高功率短脉冲固体激光及其泵浦的中红外周期极化铌酸锂光学参量振荡器特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
高功率短脉冲固体激光及其泵浦的中红外周期极化铌酸锂(Periodically Poled Lithium Niobate, PPLN)光学参量振荡器(Optical Parametric Oscillator, OPO)特性研究对于脉冲固体激光和中红外激光光源优化有着重要的实际指导价值。本论文中,在考虑激光介质上下能级热弛豫和下能级非辐射弛豫、调Q开关打开时间、激光横模等影响下,我们研究了增益开关、主动和被动调Q脉冲固体激光的输出特性;接着,理论和实验研究了脉冲固体激光泵浦的中红外PPLN-OPO特性。主要研究内容总结如下:
     (1)激光弛豫振荡过程及增益开关脉冲特性研究
     研究了激光上下能级热弛豫和下能级非辐射弛豫过程(统称为能级弛豫)对1064nmNd:YAG连续激光开启动态过程及稳态输出特性的影响;并进一步分析了能级弛豫对增益开关脉冲激光形成过程及输出特性的影响。结果表明,能级弛豫过程对连续激光开启动态弛豫过程和增益开关脉冲激光输出特性有着明显的影响,尤其是在高功率短脉冲情况下;与不考虑能级弛豫相比较,发现在相同的泵浦持续时间下,考虑能级弛豫条件下产生的增益开关脉冲宽度较宽,脉冲能量和峰值强度均较低。但是,能级弛豫对于连续激光最终的稳定输出状态无任何影响。从中可以得出,能级弛豫主要对于激光动态过程尤其是短脉冲形成过程有着不可忽视的影响,在短脉冲激光器优化设计中需要考虑其作用。
     (2)主动调Q脉冲激光特性研究
     研究了能级弛豫过程对主动快开关电光调QNd:YAG脉冲激光输出特性的影响和慢开关效应对声光调Q脉冲激光的不利影响及避免方式。对于电光调Q脉冲激光,其可视为快开关进行近似处理;然而,由于电光调Q激光脉冲的脉宽较短(ns量级),需考虑能级弛豫对其输出特性的影响。而对于声光调Q脉冲激光,其脉冲宽度较宽,因此无需考虑能级弛豫的影响;但是其开关打开时间较长,在高功率下容易产生多脉冲现象,大大降低激光能量转换效率,同时恶化激光脉冲均一性和光束质量,需尽量避免慢开关效应的不利影响。
     (3)被动调Q脉冲激光特性研究
     研究了能级弛豫过程和激光横模对Cr4+:YAG被动调Q脉冲激光特性的影响,对获得稳定可靠的被动调Q脉冲有一定的指导意义。实验研究了LD端泵Nd:YVO4Cr4+:YAG被动调Q脉冲激光输出特性,并将能级弛豫引入被动调Q速率方程,发现当热弛豫时间t=5ns时理论模拟结果与实验结果能够很好的吻合。接着,研究了连续工作LD侧泵Nd:YAG热致双折射效应引起的轴对称TEM01*模形成过程。而当插入Cr4+:YAG可饱和吸收体后,由于可饱和吸收体的横模选择作用,在临界工作区域产生四束对称分布的相位锁定高斯光,并在远场观察到正弦-余弦调制的高分辨率高斯干涉条纹;另外,实验发现当激光横模达到稳定的相位锁定时,被动调Q激光脉冲输出也很稳定。
     (4)中红外PPLN-OPO理论研究
     理论分析了非线性光学的三波相互作用耦合波方程、准相位匹配原理和优点、PPLN-OPO调谐方式、外腔式单谐振OPO的振荡阈值和转换效率。
     (5)外腔式单谐振中红外PPLN-OPO实验研究
     采用声光调Q LD侧泵1.064μm Nd:YAG脉冲激光作为泵浦源,研究了外腔式单谐振中红外MgO:PPLN-OPO的功率和光谱输出特性,其闲频光输出波长在3.8μm附近能够实现小范围的温度调谐。首先,我们对高功率中红外PPLN-OPO中相关实验参数设计进行分析,主要包括泵浦光源、PPLN晶体、OPO腔镜镀膜和机械调整架的设计。接着,通过在LD侧泵1.064μm Nd:YAG调Q脉冲激光腔内插入不同直径的小孔光阑,分析了泵浦光光束质量对OPO输出特性的影响。实验结果表明,泵浦光光束质量越好,参量转换效率越高。实验中,我们获得了最高5.5W3.8μm闲频光平均功率输出和27%1.064μm泵浦光至3.8μm闲频光功率转换效率。同时,我们对上述实验过程中PPLN晶体的热效应对泵浦光横模的影响进行了分析,当泵浦功率高于某一值时,热透镜效应转换为热波导效应,泵浦光被限制在晶体内,泵浦光和参量光的模式重叠提高,这有益于OPO的高效稳定运行。最后,我们对中红外PPLN-OPO参量光光谱和寄生振荡可见光光谱进行了简要分析,除了近红外信号光和中红外闲频光光谱外还能通过人眼观察到寄生振荡绿光和红光可见光。
Study on high power short pulse solid lasers and mid-infrared periodically poled Lithium Niobate optical parametric oscillators (PPLN-OPO) has important practical guidance value for the optimization of pulse solid laser and mid-infrared laser light sources. In this dissertation, we have studied the gain-switching, active and passive Q-switching pulse solid laser output characteristics, when considering the influence of thermalization and lower multiplet relaxation of the laser medium, Q-switch turn-on time and laser transverse mode; Then, the features of mid-infrared PPLN-OPO pumped by pulse solid lasers were studied theoretically and experimentally. The main research content is summarized below:
     (1) Characteristics of laser relaxation oscillation process and gain-switching pulses
     Influence of thermalization and lower multiplet relaxation (collectively called as energy level relaxation) of the laser medium on turn-on relaxation oscillation process and steady state output characteristics of1064nm Nd:YAG CW laser was studied; And further influence of laser energy level relaxation on gain-switching laser pulse building-up process and output characteristics was also analyzed. Results show that the energy level dynamic relaxation process has obvious effect on turn-on relaxation oscillation process of CW laser and gain-switching pulse laser output characteristics, especially in the case of high power short pulses; Compared with the situation regardless of the energy level relaxation, it is found that under the same pump duration gain-switching pulse width is wider, and pulse energy and peak intensity are lower when considering energy level relaxation. However, the energy level relaxation hasn't any impact on the final steady state output of CW laser. Therefore, we can conclude that energy level relaxation mainly has influence on laser dynamic process especially short pulse laser building-up process, and it is needed to consider the role of energy level relaxation in the optimal design of short pulse lasers.
