用于差频产生THz波的激光器及THz光子晶体带隙特性的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
太赫兹波(THz波)的产生是THz研究领域的关键技术之一。实现THz波总体上分为电子学和光子学两种方法。在光子学领域,非线性光学差频方法是获取高功率、低成本、便携式和室温运转THz波的主要方法之一。在利用非线性光学差频方法产生THz波的关键技术中,研制新型的差频泵浦源是最为重要的。同时,随着THz波辐射源和THz探测技术的不断发展,如何构建一套完整的THz光学系统已成为研究的热点之一。光子晶体作为一种新型人工材料有望在THz功能器件的开发和研制中扮演重要的角色,从而为THz系统的集成化和小型化作出贡献。本论文主要围绕用于差频产生THz辐射源的多波长激光器及THz光子晶体的带隙特性分析而展开,论文的主要内容包括:
     一、从LD端面泵浦固体激光器的激光阈值公式出发,理论计算了腔镜对于两个波长的透过率关系,实现了LD端面泵浦Nd:YAG 1319nm/1338nm双波长激光连续、准连续及线偏振稳定输出。这两条非常接近的谱线为进一步通过非线性光学差频方法获得高重复频率、高相干性3.23THz的THz波提供了实验基础,实验结果达到国内领先水平;
     二、实现了LD端面泵浦Nd:YAG LBO内腔倍频连续和准连续多波长红光稳定输出。将659.5nm/669nm双波长红光作为差频泵浦光,选择合适的差频晶体,有望实现6.73THz的高频率THz波输出。这是利用非线性光学差频方法产生THz波的第二套实验方案;
     三、基于非线性光学频率变换理论,计算模拟出在不同相位匹配条件下,GaSe和ZnGeP2晶体差频的相位匹配角、走离角,允许角和有效非线性系数,总结出对应输出不同THz波长的最佳相位匹配方式。计算结果为利用非线性光学差频方法产生THz辐射源的实验研究提供了深入和全面的理论基础;
     四、利用平面波展开法,通过改变二维THz光子晶体的结构参数,对二维THz光子晶体完全带隙进行了优化,分析出两种适合工作在THz波段的二维光子晶体结构;采用时域有限差分法和平面波展开法,计算出THz波在二维光子晶体“T”型分束波导,45度旋转波导中传输的电磁场分布以及缺陷模;
     五、Woodpile面心立方四角结构是三维光子晶体中被研究最广泛的结构之一。基于该结构,通过改变其中某些结构参数,设计出一种新颖的、对称性较低的,具有良好完全带隙特性的,制备工艺相对容易并可工作于THz波段的三维woodpile结构。该三维woodpile结构的新颖性得到国际同行的认可。
The generation of terahertz (THz) waves is one of the key technologies in the THz study field. The methods of THz generation are divided into electronics and photonics. The nonlinear optical difference frequency method is one of the main methods to generate all-solid-state, low cost, compactable, room-temperature, and tunable THz wave radiation. Among the key technologies of THz generation by the nonlinear optical difference frequency, developing novel difference frequency pumping sources is the most important. With the development of THz sources and THz detectors, how to construct an integrated optical circuit for THz generation, propagation, manipulation and measurement is becoming a brand-new study focus. Photonic crystals (PCs), as a kind of new artificial material, would play an important role in the design of THz functional components. The main contents are summarized as follows:
     1. Based on the lasing threshold equation of a diode-end-pumped Nd:YAG laser, the relationship between the transmission ratios of the output mirror corresponding to the two wavelengths is calculated. A simultaneous dual-wavelength continuous wave (cw), quasi-cw or linearly polarized wave diode-end-pumped Nd:YAG laser operating at 1319nm and 1338nm is demonstrated. To the best of our knowledge, our experimental results achieve the highest level in the domestic domain. The simultaneous dual-wavelength laser provides an experimental basis for generating highly coherent THz wave radiation of 3.23THz by nonlinear optical difference frequency method.
     2. A diode-end-pumped Nd:YAG crystal, type-I critical phase matching LBO crystal intra-cavity frequency doubled, simultaneous multi-wavelength red laser at 659.5nm, 664nm and 669nm is firstly realized. Using the dual-wavelength red laser at 659.5nm and 669nm and choosing the proper difference frequency crystal, it is hopeful for us to realize high frequency THz wave radiation of 6.73THz. This is the second experimental project for generating THz waves.
     3. Based on the theory of nonlinear optical frequency conversion, the phase-matched angle, walk-off angle, acceptance angle and effective nonlinear coefficient of difference-frequency in GaSe and ZnGeP2 crystals are calculated under different phase-matched conditions. The optimum phase-matched conditions corresponding to different THz wave bands are summarized through comparing the whole calculated results. The calculated results provide a theoretical basis for using optical difference-frequency method in the nonlinear crystals to generate tunable THz waves.
     4. Based on plane wave expansion method, the complete band gaps of two-dimensional (2D) THz PCs with typical structures are optimized through varying structural parameters. Two kinds of lattice structures that are very promising for the materials of THz components are found. Using finite difference time domain method, the electromagnetic field distribution of THz wave is simulated in a THz 2D PC splitter and by plane wave expansion method the dispersion relation and defect modes are achieved in a THz rotated PC waveguide.
     5. A woodpile three-dimensional (3D) PC with face-centered-tetragonal (fct) symmetry is one of the most popular 3D PCs because of its favorable band gap characteristics. Based on the woodpile fct lattice structure, we propose a novel woodpile THz lattice structure with comparatively decreased symmetry, better band gap properties and easy fabrication by varying some structure parameters. Compared with the woodpile THz fct PC, the novel woodpile THz PC has a wider range of filling ratios to gain higher quality complete PBGs, which makes the manufacturing process more convenient. The novelty of the new woodpile PC has gained approvals from the international peers.
