. C. Wang. Influence of Energy-Transfer Upconversion on the Performance of High-Power Diode-End-Pumped CW Lasers[J]. IEEE Journal of Quantum Electroncis. 2000, 36(5): 615-619.
    [87] Y. F. Chen. Modeling of diode-end-pumped Q-switched solid-state lasers: influence of energy-transfer upconversion[J]. Journal of the Optics Society America B. 2002, 19(7): 1558-1563.
    [88] S. Bjurshagen and R. Koch. Modeling of energy-transfer upconversion and thermal effects in end-pumped quasi-three-level lasers[J]. Applied Optics. 2004, 43(24): 4753-4767.
    [89] S. Wang, H. J. Eichler, X. Wang, F. Kallmeyer, J. Ge, T. Riesbeck and J. Chen. Diode end pumped Nd:YAG laser at 946 nm with high pulse energy limited by thermal lensing[J]. Applied Physics B. 2009, 95(4): 721-730.
    [90] Y. S. Huang and F. L. Chang. Q-switched intracavity frequency-doubled solid state lasers: influence of ETU effect, repetition rate and ESA effect[J]. Optical Review. 2005, 12(5): 396-404.
    [91] W.克希耐尔.固体激光工程[M].孙文,江译文,程国祥译.北京:科学出版社,2002: 39-45.
    [92] X. Y. Peng, A. Asundi, Y. H. Chen and Z. J. Xiong. Study of the mechanical properties of Nd:YVO4 crystal by use of laser interferometry and finit-element analysis[J]. Applied Optics. 2001, 40(9):1396-1403.
    [93] Z. Xiong, Z. G. Li, N. Moore, W. L. Huang and G. C. Lim. Detailed investigation of thermal effects in longitudinally diode-pumped Nd:YVO4 lasers[J]. IEEE Journal of Quantum Electroncis. 2003, 39(8): 979-986.
    [94] A. K. Cousins. Temperature and Thermal Stress Scaling In Finite-Length End-Pumped Laser Rods[J]. IEEE Journal of Quantum Electroncis. 1992, 28(4): 1057-1069.
    [95]杨永明,许启明,过振.端面抽运固体激光器中晶体的热形变[J].中国激光. 2007, 34(10): 1323-1328.
    [96]孙尧,李涛,于果蕾,张帅一,李健.激光二极管端面抽运Nd:GdYVO4晶体热效应分析及倍频研究[J].中国激光. 2007, 34(3): 359-363.
    [97] Y. T. Chang, Y. P. Huang, K. W. Su and Y. F. Chen. Comparison of thermallensing effects between single-end and double-end diffusion-bonded Nd:YVO4 crystals for 4F3/2→4I11/2 and 4F3/2→4I13/2 transitions[J]. Optics Express. 2008, 16(25): 21155-21160.
    [98] Y. Liao and R. J. D. Miller. Pressure tuning of thermal lensing for high-power scaling[J]. Optics Letters. 1999, 24(19): 1343-1345.
    [99] N. W. Rimington, S. L. Schieffer and W. A. Schroeder. Thermal lens shaping in Brewster gain media: A high-power, diode-pumped Nd:GdVO4 laser[J]. Optics Express. 2004, 12(7): 1426-1436.
    [100] S. Chénais, F. Druon, S. Forget, F. Balembois and P. Georges. On thermal effects in solid-state lasers: The case of ytterbium-doped materials[J]. Progress in Quantum Electronics. 2006, 30: 89-153.
    [101] A. Sennaroglu. Influence of neodymium concentration on the strength of thermal effects in continuous-wave diode-pumped Nd:YVO4 lasers at 1064nm[J]. Optical and Quantum Electronics. 2000, 32: 1307-1317.
    [102] J. L. Blows and J. M. Dawes. Thermal lensing measurements in line-focus end-pumped neodymium yttrium aluminium garnet using holographic lateral shearing interferometry[J]. Journal of Applied Physics. 1998, 83(6): 2901-2906.
    [103] R. Zhou, T. Zhang, E. Li, X. Ding, Z. Gai, B. Zhang, W. Wen, P. Wang and J. Yao. 8.3 W Diode-End-Pumped Continuous-Wave Nd:YAG Laser Operating at 946-nm[J]. Optics Express, 2005, 13(25): 10115-10119.
    [104] Y. F. Chen, C. F. Kao, T. M. Huang, C. L. Wang and S. C. Wang. Influence of Thermal Effect on Output Power Optimization in Fiber-Coupled Laser-Diode End-Pumped Lasers[J]. IEEE Journal of Quantum Electroncis. 1997, 3(1): 29-34.
    [105] Y. F. Chen. Design Criteria for Concentration Optimization in Scaling Diode End-Pumped Lasers to High Powers: Influence of Thermal Fracture[J]. IEEE Journal of Quantum Electroncis. 1999, 35(2): 234-239.
    [106] W. P. Risk. Modeling of longitudinally pumped solid-state lasers exhibiting reabsorption losses: errata[J]. Journal of the Optics Society America B. 1997.
    [107] K. C. Toh, X. Y. Chen and J. C. Chai. Numerical computation of fluid flow and heat transfer in microchannels[J]. International Journal of Heat and Mass Transfer. 2002, 45(26): 5133-5141.