     (2) Characteristics of active Q-switching laser pulses
     Influence of energy level relaxation process on fast active electro-optical Q-switching Nd:YAG pulse laser output characteristics and the adverse influence of slow-switch effect on acousto-optical Q-switching pulse lasers were studied. For the electro-optical Q-switching pulse lasers, the approximate treatment can be considered as fast-switch; However, as electro-optical Q-switching laser pulses have a short pulse width (ns magnitude), it is needed to consider the influence of energy level relaxation on its output characteristics. For the acousto-optical Q-switching pulse lasers, the pulse width is wider, so it isn't needed to consider the effect of energy level relaxation; But the acousto-optical Q-switch is opened with a long time, it is easy to generate multiple pulses under high power situation, greatly reducing the laser energy conversion efficiency, deteriorating laser pulse uniformity and beam quality at the same time, which should be avoided.
     (3) Characteristics of passive Q-switching laser pulses
     Influence of energy level relaxation process and laser transverse mode on Cr4+:YAG passive Q-switching laser output characteristics was studied, which has some guiding significance in obtaining stable and reliable Q-switching laser pulses. The output characteristics of LD end-pumped Nd:YVO4Cr4+:YAG passive Q-switching laser were measured experimentally, and then when introducing energy level relaxation into passive Q-switching rate equations, it was found that the theoretical simulation results agreed well with the experimental results when thermalization time tt=5ns. Then, formation of axisymmetric TEM01*modes caused by thermal birefringence effect was studied in a LD side-pumped Nd:YAG CW laser. When inserting Cr4+:YAG saturable absorber, due to transverse mode selection effect of the saturable absorber, four symmetric distributed phase-locked Gaussian beams were produced in the critical work area of the laser resonantor, and high-resolution sine and cosine-modulated Gaussian interference fringes were observed in the far field; In addition, it was found that when the laser transverse mode was phase locked stably, the passive Q-switching laser pulses were also stable.
     (4) Theoretical study of mid-infrared PPLN-OPO
     Three waves interaction coupled wave equations of nonlinear optics, quasi-phase matching principle and its advantages, wavelength tuning of PPLN-OPO, oscillation threshold and conversion efficiency of external-cavity, singly resonant OPO were analyzed theoretically.
     (5) Experimental study of external-cavity, singly resonant mid-infrared PPLN-OPO
     Using acousto-optical Q-switching LD side-pumped1.064μm Nd:YAG pulse lasers as the pump sources, the power output and spectral characteristics of external-cavity, singly resonant mid-infrared MgO:PPLN-OPO were studied, with the idler wavelength temperature-tunable around3.8μm. First of all, related experimental parameter designs were analyzed for the high power mid-infrared PPLN-OPO, mainly including pump light source, PPLN crystal, OPO cavity mirror coating and mechanical design. Then, through inserting an aperture of different sizes into the LD side-pumped1.064μm Nd:YAG pulse laser cavity, the influence of the pump beam quality on OPO output characteristics was analyzed. The experimental results show that the better is the pump beam quality, the higher is the parametric conversion efficiency. In the experiments, the highest3.8μm idler beam power of5.5W and1.064μm pump beam to3.8μm idler beam conversion efficiency of27%were obtained. At the same time, we analyzed the influence of the PPLN crystal thermal effect on the pump beam transverse mode. When the pump power was higher than a certain value, the thermal lens effect was converted to thermal waveguide effect, the pump beam was restricted within the crystal, and thus the parametric beams overlap better with the pump beam, which is beneficial for the efficient and stable operation of OPO. Finally, we briefly analyzed the parametric light spectrum and parasitic oscillation visible light spectrum of the mid-infrared PPLN-OPO. In addition to the near-infrared signal light and mid-infrared idle light spectrum, parasitic oscillation of green and red visible light was also observed by human eyes.