引文
[1] P. H. Siegel, Terahertz technology, IEEE Transactions on Microwave Theory and Techniques, 2002, 50: 910-928
    [2] B. B. Hu, M. C. Nuss, Imaging with terahertz waves, Opt. Lett., 1995, 20: 1716-1724
    [3] K. Kawase, Y. Ogawa, and Y. Watanabe, Non-destructive terahertz imaging of illicit drugs using spectral fingerprints, Opt. Express, 2003, 11: 2549-2554
    [4] http://tech.china.com/zh_cn/science/living/167308/20070517/14101767.html
    [5] http://www.toxsmmu.com/ReadNews.asp?NewsID=1317
    [6]刘盛纲,太赫兹科学技术的新发展,中国基础科学?科学前沿,2006,1月:7-12
    [7] E. R. Mueller, R. Henschke, W. E. Robotham, Jr. L. A. Newman, L. M. Laughman, R. A. Hart, J. Kennedy, and H. M. Pickett, Terahertz local oscillator for the Microwave Limb Sounder on the Aura satellite, Appl. Opt., 46: 4907-4915
    [8] R. Kohler, A. Tredicucci, F. Beltram, H. E. Beere, E. H. Linfield, A. G. Davies, D. A. Ritchie, R. C. Iotti, and F. Rossi, Terahertz semiconductor-heterostructure laser, Nature, 417: 156-159
    [9] S. Kumar, B. S. Williams, S. Kohen, Q. Hu, and J. L. Reno, Continuous-wave operation of terahertz quantum-cascade lasers above liquid-nitrogen temperature, Appl. Phys. Lett., 2004, 84, 2494-2496
    [10]曹俊诚,李爱珍,封松林,p型量子阱太赫兹振荡器研究,固体电子学研究与进展,2002,22:241-243
    [11] G. L. Carr, M. C. Martin, W. R. McKinney, K. Jordan, G. R. Neil, and G. P. Williams, High-power terahertz radiation from relativistic electrons, Nature, 2002, 420: 153-156
    [12] http://www.stdaily.com/gb/faxian/2006-02/24/content_491555.htm
    [13]周泽魁,张同军,张光新,太赫兹波科学与技术,自动化仪表,2006,27:1-6
    [14] T. Y. Chang, and T. J. Bridge, Opt. Commun., Laser action at 452, 496, and 541μm in optically pumped CH3F, 1970, 1: 423-426
    [15] N. G. Douglas, Millimeter and submillimeter wavelength lasers, Springer-Verlag (N. Y.), 1998
    [16] E. M. Telles, H. Odashima, L. R. Zink, and K. M. Evenson, Optically pumped FIR laser lines from CH3OH: New laser lines, frequency measurements, and assignments, J. Mol. Spectrosc., 1999, 195: 360-366
    [17] L. F .L. Costa, F. C. Cruz, J. C. S. Moraes, and D. Pereira, New far-infrared laser lines from CH3OD methanol deuterated isotope, IEEE J. Quantum Electron., 2004, 40:946-948
    [18] T. J. Garrod, S. Petersen, A. Stokes, M. Theisen, L. R. Zink, and M. Jackson, Measurement of far-infrared laser frequencies from optically pumped CHD2OH, IEEE J. Quantum Electron., 2005, 41: 224-226
    [19] E. R. Mueller, W. E. Robotham, Jr. R. P. Meisner, R. A. Hart, J. Kennedy, and L. A. Newman, 2.5 THz laser local oscillator for the EOS Chem 1 satellite, in Proceeding of the ninth international symposium on space terahertz technology, 1998, 563-574
    [20]冉勇,秦家银,小型光泵腔式NH3分子亚毫米波激光器的实验研究,1999,12:495-497
    [21]冉勇,秦家银,李太全,朱昌平,陶少华,光泵腔式远红外激光器的工作参数研究,激光与红外,2002,32:245-247
    [22]张萍,张迅,黄晓,罗锡璋,秦家银,双纵模光泵超辐射式和腔式THz激光器的研究,光电子?激光,2002,13:332-335
    [23] J. T. Darrow, X. C. Zhang, D. H. Auston, and J. D. Morse, Saturation properties of large-aperture photoconducting antennas, IEEE J. Quantum Electron., 1992, 28: 1607-1616
    [24] P. U. Jepsen, R. H. Jacobsen, S. R. Keiding, Generation and detection of terahertz pulses from biased semiconductor antennas, J. Opt. Soc. Am. B, 1996, 13: 2424-2436
    [25] X. C. Zhang, Y. Jin, K. Yang and L. J. Schowalter, Resonant nonlinear susceptibility near the GaAs band gap, Phys. Rev. Lett., 1992, 69: 2303-2306
    [26] S. L. Chuang, S. Schmitt-Rink, B. I. Greene, P. N. Saeta, and A. F. J. Levi, Optical rectification at semiconductor surfaces, Phys. Rev. Lett., 1992, 68: 102-105
    [27] X. C. Zhang, B. B. Hu, J. T. Darrow, D. H. Auston, Generation of femtosecond electromagnetic pulses from semiconductor surfaces, Appl. Phys. Lett., 1990, 56: 1011-1013
    [28] P. Gu, M. Tani, S. Kono, Study of terahertz radiation from InAs and InSb, J. Appl. Phys., 2002, 91: 5533
    [29] J. M. Yarborough, S. S. Sussman, H. E. Purpoff, R. H. Pantel, and B. C. Johnson, Efficient, tunable optical emission from LiNbO3 without a resonator, Appl. Phys. Lett., 1969,15: 102-105
    [30] B. C. Johnson, H. E. Puthoff, J. Soohoo, and S. S. Sussman, Power and linewidth of tunable stimulated far-infrared emission in LiNbO3, Appl. Phys. Lett., 1971, 18: 181-183
    [31] K. Kawase, J. Shikata, and H. Ito, Terahertz wave parametric source, J. Phys D: Appl. Phys, 2001, 34: R1-R14
    [32] K. Kawase, M. Sato, T. Taniuchi and H. Ito, Coherent tunable THz-wave generation from LiNbO3 with monolithic grating coupler, Appl. Phys. Lett. 1996, 68: 2483-2485