    [108] P. Naphon and O. Khonseur. Study on the convective heat transfer and pressure drop in the micro-channel heat sink[J]. International Journal of Heat and Mass Transfer. 2008, 36(1): 39-44.
    [109] V. Gnielinski. New equations for heat and mass transfer in turbulent pipe andchannel flow[J]. International Journal of Chemical Engineering. 1976, 16: 359-368.
    [110]李亚江,王娟,夏春娟.特种焊接技术及应用[M].北京:化学工业出版社,2008: 133-143.
    [111] F. Hanson. Improved laser performance at 946 and 473 nm from a composite Nd:Y3Al5O12 rod[J]. Applied Physics Letters. 1995, 66(26): 3549-3551.
    [112] J. Song, D. Y. Shen, A. P. Liu, C. Li, N. S. Kim and K. Ueda. Simultaneous multiple-wavelength cw lasing in laser-diode-pumped composite rods of Nd:YAG and Nd:YLF[J]. Applied Optics. 1999, 38(24): 5158-5161.
    [113] H. Zimer, K. Albers and U. Wittrock. Grazing-incidence YVO4-Nd:YVO4 composite thin slab laser with low thermo-optic aberrations[J]. Optics Letters. 2004, 29(23): 2761-2763.
    [114] T. Li, Z. Zhuo, X. M. Li, H. Z. Yang and Y. Q. Zhang. Study on optical characteristics of Nd:YVO4/YVO4 composite crystal laser[J]. Chinese Optics Letters. 2007, 5(3): 175-177.
    [115] Z. Zhuo, T. Li, X. M. Li and H. Z. Yang. Investigation of Nd:YVO4/YVO4 composite crystal and its laser performace pumped by a fiber coupled diode laser[J]. Optics communications. 2007, 274(1): 176-181.
    [116] M. Matsukura, O. Nakamura. S. Watanabe, A. Miyamoto and Y. Furukawa. Laser Properties of Composite Nd:GdVO4 Single Crystal Grown by The Double Die EFG Method[C]. Conference on Lasers and Electro-Optics (CLEO). 2007: CFA2.
    [117] R. Wilhelm, D. Freiburg, M. Frede, D. Kracht and C. Fallnich. Design and comparison of composite rod crystals for power scaling of diode end-pumped Nd:YAG lasers[J]. Optics Express. 2009,17(10): 8229-8236.
    [118]蓝信钜.激光技术[M].北京:科学出版社,2000: 68-71.
    [119] J. J. Degnan. Theory of the Optimally Coupled Q-switched Laser[J]. IEEE Journal of Quantum Electroncis. 1989, 25(2): 214-220.
    [120] J. H. Liu, C. Q. Wang, C. L. Du, L. Zhu, H. J. Zhang, X. L. Meng, J. Y. Wang, Z. S. Shao and M. H. Jiang. High-power actively Q-switched Nd:GdVO4 laser end-pumped by a fiber-coupled diode-laser array[J]. Optics Communications. 2001, 188(1): 155-162.
    [121] G. D. Baldwin. Output Power Calculations for a Continously Pumped Q-Switched YAG:Nd3+ Laser[J]. IEEE Journal of Quantum Electroncis. 1971, 7(6): 220-224.
    [122]周炳琨,高以智,陈倜嵘,陈家骅.激光原理[M].北京:国防工业出版社,2007: 24-37.
    [123] C. W. Wang, Y. L. Weng, P. L. Huang, H. Z. Cheng and S. L. Huang. Passively Q-switched quasi-three-level laser and its intracavity frequency doubling[J]. Applied Optics. 2002, 41(6): 1075-1081.
    [124] Q. N. Li, B. H. Feng, D. X. Zhang, Z. G. Zhang, H. J. Zhang and J. Y. Wang. Q-switched 935 nm Nd:CNGG laser[J]. Applied Optics. 2009, 48(10): 1898-1903.
    [125]欧攀,闫平,巩马理,些韬.激光二极管抽运的被动调Q Nd3+:YAG微晶片激光器及稳定性[J].光学学报. 2002, 22(12): 1465-1469.
    [126] Y. S. Huang and F. L. Chang. Modeling of active and passive Q-switched intracavity frequency-doubled solid state lasers[J]. Optics Communications. 2005, 256(4): 381-393.
    [127] L. Zhang, C. Y. Li, B. H. Feng, Z. Y. Wei, D. H. Li, P. M. Fu and Z. G. Zhang. Diode-pumped passive Q-switched 946nm Nd:YAG laser with 2.1W average output power[J]. Chinese Physics Letters. 2005, 22(6): 1420-1422.
    [128] R. G. Smith. Theory of intracavity optical second harmonic generation[J]. IEEE Journal of Quantum Electroncis. 1970, 6(4): 215-230.
    [129] M. A. Khalil and B. Abbas. Optimization of intracavity Q-switched laser frequency doubling[J]. Optics&Laser Technology. 2007, 39(4): 710-714.
    [130] N. Pavel and T. Taira. High-Power Continuous-Wave Intracavity Frequency-Doubled Nd:GdVO4-LBO Laser Under Diode Pumping Into the Emitting Level[J]. IEEE Journal of Selected Topics in Quantum Electroncis. 2005, 11(3): 631-637.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700