引文
[1]Mainman T. H. Stimulated Optical Radiation in Ruby[J]. Nature,1960,187:493-494
    [2]Koechner W. Solid-State Laser Engineering[M]. Springer,2006
    [3]姚建铨,徐德刚.全固态激光及非线性光学频率变换技术[M].天津:科学出版社,2007
    [4]Siegman A. E. Lasers[M]. Mill Valley, CA,1986
    [5]Sorokina I. T., Vodopyanov K. L. Solid-State Mid-Infrared Laser Sources[M]. Springer, 2003
    [6]Powell R. C. Physics of Solid-State Laser Materials[M]. Springer,1998
    [7]Barnes N., Gettemy D., Esterowitz L., et al. Comparison of Nd 1.06 and 1.33 μm Operation in Various Hosts[J]. IEEE Journal of Quantum Electronics,1987,23(9):1434-1451
    [8]Neeland J., Evtuhov V. Measurement of the Laser Transition Cross Section for Nd3+in Yttrium Aluminum Garnet[J]. Physical Review,1967,156(2):244
    [9]Kushida T., Marcos H., Geusic J. Laser Transition Cross Section and Fluorescence Branching Ratio for Nd3+ in Yttrium Aluminum Garnet[J]. Physical Review,1968,167(2): 289
    [10]Weber M., Varitimos T. Optical Spectra and Intensities of Nd3+ in YAlO3[J]. Journal of Applied Physics,1971,42(12):4996-5005
    [11]Birnbaum M., Gelbwachs J. A. Stimulated-Emission Cross Section of Nd3+ at 1.06 μm in POC13, YAG, CaW04, ED-2 Glass and LG55 Glass[J]. Journal of Applied Physics,1972, 43(5):2335-2338
    [12]Birnbaum M., Klein C. F. Stimulated Emission Cross Section at 1.061 μm in Nd:YAG[J]. Journal of Applied Physics,1973,44(6):2928-2930
    [13]Danielmeyer H., Blatte M., Balmer P. Fluorescence Quenching in Nd:YAG[J]. Applied Physics,1973,1(5):269-274
    [14]Singh S., Smith R., Van Uitert L. Stimulated-Emission Cross Section and Fluorescent Quantum Efficiency of Nd3+ in Yttrium Aluminum Garnet at Room Temperature [J]. Physical Review B,1974,10(6):2566
    [15]Krupke W., Shinn M., Marion J., et al. Spectroscopic, Optical, and Thermomechanical Properties of Neodymium-and Chromium-Doped Gadolinium Scandium Gallium Garnet[J]. Journal of the Optical Society of America B,1986,3(1):102-114
    [16]Kaminskii A. A. Crystalline Lasers:Physical Processes and Operating Schemes[M]. CRC press,1996
    [17]N. Barnes B. W., R.Davis. In Advanced Solid-State Photonics[M]. OSA Topical Mtg. San Antonio, TX.2003
    [18]Zagumennyi A., Mikhailov Y, Shcherbakov I. Crystals for End-Diode-Pumped Lasers[J]. Laser Physics Lawrence,1996,6:582-588
    [19]Brignon A., Feugnet G, Huignard J.-P., et al. Compact Nd:YAG and Nd:YVO4 Amplifiers End-Pumped by a High-Brightness Stacked Array[J]. IEEE Journal of Quantum Electronics,1998,34(3):577-585
    [20]Owyoung A., Hadley G, Esherick P., et al. Gain Switching of a Monolithic Single-Frequency Laser-Diode-Excited Nd:YAG Laser[J]. Optics Letters,1985,10(10): 484-486
    [21]Zayhowski J., Ochoa J., Mooradian A. Gain-Switched Pulsed Operation of Microchip Lasers[J]. Optics Letters,1989,14(23):1318-1320
    [22]Zenteno L., Snitzer E., Po H., et al. Gain Switching of a Nd3+-Doped Fiber Laser[J]. Optics Letters,1989,14(13):671-673
    [23]Jiang M., Tayebati P. Stable 10 ns, Kilowatt Peak-Power Pulse Generation from a Gain-Switched Tm-Doped Fiber Laser[J]. Optics Letters,2007,32(13):1797-1799
    [24]王飞.高功率掺铥光纤激光器及其在共振泵浦激光技术中的应用[D].长沙:国防科学技术大学,2010
    [25]薛竣文,裴雪丹,苏秉华,等.全固体1.3μm增益开关激光器的研究[J].量子电子学报,2012,29(3):292
    [26]Tang C. L., Statz H., DeMars G Spectral Output and Spiking Behavior of Solid-State Lasers[J]. Journal of Applied Physics,1963,34(8):2289-2295
    [27]Lin C. Studies of Relaxation Oscillations in Organic Dye Lasers[J]. IEEE Journal of Quantum Electronics,1975,11(8):602-609
    [28]Grassi H., Green C, Hoffer L., et al. Experimental Study of the Turn-on Statistics of Class-B Lasers under the Influence of Additive Noise[J]. Physical Review A,1994,50(1):805
    [29]Zayhowski J., Dill Ⅲ C. Diode-Pumped Microchip Lasers Electro-Optically Q Switched at High Pulse Repetition Rates[J]. Optics Letters,1992,17(17):1201-1203
    [30]Zayhowski J., Dill Ⅲ C. Coupled-Cavity Electro-Optically Q-Switched Nd:YVO4 Microchip Lasers[J]. Optics Letters,1995,20(7):716-718