    [33] J. Shikata, M. Sato, T. Taniuchi, H. Ito, and K. Kawase, Enhancement of terahertz-wave output from LiNbO3 optical parametric oscillators by cryogenic cooling, Opt. Lett., 1999, 24: 202-204
    [34] K. Kawase, J. Shikata, H. Minamide, K. Imai, and H. Ito, Arrayed silicon prism coupler for a terahertz-wave parametric oscillator, Appl. Opt., 2001, 40: 1423-1426
    [35] K. Imai, and K. Kawase, A frequency-agile terahertz-wave parametric oscillator, Opt. Express, 2001, 13: 699-704
    [36] H. Minamide, K. Akiyama, and H. Ito, THz-wave frequency-agile parametric oscillator and future applications, Advanced solid state lasers, 2006, TuC1
    [37] J. Shikata, K. Kawase, K. Karino, T. Taniuchi, and H. Ito, Tunable terahertz-wave parametric oscillators using LiNbO3 and MgO: LiNbO3 crystals, IEEE Trans. Microwave Theory Tech., 2000, 48: 653-661
    [38] K. Imai, K. Kawase, J. Shikata, H. Minamide, and H. Ito, Injection-seeded terahertz-wave parametric oscillator, Appl. Phys. Lett., 2001, 78: 1026-1028
    [39] T. J. Edwards, D. Walsh, M. B. Spurr, C. F. Rae, and M. H. Dunn, Compact source of continuously and widely-tunable terahertz radiation, Opt. Express, 2006, 14:1582-1589
    [40] K. H. Yang, J. R. Morris, P. L. Richards, and Y. R. Shen, Phase-matched far-infrared generation by optical mixing of dye laser beams, Appl. Phys. Lett., 1973, 23: 669-671
    [41] R. L. Aggarwal, B. Lax, H. R. Fetterman, P. E. Tannenwald, and B. J. Clifton, CW generation of tunable narrow-band far-infrared radiation, 1974, J. Appl. Phys. 45: 3972-3974
    [42] Y. Jiang, and Y. J. Ding, Efficient terahertz generation from two collinearly propagating CO2 laser pulses, Appl. Phys. Lett., 2007, 91: 091108-1-3
    [43] S. Y. Tochitsky, C. Sung, S. E. Trubnick, C. Joshi, and K. L. Vodopyanov, High-power tunable, 0.5-3 THz radiation source based on nonlinear difference frequency mixing of CO2 laser lines, J. Opt. Soc. Am. B, 2007, 24: 2509-2516
    [44] T. Taniuchi, J. Shikata, and H. Ito, Tunable terahertz-wave generation in DAST crystal with dual-wavelength KTP optical parametric oscillator, Electron. Lett., 2000, 36: 1414-1416
    [45] T. Taniuchi, S. Okada, and H. Nakanishi, Widely tunable terahertz-wave generation in an organic crystal and its spectroscopic application, J. Appl. Phys. 2004, 95: 5984-5988
    [46] T. Taniuchi, S. Okada, and H. Nakanishi, Widely-tunable THz-wave generation in 2-20 THz range from DAST crystal by nonlinear difference mixing, Electron. Lett., 2004, 40: 60-62
    [47] T. Taniuchi, H. Adachi, S. Okada, T. Sasaki, and H. Nakanishi, Continuously tunable THz and far-infrared wave generation from DAST crystal, Electron. Lett., 2004, 40: 549-551
    [48] T. Taniuch, and H. Nakanishi, Collinear phase-matched terahertz-wave generation in GaP crystal using a dual-wavelength optical parametric oscillator, J. Appl. Phys., 2004, 95:7588-7591
    [49] K. Suizu, K. Miyamoto, T. Yamashita, and H. Ito, High-power terahertz-wave generation using DAST crystal and detection using mid-infrared powermeter, Opt. Lett., 2007, 32: 2885-2887
    [50] K. Kawase, T. Hatanaka, H. Takahashi, K. Nakamura, T. Taniuchi, and H. Ito, Tunable terahertz-wave generation from DAST crystal by dual signal-wave parametric oscillation of periodically poled lithium niobate, Opt. Lett., 2000, 25: 1714-1716
    [51] S. Haidar, T. Usami, Y. K. Hsu, C. S. Chang, S. C. Wang, and H. Ito, Differencefrequency mixing of periodically poled lithium niobate (PPLN) OPO output waves in GaSe crystal, CLEO, 2002, 327-328
    [52] T. Tanabe, K. Suto, J. Nishizawa, K. Saito, and T. Kimura, Frequency-tunable high-power terahertz wave generation from GaP, J. Appl. Phys., 2003, 93: 4610-4615
    [53] W. Shi and Yujie J. Ding. Tunable terahertz waves generated by mixing two copropagating infrared beams in GaP, Opt. Lett., 2005, 30: 1030-1032
    [54] W. Shi, Yujie J. Ding, N. Fernelius, and K. Vodopyanov, Efficient, tunable, and coherent 0.18-5.27-THz source based on GaSe crystal, Opt. Lett., 2002, 27: 1454-1456
    [55] Y. J. Ding, and W. Shi, Widely tunable monochromatic THz sources based on phase-matched difference-frequency generation in nonlinear-optical crystals: a novel approach, Laser Phys., 2006, 16: 562-570
    [56] F. Zernike, Jr., and P. R. Berman, Generation of far infrared as a difference frequency, Phys. Rev. Lett., 1965, 15: 999-1002
    [57] T. Yajima, and K. Inoue, Submillimeter-wave generation by difference-frequency mixing of ruby laser lines in ZnTe, IEEE J. Quantum Electron., 1969, QE-5: 140-146
    [58] K. Kawase, T. Hatanaka, H. Takahashi, K. Nakamura, T. Taniuchi, and H. Ito, Difference-frequency terahertz-wave generation from DAST by use of an electronically tuned Ti:sapphire laser, Opt. Lett., 1999, 24: 1065-1067
    [59] R. Mendis, and D. Grischkowsky, Plastic ribbon THz waveguides, J. Appl. Phys., 2000, 88: 4449-4451
    [60] S. P. Jamison, R. W. McGowan, D. Grischkowsky, Single-mode waveguide propagation and reshaping of sub-ps terahertz pulses in sapphire fibers, Appl. Phys. Lett., 2000, 76: 1987-1989
    [61] R. W. McGowan, G. Gallot, D. Grischkowsky, Progapgtion of ultrawideband short pulses of terahertz radiation through submillimeter-diameter circular waveguides, Opt. Lett., 1999, 24: 1431-1433
    [62] G. Gallot, S. P. Jamison, R. W. McGowan, and D. Grischkowsky, Terahertz waveguides, J. Opt. Soc. Am. B, 2000, 17: 851-863
    [63] R. Mendis, and D. Grischkowsky, Undistorted guided-wave propagation of subpicosecond terahertz pulses, Opt. Lett., 2001, 26: 846-848
    [64] R. Mendis, and D. Grischkowsky, THz interconnect with low loss and low groupvelocity dispersion, IEEE Microwave and Wireless Comp. Lett., 2001, 11: 444-446
    [65] K. L. Wang, D. M. Mittleman, Metal wires for terahertz wave guiding, Nature, 2004, 432: 376-379
    [66] http://www.most.gov.cn/gnwkjdt/200611/t20061115_38042.htm
    [67] H. Han, H. Park, M. Cho, and J. Kim, Terahertz pulse propagation in a plastic photonic crystal fiber, Appl. Phys. Lett., 2002, 80: 2634-2636
    [68] M. Goto, A. Quema, H. Takahashi, S. Nno, N. Sarukura, Teflon photonic crystal fiber as terahertz waveguide, Jpn. J. Appl, Phys., 2004, 43: L317-L319
    [69] T. Hidaka, H. Minamide, H. Ito, S. I. Maeta, and T. Akiyama, Ferroelectric PVDF cladding THz waveguides, Proc. Of SPIE, 2003, 5135: 70-77
    [70] E. Yablonovitch, Inhibited spontaneous emission in solid-state physics and electronics, Phys. Rev. Lett., 1987, 58: 2059-2062
    [71] S. John, Strong localization of photons in certain disordered dielectric superlattice, Phys. Rev. Lett., 1987, 58: 2486-2489
    [72] Y. Fink, J. N. Winn, S. Fan, C. P. Chen, J. Michel, J. D. Joannopoulos, and E. L. Thomas, A dielectric omnidirectional reflector, Science, 1998, 282: 1679-1682
    [73] S. Gupta, G. Tuttle, M. Sigalas, and K. M. Ho, Infrared filters using metallic photonic band gap structures on flexible substrates, Appl. Phys. Lett., 1997, 71: 2412-2414
    [74] A. Mekis, S. Fan, and J. D. Joannopoulos, Bound states in photonic crystal waveguides and waveguide bends, Phys. Rev. B, 1998, 58: 4809-4817
    [75] O. Painter, R. K. Lee, A. Scherer, A. Yariv, J. D. O’Brien, P. D. Dapkus, and I. Kim, Two dimensional photonic band gap defect mode laser, Science, 1999, 284: 1819-1821
    [76] H. Nemec, L. Duvillaret, and F. GAret, Thermally tunable filter for terahertz range based on a one-dimensional photonic crystal with a defect, J. Appl. Phys., 2004, 96: 4072-4075
    [77] A. Bingham, Y. G. Zhao, and D. Grischkowsky, THz parallel plate photonic waveguide, Appl. Phys. Lett., 2005, 87: 051101-1-3
    [78] K. Takagi, K. Seno, and A. Kawasaki, Fabrication of a three-dimensional terahertz photonic crystal using monosized spherical particles, Appl. Phys. Lett., 2004, 85:3681-3683
    [79] A. Mekis, J. C. Chen, I. Kurland, S. Fan, P. R. Villeneuve, and J. D. Joannopoulos,High transmission through sharp bends in photonic crystal waveguides, Phys. Rev. Lett., 1996, 77: 3787-3790
    [80] A. Mekis A, S. Fan S, and J. D. Joannopoulos, Bound states in photonic crystal waveguides and waveguide bends, Phys. Rev. B, 1998, 58: 4809-4817
    [81] S. Y. Lin, E. Chow, V. Hietala, P. R. Villeneuve, J. D. Joannopoulos, Experimental demonstration of guiding and bending of electromagnetic waves in a photonic crystal, Science, 1998, 282: 274-276
    [82] C. C. Lin, C. H. Chen, G. J. Schneider, P. Yao, S. Y. Shi, A. Sharkawy, and D. W. Prather, Wavelength scale terahertz two-dimensional photonic crystal waveguides, Opt. Express, 2004, 12: 5723-5728
    [83] H. Kurt, and D. S. Citrin, Photonic crystals for biochemical sensing in the terahertz region, Appl. Phys. Lett., 2005, 87: 041108-1-3
    [84] H. Kurt, and D. S. Citrin, Coupled-resonator optical waveguides for biochemical sensing of nanoliter volumes of analyte in the terahertz region, Appl. Phys. Lett., 2005, 87: 241119-1-3
    [85] T. Hasek, H. Kurt, D. S. Citrin, and M. Koch, Photonic crystals for fluid sensing in the subterahertz range, Appl. Phys. Lett., 2006, 89: 173508-1-3