    [31]Du K., Li D., Zhang H., et al. Electro-Optically Q-Switched Nd:YVO4 Slab Laser with a High Repetition Rate and a Short Pulse Width[J]. Optics Letters,2003,28(2):87-89
    [32]Konno S., Kojima T., Fujikawa S., et al. High-Brightness 138-W Green Laser Based on an Intracavity-Frequency-Doubled Diode-Side-Pumped Q-Switched Nd:YAG Laser[J]. Optics Letters,2000,25(2):105-107
    [33]Liu J., Wang C., Du C., et al. High-Power Actively Q-Switched Nd:GdVO4 Laser End-Pumped by a Fiber-Coupled Diode-Laser Array [J]. Optics Communications,2001, 188(1):155-162
    [34]Liu J., Wan Y., Han W., et al. Actively Q-Switched Laser Performance of Nd:GdxY1-xVO4:A Class of Mixed Vanadate Crystals[J]. Applied Physics B,2010,98(1): 69-76
    [35]Morris J. A., Pollock C. R. Passive Q Switching of a Diode-Pumped Nd:YAG Laser with a Saturable Absorber[J]. Optics Letters,1990,15(8):440-442
    [36]Kajava T., Gaeta A. L. Q Switching of a Diode-Pumped Nd:YAG Laser with GaAs[J]. Optics Letters,1996,21(16):1244-1246
    [37]Malyarevich A., Denisov I., Yumashev K., et al. V:YAG-a New Passive Q-Switch for Diode-Pumped Solid-State Lasers[J]. Applied Physics B,1998,67(5):555-558
    [38]Zayhowski J., Dill Iii C. Diode-Pumped Passively Q-Switched Picosecond Microchip Lasers[J]. Optics Letters,1994,19(18):1427-1429
    [39]Shimony Y, Burshtein Z., Baranga A. A., et al. Repetitive Q-Switching of a CW Nd:YAG Laser Using Cr4+:YAG Saturable Absorbers[J]. IEEE Journal of Quantum Electronics,1996,32(2):305-310
    [40]李德春.全固态调Q激光器关键性能参数的优化[D].济南:山东大学,2007
    [41]安晶.全固态调Q和双调Q激光特性研究[D].济南:山东大学,2009
    [42]张小洁,杨杰.声光-染料双调Q激光器的理论与实验研究[J].中国激光,1992,19(4):241-246
    [43]Li G, Zhao S., Yang K., et al. Pulse Width Reduction in Diode-Pumped Nd:GdVO4 Laser with AO and GaAs Double Q-Switches[J]. Japanese Journal of Applied Physics,2005, 44:3017
    [44]Yang K., Zhao S., Li G., et al. Pulse Compression in AO Q-Switched Diode-Pumped Nd:GdVO4 Laser with Cr4+:YAG Saturable Absorber[J]. Applied Physics B,2005,80(6): 687-692
    [45]张韧剑.端泵Nd:YVO4主被动双调Q激光器实验研究[D].西安:西北大学,2011
    [46]Li G, Zhao S., Yang K., et al. Investigation of a Diode-Pumped Double Passively Q-Switched Nd:GdVO4 Laser with a Cr4+:YAG Saturable Absorber and a GaAs Coupler[J]. Journal of Optics A:Pure and Applied Optics,2006,8(2):155
    [47]Vuylsteke A. A. Theory of Laser Regeneration Switching[J]. Journal of Applied Physics, 1963,34(6):1615-1622
    [48]Wagner W. G, Lengyel B. A. Evolution of the Giant Pulse in a Laser[J]. Journal of Applied Physics,1963,34(7):2040-2046
    [49]Szabo A., Stein R. Theory of Laser Giant Pulsing by a Saturable Absorber[J]. Journal of Applied Physics,1965,36(5):1562-1566
    [50]Erickson L., Szabo A. Effects of Saturable Absorber Lifetime on the Performance of Giant-Pulse Lasers[J]. Journal of Applied Physics,1966,37(13):4953-4961
    [51]Erickson L., Szabo A. Behavior of Saturable-Absorber Giant-Pulse Lasers in the Limit of Large Absorber Cross Section[J]. Journal of Applied Physics,1967,38(6):2540-2542
    [52]Degnan J. J. Optimization of Passively Q-Switched Lasers[J]. IEEE Journal of Quantum Electronics,1995,31(11):1890-1901
    [53]Spuhler G, Paschotta R., Fluck R., et al. Experimentally Confirmed Design Guidelines for Passively Q-S witched Microchip Lasers Using Semiconductor Saturable Absorbers[J]. Journal of the Optical Society of America B,1999,16(3):376-388
    [54]Midwinter J. The Theory of Q-Switching Applied to Slow Switching and Pulse Shaping for Solid State Lasers[J]. British Journal of Applied Physics,1965,16(8):1125
    [55]Newbery A. The Output Characteristics of a Slowly Q-Switched Neodymium in Calcium Tungstate Laser[J]. Journal of Physics D:Applied Physics,1968,1(12):1849
    [56]Li D., Zhao S., Li G, et al. Optimization of the Slowly Actively Q-Switched Laser[J]. Optics & Laser Technology,2007,39(4):846-851