    [86] H. Nemec, P. Kuzel, L. Duvillaret, A. Pashkin, M. Dressel, and M. T. Sebastian, Highly tunable photonic crystal filter for the terahertz range, Opt. Lett., 2005, 30: 549-551
    [87] N. Mattiucci, G. D’Aguanno, M. Scalora, M. J. Bloemer, N. Akozbek, J. W. Haus, Collinear terahertz generation in photonic crystal structures via difference-frequency generation
    [88] A. D. Falco, C. Conti, and G. Assanto, Terahertz pulse generation via optical rectification in photonic crystal microcavities, Opt. Lett., 2005, 30: 1174-1176
    [1] P. H. Siegel, Terahertz Technology, IEEE Trans. Microwave Theory and Tech., 2002, 50: 910-928
    [2] R. K?hler, A. Tredicucci, F. Beltram, H. E. Beere, E. H. Linfield, A. G. Davies, D. A. Ritchie, R. C. Iotti, and F. Rossi, Terahertz semiconductor-heterostructure laser, Nature, 2002, 417: 156-159
    [3] M. Sherwin, Terahertz power, Nature, 2002, 420: 131-133
    [4] C. Weiss, G. Torosyan, Y. Avetisyan, and R. Beigang, Generation of tunable narrow-band surface-emitted terahertz radiation in periodically poled lithium niobate, Opt. Lett., 2001, 26: 563-565
    [5] L. Wu, X. C. Zhang, and D. H. Auston, Terahertz beam generation by femtosecond optical pulses in electro-optic materials, Appl. Phys. Lett., 1992, 61: 1784-1786
    [6] T. Taniuchi, J. Shikata, and H. Ito, Tunable terahertz-wave generation in DAST crystal with dual-wavelength KTP optical parametric oscillator, Electron. Lett., 2000, 36: 1414-1415
    [7] W. Shi, and Y. J. Ding, Continuously tunable and coherent terahertz radiation by means of phase-matched difference-frequency generation in zinc germanium phosphide, Appl. Phys. Lett., 2003, 83: 848-850
    [8] T. Taniuchi, S. Okada, and H. Nakanishi, Widely-tunable THz-wave generation in 2-20 THz range from DAST crystal by nonlinear difference frequency mixing Electron. Lett., 2004, 40: 60-62
    [9] W. Shi, Y. J. Ding, N. Fernelius, and K. Vodopyanov, Efficient, tunable, and coherent 0.18-5.27-THz source based on GaSe crystal, Opt. Lett., 2002, 27: 1454-1456
    [10] H. Y. Shen, and H. Su, Operating conditions of continuous wave simultaneous dual wavelength laser in neodymium host crystals, Journal of Appl. Phys., 1999, 86: 6647-6651
    [11] H. Y. Shen, W. X. Lin, R. R. Zeng, Y. P. Zhou, G. F. Yu, C. H. Huang, Z. D. Zeng, W. L. Zhang, R. F. Wu, and Q. J. Ye, 1079.5- and 1341.4-nm: larger energy from a dual-wavelength Nd:YAIO3 pulsed laser, Appl. Opt., 1993, 32: 5952-5957
    [12] C. Q. Wang, Y. T. Chow, D. R. Yuan, D. Xu, G. H. Zhang, M. G. Liu, J. R. Lu, Z. S. Shao, and M. H. Jiang, CW dual-wavelength Nd:YAG laser at 946 and 938.5 nm and intracavity nonlinear frequency conversion with a CMTC crystal, Opt. Commun., 1999, 165: 231-235
    [13]林文雄,沈鸿元一种新型结构的Nd:YAIO3双波长调Q脉冲激光器,物理学报,1999,48:667-672
    [14] Y.–F. Chen, Dual-wavelength operation of a diode-end-pump Nd:YVO4 laser, Appl. Phys. B, 2000, 70: 475-478
    [15] P. X. Li, D. H. Li, C. Y. Li, and Z. G. Zhang, Oscillation conditions of cwsimultaneous dual-wavelength Nd:YAG laser for transitions 4F3/2-4I9/2 and 4F3/2-4I11/2, Chin. Phys., 2004, 13: 1689-1693
    [16]张强,姚建铨,温伍麒,刘欢,丁欣,周睿高功率激光二极管抽运Nd:YAG连续双波长激光器,中国激光,2006,33:577-581
    [17]魏勇,张戈,黄呈辉,黄凌雄,位民,沈鸿元1318.8nm/1338nm同时振荡双波长Nd:YAG激光器,激光与红外, 2005, 35:164-165
    [18] S. Ardhendu, R. Aniruddha, M. Sourabh, S. Nandita, K. D. Prasanta, and K. D. Pranab, Simultaneous multi-wavelength oscillation of Nd laser around 1.3 um: A potential source for coherent terahertz generation, Opt. Express, 2006, 14: 4721-4726
    [19] Y. Wei, G. Zhang, C. H. Huang, L. X. Huang, M. Wei, High power single wavelength 1338 nm Nd:YAG laser, Opt. & Laser Tech., 2006, 38: 173-176
    [20] R. Zhou, W. Q. Wen, Z. Q. Cai, X. Ding, P. Wang, and J. Q. Yao, Efficient stable simultaneous CW dual-wavelength diode-end-pumped Nd:YAG laser operating at 1.319 and 1.338 um, Chin. Opt. Lett., 2005, 3: 597-599
    [21] H. Y. Shen, Oscillation condition of simultaneous multiple wavelength lasing, Chin. Phys. Lett., 1990, 7: 174-176
    [22] H. Y. Shen, R. R. Zeng, Y. P. Zhou, G. F. Yu, C. H. Guang, Z. D. Zeng, W. J. Zhang, and Q. J. Ye, Comparison of simultaneous multiple wavelength lasing in various neodymium host crystals at transitions from 4F3/2-4I11/2 and 4F3/2-4I13/2, Appl Phys Lett, 1990, 56: 1937-1938
    [23] Y. F. Chen, CW dual-wavelength operation of a diode-end-pumped Nd:YVO4 laser, Appl., Phys., B, 2000, 70: 475–478