    [57]Qiao W., Zhao S., Li G, et al. Effect of Turnoff Time on Characteristics of the Output Pulse in an AO Q-Switched Laser[J]. Optik-International Journal for Light and Electron Optics,2009,120(18):1007-1011
    [58]Yee F. T. Effect of Finite Lower Level Lifetime on Q-Switched Lasers[J]. IEEE Journal of Quantum Electronics,1988,24(12):2345-2349
    [59]田兆硕,陈卫标,胡企铨.考虑激光下能级弛豫过程的调Q Nd:YAG速率方程理论分析[J].光子学报,2005,34(3):325-328
    [60]Ng S., Tang D., Qian L., et al. Satellite Pulse Generation in Diode-Pumped Passively Q-Switched Nd:GdVO4 Lasers[J]. IEEE Journal of Quantum Electronics,2006,42(7): 625-632
    [61]Xiao G, Bass M. A Generalized Model for Passively Q-Switched Lasers Including Excited State Absorption in the Saturable Absorber[J]. IEEE Journal of Quantum Electronics, 1997,33(1):41-44
    [62]Zhang X., Zhao S., Wang Q., et al. Modeling of Diode-Pumped Actively Q-Switched Lasers[J]. IEEE Journal of Quantum Electronics,1999,35(12):1912-1918
    [63]张行愚,赵圣之,王青圃.腔内光强空间分布对被动调Q激光器速率方程解的影响[J].光子学报,1999,28(7):651-653
    [64]Zhang X., Zhao S., Wang Q., et al. Modeling of Passively Q-Switched Lasers[J]. Journal of the Optical Society of America B,2000,17(7):1166-1175
    [65]Li G, Zhao S., Yang K., et al. Analysis of a Laser-Diode End-Pumped Passively Q-Switched Nd:GdVO4 Laser with Cr4+:YAG Saturable Absorber[J]. Optical Materials,2005, 27(4):719-723
    [66]Yang K., Zhao S., Li G, et al. Theoretical and Experimental Study of a Laser-Diode-Pumped Actively Q-Switched Nd:YVO4 Laser with Acoustic-Optic Modulator [J]. Optics & Laser Technology,2005,37(5):381-386
    [67]Li D., Zhao S., Li G, et al. Optimization of Peak Power of Doubly Q-Switched Lasers with Both an Acousto-Optic Modulator and a Cr4+-Doped Saturable Absorber[J]. Applied Optics,2006,45(22):5767-5776
    [68]Giordmaine J., Miller R. C. Tunable Coherent Parametric Oscillation in LiNbO3 at Optical Frequencies[J]. Physical Review Letters,1965,14(24):973
    [69]Yao J., Fahlen T. S. Calculations of Optimum Phase Match Parameters for the Biaxial Crystal KTiOPO4[J]. Journal of Applied Physics,1984,55(1):65-68
    [70]Kaschke M., Koch C. Calculation of Nonlinear Optical Polarization and Phase Matching in Biaxial Crystals[J]. Applied Physics B,1989,49(5):419-423
    [71]Myers L., Eckardt R., Fejer M., et al. Quasi-Phase-Matched Optical Parametric Oscillators in Bulk Periodically Poled LiNbO3[J]. Journal of the Optical Society of America B, 1995,12(11):2102-2116
    [72]Myers L., Miller G, Eckardt R., et al. Quasi-Phase-Matched 1.064-μm-Pumped Optical Parametric Oscillator in Bulk Periodically Poled LiNbO3[J]. Optics Letters,1995,20(1): 52-54
    [73]Myers L. E., Eckardt R., Fejer M. M., et al. Multigrating Quasi-Phase-Matched Optical Parametric Oscillator in Periodically Poled LiNbO3[J]. Optics Letters,1996,21(8):591-593
    [74]Myers L. E., Bosenberg W. R. Periodically Poled Lithium Niobate and Quasi-Phase- Matched Optical Parametric Oscillators[J]. IEEE Journal of Quantum Electronics,1997, 33(10):1663-1672
    [75]Zhu S. N., Zhu Y. Y, Yang Z. J., et al. Second-Harmonic Generation of Blue Light in Bulk Periodically Poled LiTaO3[J]. Applied Physics Letters,1995,67(3):320-322
    [76]Klein M., Lee D. H., Meyn J. P., et al. Diode-Pumped Continuous-Wave Widely Tunable Optical Parametric Oscillator Based on Periodically Poled Lithium Tantalate[J]. Optics Letters,1998,23(11):831-833
    [77]Stothard D. J., Fortin P. Y, Carleton A., et al. Comparison of Continuous-Wave Optical Parametric Oscillators Based on Periodically Poled LiNbO3 and Periodically Poled RbTiOAsO4 Pumped Internal to a High-Power Nd:YVO4 Laser[J]. Journal of the Optical Society of America B,2003,20(10):2102-2108
    [78]Lindsay I., Stothard D., Rae C, et al. Continuous-Wave, Pump-Enhanced Optical Parametric Oscillator Based on Periodically-Poled RbTiOAsO4[J]. Optics Express,2003, 11(2):134-140