    [24] S. Singh, R. G. Smith, L. G. Van Uitert, Stimulated emission cross section and fluorescent quantum efficiency of Nd in yttrium aluminum garnet at room temperature, Phys. Rev. B, 1974, 10: 2566-2572
    [25] M. P. MacDonald, T. Graf, J. E. Balmer, and H. P. Weber, Reducing thermal lensing in diode-pumped laser rods, Opt. Commun., 2000, 178: 383-393
    [26] M. Pollnau, P. J. Hardman, M. A. Kern, W. A. Clarkson, and D. C. Hanna, Upconversion-induced heat generation and thermal lensing in Nd:YLF and Nd:YAG, Phys. Rev. B, 1998, 58: 16076-16092
    [27]吕百达,激光光学—光束描述、传输变换与光腔技术物理(北京:高等教育出版社),2003,p83
    [28] Y. F. Chen, Pump-to-mode size ratio dependence of thermal loading indiode-end-pumped solid-state lasers, J. Opt. Soc. Am. B, 2000, 17: 1835-1840
    [1] Q. Zheng, J. Y. Wang, and L. Zhao, 2.23 W diode-pumped Nd:YVO4/LBO laser at 671nm, Opt. & Laser Tech., 2004, 36: 485-487
    [2] L. Du, S. C. Ruan, Y. Q. Yu, and F. Zeng, 6-W diode-end-pumped Nd:GdVO4/LBO quasi-continuous-wave red laser at 671 nm, Opt. Express, 2005, 13: 2013-2018
    [3]陈振强,张戈,沈鸿元,黄呈辉,Nd:YAP/LBO腔内倍频高功率红光激光器,中国激光,2003,30:873-876
    [4] F. Balembois, D. Boutard, E. Barnasson, M. Baudrier, R. Paries, C. Schwach, S. Forget, Efficient diode-pumped intracavity frequency-doubled CW Nd:YLF laser emitting in the red, Opt. & Laser Tech., 2006, 38, 626-630
    [5]温午麒,刘欢,蔡志强,张强,邹雷,周睿,路颖,丁欣,牛燕雄,姚建铨,LD侧面抽运Nd:YAG/KTP连续波1.8W 659.5nm激光器,光电子i激光,2005,16:1167-1170
    [6] M. Oka, and S. Kubota, Stable intracavity doubling of orthogonal linearly polarized modes in diode-pumped Nd:YAG lasers, Opt. Lett., 1988, 13: 805-807
    [7] A. Y. Yao, W. Hou, Y. Bi, A. C. Geng, X. C. Lin, Y. P. Kong, D. F. Cui, L. A. Wu, Z. Y. Xu, High-power cw 671 nm output by intracavity frequency doubling of a double-end-pumped Nd:YVO4 laser, Appl. Opt., 2005, 44: 7156-7160
    [8] R. Zhou, X. Ding, W. Q. Wen, Z. Q. Cai, P. Wang, J. Q. Yao, High power continuous-wave diode-end-pumped intracavity frequency-doubled Nd:YVO4 laser at 671 nm with a compact three-element cavity, Chin. Phys. Lett., 2006, 23: 849-851
    [9] Y. Yao, W. Hou, X. C. Lin, Y. Bi, R. N. Li, D. F. Cui, Z. Y. Xu, High power red laser at 671 nm by intracavity-doubled Nd:YVO4 laser using LiB3O5, Opt. Commun., 2005, 231: 413-416
    [10] L. Zhang, C. Y. Li, D. H. Li, P. X. Li, Q. L. Zhang, and Z. G. Zhang, Compact diode-pumped Nd:YVO4 intracavity-doubled red laser at 671 nm, Opt. & Laser Tech., 2005, 37:524-526
    [11]郑权,王军营,薛庆华,LBO倍频1.8W连续671nm红光激光器,中国激光,2005,32:9-12
    [12] Y. Inoue, S. Konno, T. Kojima, and S. Fujikawa, High-power red beam generation by frequency-doubling of a Nd:YAG laser, IEEE J. Quantum Electron., 1999, 35: 1737-1740
    [13] Z. P. Sun, R. N. Li, Y. Bi, X. D. Yang, Y. Bo, Y. Zhang, G. L. Wang, W. L. Zhao, H. B. Zhang, W. Hou, D. F. Cui, and Z. Y. Xu, Generation of 11.5 W coherent red-light by intra-cavity frequency-doubling of a side-pumped Nd:YAG laser in a 4-cm LBO, Opt. Commun., 2004, 241: 167-172
    [14] H. B. Peng, W. Hou, Y. H. Chen, D. F. Cui, and Z. Y. Xu, 28 W red light output at 659.5nm by intracavity frequency doubling of a Nd:YAG laser using LBO, Opt. Express, 2006, 14: 3961-3967
    [15]郑权,薛庆华,王军营,LD泵浦1.2W连续Nd:YAG/LBO红光激光器,激光与红外,2004,34:24-26
    [1] R. K?hler, A. Tredicucci, F. Beltram, H. E. Beere, E. H. Linfield, A. G. Davies, D. A. Ritchie, R. C. Iotti, and F. Rossi, Terahertz semiconductor-heterostructure laser, Nature, 2002, 417: 156-159
    [2] M. Sherwin, Terahertz power, Nature, 2002, 420:131-133
    [3] C. Weiss, G. Torosyan, Y. Avetisyan, and R. Beigang, Generation of tunable narrow-band surface-emitted terahertz radiation in periodically poled lithium niobate, Opt. Lett., 2001, 26: 563-565
    [4] L. Wu, X. C. Zhang, and D. H. Auston, Terahertz beam generation by femtosecond optical pulses in electro-optic materials, Appl. Phys. Lett., 1992, 61: 1784-1786
    [5] W. Shi, and Y. J. Ding, Generation of backward terahertz waves in GaSe crystals, Opt. Lett., 2005, 30: 1861-1863
    [6] T. Taniuchi, J. Shikata, and H. Ito, Tunable terahertz-wave generation in DAST crystal with dual-wavelength KTP optical parametric oscillator, Electron. Lett., 2000, 36: 1414-1415
    [7] K. Kawase, T. Hatanaka, H. Takahashi, K. Nakamura, T. Taniuchi, and H. Ito, Tunable terahertz-wave generation from DAST crystal by dual signal-wave parametric oscillation of periodically poled lithium niobate, Opt. Lett., 2000, 25: 1714-1716
    [8] W. Shi, and Y. J. Ding, Continuously tunable and coherent terahertz radiation by means of phase-matched difference-frequency generation in zinc germanium phosphide, Appl. Phys. Lett., 2003, 83: 848-850
    [9] T. Taniuchi, S. Okada, and H. Nakanishi, Widely-tunable THz-wave generation in 2-20 THz range from DAST crystal by nonlinear difference frequency mixing Electron. Lett., 2004, 40: 60-62
    [10] W. Shi, Y. J. Ding, N. Fernelius, and K. Vodopyanov, Efficient, tunable, and coherent 0.18-5.27-THz source based on GaSe crystal, Opt. Lett., 2002, 27: 1454-1456
    [11] K. L. Vodopyanov, and L. A. Kulevskii, New dispersion relationships for GaSe in the 0.65-18μm spectral region, Opt. Commun., 1995, 118: 375-378
    [12] G. C. Bhar, L. K. Samanta, D. K. Ghosh, and S. Das, Tunable parametric ZnGeP2 crystal oscillator, Sov. J. Quantum Electron., 1987, 17: 860-861
    [13] D. E. Zelmon, E. A. Hanning, and P. G. Schunemann, Refractive-index measurements and Sellmeier coefficient for zinc germanium phosphide from 2 to 9μm with implications for phase matching in optical frequency-conversion devices, J. Opt. Soc. Am. B, 2001, 18: 1307-1310
    [14] B. L. Yu, F. Zeng, V. Kartazayev, and R. R. Alfano, Terahertz studies of the dielectric response and second-order phonons in a GaSe crystal, Appl. Phys. Lett., 2005, 87: 182104-1
    [15] W. Shi, and Y. J. A. Ding, monochromatic and high-power terahertz source tunable in the ranges of 2.7-38.4 and 58.2-3540μm for variety of potential applications, Appl. Phys. Lett., 2004, 84: 1635-1637
    [16] C. W. Chen, Y. K. Hsu, J. Y. Huang, C. S. Chang, J. Y. Zhang, and C. L. Pan, Generation properties of coherent infrared radiation in the optical absorption region of GaSe crystal, Opt. Express, 2006, 14: 10636-10644
    [17] W. Shi, M. Leigh, J. Zong, and S. B. Jiang, Single-frequency terahertz source pumped by Q-switched fiber lasers based on difference-frequency generation in GaSe crystal, Opt. Lett., 2007, 32: 949-951
    [18] Y. J. Ding, and W. Shi, Widely tunable monochromatic THz sources based on phase-matched difference-frequency generation in nonlinear-optical crystals: a novel approach, Laser Physics-Modern trends in laser physics, 2006, 16: 562-570
    [19] W. Shi, Y. J. Ding, and X. D. Mu, Tunable and coherent nanosecond radiation in the range of 2.7-28.7μm based on difference-frequency generation in galliumselenide, Appl. Phys. Lett., 2002, 80: 3889-3891
    [20]孙博,姚建铨,王卓,王鹏,利用各向同性半导体晶体差频产生可调谐THz辐射的理论研究,物理学报,2007,56:1390-1396
    [21]姚建铨,非线性光学频率变换及激光调谐技术(北京:科学出版社),1995,p20
    [22] Y. J. Ding, and W. Shi, Widely-tunable, monochromatic, and high-power terahertz sources and their applications, J. Nonlinear Opt. Phys. & Materials, 2003, 12: 557-585
    [1] P. H. Siegel, Terahertz Technology, IEEE Trans. Microwave Theory and Tech., 2002, 50: 910-928
    [2] R. K?hler, A. Tredicucci, F. Beltram, H. E. Beere, E. H. Linfield, A. G. Davies, D. A. Ritchie, R. C. Iotti, and F. Rossi, Terahertz semiconductor-heterostructure laser, Nature, 2002, 417: 156-159
    [3] N. Jukam and M. S. Sherwin, Two-dimensional terahertz photonic crystals fabricated by deep reactive ion etching in Si, Appl. Phys. Lett., 2003, 83: 21-23
    [4] T. D. Drysdale, R. J. Blaikie and D. R. S. Cumming, Calculated and measured transmittance of a tuneable metallic photonic crystal filter for terahertz frequencies, Appl. Phys. Lett., 2003, 83: 5362-5364
    [5] S. Wang, W. Lu, X. Chen, Z. Li, X. Shen and W. Wen, Two-dimensional photonic crystal at THz frequencies constructed by metal-coated cylinders, J. Appl. Phys., 2003, 93: 9401-9403
    [6] C. Lin, C. Chen, G. Schneider, P. Yao, S. Shi, A. Sharkawy, and D. Prather, Wavelength scale terahertz two-dimensional photonic crystal waveguides, Opt. Express, 2004, 12: 5723-5728
    [7] Di Falco, C. Conti and G. Assanto, Terahertz pulse generation via optical rectification in photonic crystal microcavities, Opt. Lett., 2005, 30: 1174-1176
    [8] H. Kurt and D. S. Citrin, Photonic crystals for biochemical sensing in the terahertz region, Appl. Phys. Lett., 2005, 87: 041108-1~3
    [9] S. Lin, E. Chow, V. Hietala, P. R. Villeneuve and J. D. Joannopoulos, Experimental demonstration of guiding and bending of electromagnetic waves in a photonic crystal, Science, 1998, 282: 274-276
    [10] J. Arentoft, T. S?ndergaard, M. Kristensen, A. Boltasseva, M. Thorhauge and L. Frandsen, Low-loss silicon-on-insulator photonic crystal waveguides, Electron. Lett., 2002, 38: 274-276
    [11] Y. Akahane, T. Asano, B. S. Song and S. Noda, High-Q photonic nanocacity in a two-dimensional photonic crystal, Nature, 2003, 425: 944-947