    [79]Zukauskas A., Thilmann N., Pasiskevicius V., et al. Periodically Poled KTiOAsO4 for Highly Efficient Midinfrared Optical Parametric Devices[J]. Applied Physics Letters,2009, 95:191103
    [80]Rosenman G, Skliar A., Findling Y, et al. Periodically Poled KTiOAsO4 Crystals for Optical Parametric Oscillation[J]. Journal of Physics D:Applied Physics,1999,32(14):L49
    [81]Chen Q., Risk W. Periodic Poling of KTiOPO4 Using an Applied Electric FieldfJ]. Electronics Letters,1994,30(18):1516-1517
    [82]Le Targat R., Zondy J. J., Lemonde P.75%-Efficiency Blue Generation from an Intracavity PPKTP Frequency Doubler[J]. Optics Communications,2005,247(4):471-481
    [83]Van Herpen M., Bisson S., Harren F. Continuous-Wave Operation of a Single-Frequency Optical Parametric Oscillator at 4-5 μm Based on Periodically Poled LiNbO3[J]. Optics Letters,2003,28(24):2497-2499
    [84]魏星斌.中红外PPLN光参量振荡技术研究[D].绵阳:中国工程物理研究院,2010
    [85]赵家群.基于MgO:PPLN的中红外连续波光学参量振荡器技术的研究[D].哈尔滨:哈尔滨工业大学,2011
    [86]Armstrong J., Bloembergen N., Ducuing J., et al. Interactions between Light Waves in a Nonlinear Dielectric [J]. Physical Review,1962,127(6):1918
    [87]Lim E., Fejer M., Byer R. Second-Harmonic Generation of Green Light in Periodically Poled Planar Lithium Niobate Waveguide[J]. Electronics Letters,1989,25(3):174-175
    [88]Bortz M., Arbore M., Fejer M. Quasi-Phase-Matched Optical Parametric Amplification and Oscillation in Periodically Poled LiNbO3 Waveguides[J]. Optics Letters,1995,20(1): 49-51
    [89]Magel G, Fejer M, Byer R. Quasi-Phase-Matched Second-Harmonic Generation of Blue Light in Periodically Poled LiNbO3[J]. Applied Physics Letters,1990,56(2):108-110
    [90]Lu Y. L., Mao L., Ming N. B. Blue-Light Generation by Frequency Doubling of an 810-nm CW GaAlAs Diode Laser in a Quasi-Phase-Matched LiNbO3 Crystal [J]. Optics Letters,1994,19(14):1037-1039
    [91]Ito H., Takyu C, Inaba H. Fabrication of Periodic Domain Grating in LiNbO3 by Electron Beam Writing for Application of Nonlinear Optical Processes[J]. Electronics Letters, 1991,27(14):1221-1222
    [92]Yamada M., Nada N., Saitoh M., et al. First-Order Quasi-Phase Matched LiNbO3 Waveguide Periodically Poled by Applying an External Field for Efficient Blue Second-Harmonic Generation [J]. Applied Physics Letters,1993,62(5):435-436
    [93]Burns W., McElhanon W., Goldberg L. Second Harmonic Generation in Field Poled, Quasi-Phase-Matched, Bulk LiNbO3[J]. IEEE Photonics Technology Letters,1994,6(2): 252-254
    [94]Webjorn J., Pruneri V., Russell P. S. J., et al. Quasi-Phase-Matched Blue Light Generation in Bulk Lithium Niobate, Electrically Poled Via Periodic Liquid Electrodes[J]. Electronics Letters,1994,30(11):894-895
    [95]Martinelli M., Zhang K., Coudreau T., et al. Ultra-Low Threshold CW Triply Resonant Opo in the near Infrared Using Periodically Poled Lithium Niobate[J]. Journal of Optics A: Pure and Applied Optics,2001,3(4):300
    [96]Colville F., Padgett M., Dunn M. Continuous-Wave, Dual-Cavity, Doubly Resonant, Optical Parametric Oscillator[J]. Applied Physics Letters,1994,64(12):1490-1492
    [97]Henderson A. J., Roper P. M., Borschowa L. A., et al. Stable, Continuously Tunable Operation of a Diode-Pumped Doubly Resonant Optical Parametric Oscillator[J]. Optics Letters,2000,25(17):1264-1266
    [98]Yang S., Eckardt R., Byer R. Continuous-Wave Singly Resonant Optical Parametric Oscillator Pumped by a Single-Frequency Resonantly Doubled Nd:YAG Laser[J]. Optics Letters,1993,18(12):971-973
    [99]Peng Y, Wang W., Wei X., et al. High-Efficiency Mid-Infrared Optical Parametric Oscillator Based on PPMgO:CLN[J]. Optics Letters,2009,34(19):2897-2899
    [100]Henderson A., Stafford R. Intra-Cavity Power Effects in Singly Resonant CW OPOs[J]. Applied Physics B,2006,85(2-3):181-184
    [101]Wu B., Kong J., Shen Y. High-Efficiency Semi-External-Cavity-Structured Periodically Poled MgLN-Based Optical Parametric Oscillator with Output Power Exceeding 9.2 W at 3.82 μm[J]. Optics Letters,2010,35(8):1118-1120
    [102]Hachair X., Barland S., Tredicce J. R., et al. Optimization of the Switch-on and Switch-off Transition in a Commercial Laser[J]. Applied Optics,2005,44(22):4761-4774
    [103]Lippi G., Hoffer L., Puccioni G. Noise at the Turn-on of a Class-B Laser[J]. Physical Review A,1997,56(3):2361
    [104]Raikkonen E., Buchter S. C, Kaivola M. Modeling the Time-Dynamics of Miniature Passively-Switched Lasers[J]. IEEE Journal of Quantum Electronics,2009,45(12): 1563-1570
    [105]Degnan J. J., Coyle D. B., Kay R. B. Effects of Thermalization on Q-Switched Laser Properties[J]. IEEE Journal of Quantum Electronics,1998,34(5):887-899
    [106]Voitikov S., Demidovich A., Batay L., et al. Sub-Nanosecond Pulse Dynamics of Nd:LSB Microchip Laser Passively Q-Switched by Cr:YAG Saturable Absorber[J]. Optics Communications,2005,251(1):154-164
    [107]Riseberg L. A., Moos H. W. Multiphonon Orbit-Lattice Relaxation of Excited States of Rare-Earth Ions in Crystals[J]. Physical Review,1968,174(2):429
    [108]Cova S., Lacaita A., Ghioni M., et al. High-Accuracy Picosecond Characterization of Gain-Switched Laser Diodes[J]. Optics Letters,1989,14(24):1341-1343
    [109]Paulus P., Langenhorst R., Jager D. Generation and Optimum Control of Picosecond Optical Pulses from Gain-Switched Semiconductor Lasers[J]. IEEE Journal of Quantum Electronics,1988,24(8):1519-1523
    [110]Dupriez P., Piper A., Malinowski A., et al. High Average Power, High Repetition Rate, Picosecond Pulsed Fiber Master Oscillator Power Amplifier Source Seeded by a Gain-Switched Laser Diode at 1060 nm[J]. IEEE Photonics Technology Letters,2006,18(9): 1013-1015
    [111]Heidt A., Li Z., Sahu J., et al.100 KW Peak Power Picosecond Thulium-Doped Fiber Amplifier System Seeded by a Gain-Switched Diode Laser at 2 um[J]. Optics Letters,2013, 38(10):1615-1617
    [112]Chandonnet A., Piche M., McCarthy N. Beam Narrowing by a Saturable Absorber in a Nd:YAG Laser[J]. Optics Communications,1990,75(2):123-128
    [113]Ishaaya A., Davidson N., Friesem A. Very High-Order Pure Laguerre-Gaussian Mode Selection in a Passive Q-Switched Nd:YAG Laser[J]. Optics Express,2005,13(13): 4952-4962
    [114]Wei M. D., Chen C. H., Tu K. C. Spatial and Temporal Instabilities in a Passively Q-Switched Nd:YAG Laser with a Cr4+:YAG Saturable Absorber[J]. Optics Express,2004, 12(17):3972-3980
    [115]Dong J., Ueda K. i., Yang P. Multi-Pulse Oscillation and Instabilities in Microchip Self-Q-Switched Transverse-Mode Laser[J]. Optics Express,2009,17(19):16980-16993
    [116]Sennaroglu A., Pollock C. R., Nathel H. Efficient Continuous-Wave Chromium-Doped YAG Laser[J]. Journal of the Optical Society of America B,1995,12(5):930-937
    [117]Shimony Y, Burshtein Z., Kalisky Y. Cr4+:YAG as Passive Q-Switch and Brewster Plate in a Pulsed Nd:YAG Laser[J]. IEEE Journal of Quantum Electronics,1995,31(10): 1738-1741
    [118]Dong J., Deng P., Lu Y, et al. Laser-Diode-Pumped Cr4+, Nd3+:YAG with Self-Q-Switched Laser Output of 1.4 W[J]. Optics Letters,2000,25(15):1101-1103
    [119]Zhang X., Zhao S., Wang Q., et al. Optimization of Cr+-Doped Saturable-Absorber Q-Switched Lasers[J]. IEEE Journal of Quantum Electronics,1997,33(12):2286-2294
    [120]杨克建.全固化短脉冲调Q,锁模激光特性研究[D].济南:山东大学,2007
    [121]Fork R., Greene B., Shank C. Generation of Optical Pulses Shorter Than 0.1 Psec by Colliding Pulse Mode Locking[J]. Applied Physics Letters,1981,38(9):671-672
    [122]欧阳斌,丁彦华Cr4+:YAG的可饱和吸收特性与被动Q开关性能研究[J].光学学报,1996,16(12):1665-1670
    [123]Liu J. H., Liu J. R., Liu J. H., et al. Thermal Lens Determination of End-Pumped Solid-State Lasers by a Simple Direct Approach[J]. Chinese Physics Letters,1999,16(3):181
    [124]Song F., Zhang C, Ding X., et al. Determination of Thermal Focal Length and Pumping Radius in Gain Medium in Laser-Diode-Pumped Nd:YVO4 Lasers[J]. Applied Physics Letters, 2002,81(12):2145-2147
    [125]Sooy W. The Natural Selection of Modes in a Passive Q-Switched Laser[J]. Applied Physics Letters,1965,7(2):36-37
    [126]Magni V. Resonators for Solid-State Lasers with Large-Volume Fundamental Mode and High Alignment Stability [J]. Applied Optics,1986,25(1):107-117
    [127]Koechner W. Thermal Lensing ina Nd:YAG Laser Rod[J]. Applied Optics,1970,9(11): 2548-2553
    [128]Moshe I., Jackel S., Meir A. Production of Radially or Azimuthally Polarized Beams in Solid-State Lasers and the Elimination of Thermally Induced Birefringence Effects[J]. Optics Letters,2003,28(10):807-809
    [129]Menard S., Vampouille M., Desfarges-Berthelemot A., et al. Highly Efficient Phase Locking of Four Diode Pumped Nd:YAG Laser Beams[J]. Optics Communications,1999, 160(4):344-353
    [130]Xu J., Li S., Lee K., et al. Phase Locking in a Two-Element Laser Array:A Test of the Coupled-Oscillator Model[J]. Optics Letters,1993,18(7):513-515
    [131]Goodman J. W. Introduction to Fourier Optics[M]. Roberts and Company Publishers, 2005
    [132]林洪沂.准相位匹配PPMgLN光学参量振荡器的研究[D].北京:中国科学院长春光学精密机械与物理研究所,2010
    [133]石顺祥.非线性光学[M].西安:西安电子科技大学出版社,2012
    [134]Pruneri V., Koch R., Kazansky P., et al.49 mW of CW Blue Light Generated by First-Order Quasi-Phase-Matched Frequency Doubling of a Diode-Pumped 946-nm Nd:YAG Laser[J]. Optics Letters,1995,20(23):2375-2377
    [135]Thompson R., Tu M., Aveline D., et al. High Power Single Frequency 780 nm Laser Source Generated from Frequency Doubling of a Seeded Fiber Amplifier in a Cascade of PPLN Crystals[J]. Optics Express,2003,11(14):1709-1713
    [136]Georgiev D., Gapontsev V., Dronov A., et al. Watts-Level Frequency Doubling of a Narrow Line Linearly Polarized Raman Fiber Laser to 589 nm[J], Optics Express,2005, 13(18):6772-6776
    [137]Ishizuki H., Taira T. High-Energy Quasi-Phase-Matched Optical Parametric Oscillation in a Periodically Poled MgO:LiNbO3 Device with a 5 mmx 5 mm Aperture[J]. Optics Letters, 2005,30(21):2918-2920
    [138]Hansson G., Smith D. D. Mid-Infrared-Wavelength Generation in 2-μm Pumped Periodically Poled Lithium Niobate[J]. Applied Optics,1998,37(24):5743-5746
    [139]Gayer O., Sacks Z., Galun E., et al. Temperature and Wavelength Dependent Refractive Index Equations for MgO-Doped Congruent and Stoichiometric LiNbO3[J]. Applied Physics B,2008,91(2):343-348
    [140]鲁燕华.中红外光学参量振荡器技术研究[D].绵阳:中国工程物理研究院,2006
    [141]Taya M., Bashaw M. C., Fejer M. M. Photorefractive Effects in Periodically Poled Ferroelectrics[J]. Optics Letters,1996,21(12):857-859
    [142]Furukawa Y., Kitamura K., Alexandrovski A., et al. Green-Induced Infrared Absorption in MgO-Doped LiNbO3 [J]. Applied Physics Letters,2001,78(14):1970-1972
    [143]Hirohashi J., Pasiskevicius V., Wang S., et al. Picosecond Blue-Light-Induced Infrared Absorption in Single-Domain and Periodically Poled Ferroelectrics[J]. Journal of Applied Physics,2007,101(3):033105
    [144]Barnes N. P., Williams-Byrd J. A. Average Power Effects in Parametric Oscillators and Amplifiers[J]. Journal of the Optical Society of America B,1995,12(1):124-131
    [145]Vainio M, Peltola J., Persijn S., et al. Thermal Effects in Singly Resonant Continuous-Wave Optical Parametric Oscillators[J]. Applied Physics B,2009,94(3):411-427
    [146]Godard A., Raybaut M., Schmid T., et al. Management of Thermal Effects in High-Repetition-Rate Pulsed Optical Parametric Oscillators[J]. Optics Letters,2010,35(21): 3667-3669
    [147]Lin S., Lin Y., Huang Y., et al. Observation of Thermal-Induced Optical Guiding and Bistability in a Mid-IR Continuous-Wave, Singly Resonant Optical Parametric Oscillator[J]. Optics Letters,2008,33(20):2338-2340
    [148]Lin S., Lin Y, Wang T., et al. Thermal Waveguide OPO[J]. Optics Express,2010,18(2): 1323-1329
    [149]Tache J. P. Ray Matrices for Tilted Interfaces in Laser Resonators[J]. Applied Optics, 1987,26(3):427-429

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700