    [12] P. Yao, X. Chen, B. Chen, Y. Lu, P. Wang, X. Jiao, H. Ming and J. Xie, Optical reflector and high Q filter based on two-dimensional photonic-crystal waveguide, Opt. Commun., 2004, 236: 101-107
    [13] T. Niemi, L. H. Frandsen, K. K. Hede, A. Harp?th, P. I. Borel and M. Kristensen, Wavelength-division demultiplexing using photonic crystal waveguides, IEEE Photon. Technol. Lett., 2006, 18: 226-228
    [14] T. Liu, M. Fallahi, J. V. Moloney and M. Mansuripur, Fabrication of two-dimensional photonic crystals with embedded defects using blue-laser-writer and optical holography, IEEE Photon. Technol. Lett., 2006, 18: 1100-1102
    [15] K. M. Ho, C. T. Chan and C. M. Soukoulis, Existence of a photonic gap in periodic structures, Phys. Rev. Lett., 1990, 65: 3152-3155
    [16] J. D. Joannopoulos, R. D. Meade and J. N. Winn, Photonic Crystals: Molding the Flow of Light (Academic, Princeton, NJ: Princeton Univ. Press, 1995)
    [17]田艳,王洋,赵国忠,太赫兹频段硅的光学特性研究,现代科学仪器,2006,2:51-54
    [18] J. R. Wendt, G. A. Vawter, P. L. Gourley, T. M. Brennan, and B. E. Hammons, Nanofabrication of photonic lattice structures in GaAs/AlGaAs, J. Vac. Sci. Technol., 1993, 11: 2637-2640
    [19] H. Liu, J. Yao, E. Li, W. Wen, Q. Zhang and P. Wang, Theoretical analysis of optimum parameters for complete forbidden bands of three-dimensional photonic crystals with typical lattice structures, Acta Phys. Sin., 2006, 55: 230-237
    [20] G. Gallot, S. P. Jamison, R. W. McGowan and D. Grischkowsky, Terahertz waveguides, J. Opt. Soc. Am. B, 2000, 17: 851-863
    [21] Mekis, S. Fan and J. D. Joannopoulos, Bound states in photonic crystal waveguides and waveguide bends, Phys. Rev. B, 1998, 58: 4809-4817
    [1] N. Jukam, and M. S. Sherwin, Two-dimensional terahertz photonic crystalsfabricated by deep reactive ion etching in Si, Appl. Phys. Lett., 2003, 83: 21-23.
    [2] S. W. Wang, W. Lu, X. S. Chen, Z. F. Li, X. C. Shen, and W. J. Wen, Two-dimensional photonic crystal at THz frequencies constructed by metal-coated cylinders, J. Appl. Phys., 2003, 93: 9401-9403
    [3] A. Di Falco, C. Conti, and G. Assanto, Terahertz pulse generation via optical rectification in photonic crystal microcavities, Opt. Lett., 2005, 30: 1174-1176
    [4] H. Kurt, and D. S. Citrin, Photonic crystals for biochemical sensing in the terahertz region,”Appl. Phys. Lett., 2005, 87: 041108-1~3
    [5] C. Lin, C. Chen, G. Schneider, P. Yao, S. Shi, A. Sharkawy, and D. Prather,“Wavelength scale terahertz two-dimensional photonic crystal waveguides, Opt. Express, 2004, 12: 5723-5728
    [6] T. D. Drysdale, R. J. Blaikie, and D. R. S. Cumming, Calculated and measured transmittance of a tunable metallic photonic crystal filter for terahertz frequencies, Appl. Phys. Lett., 2003, 83: 5362-5364
    [7] A. L. Reynolds, H. M. H. Chong, I. G. Thayne, J. M. Arnold, P. De Maagt, Analysis of membrane support structures for integrated antenna usage on two-dimensional photonic-bandgap structures, IEEE Trans. Microwave Theory and Tech., 2001, 49: 1254-1261
    [8] A. R. Weily, K. P. Esselle, T. S. Bird, and B. C. Sanders, Experimental woodpile EBG waveguides, bends and power dividers at microwave frequencies, Electron. Lett., 2006, 42: 32-33
    [9] K. Takagi, K. Seno, and A. Kawasaki, Fabrication of a three-dimensional terahertz photonic crystal using monosized spherical particles, Appl. Phys. Lett., 2004, 85: 3681-3683
    [10] H. Liu, J. Q. Yao, E. B. Li, W. Q. Wen, Q. Zhang, and P. Wang, Theoretical analysis of optimum parameters for complete forbidden bands of three-dimensional photonic crystals with typical lattice structures, Acta Phys. Sin., 2006, 55: 230-238
    [11] S. H. Fan, P. R. Villeneuve, and J. D. Joannopoulos, Theoretical investigation of fabrication-related disorder on the properties of photonic crystals, J. Appl. Phys., 1995, 78: 1415-1418
    [12] P. Kopperschmidt, Tetragonal photonic woodpile structures, Appl. Phys. B, 2003, 76: 729-734
    [13] E. ?zbay, E. Michel, G. Tuttle, R. Biswas, K. M. Ho, J. Bostak, and D. M. Bloom,Terahertz spectroscopy of three-dimensional photonic band-gap crystals, Opt. Lett., 1994, 19: 1155-1157
    [14] A. Chelnokov, S. Rowson, J.-M. Lourtioz, L. Duvillaret, and J.-L. Coutaz, Terahertz characterisation of mechanically machined 3D photonic crystal, Electron. Lett., 1997, 33: 1981-1983
    [15] A. Feigel, M. Veinger, B. Sfez, A. Arsh, M. Klebanov, and V. Lyubin, Three-dimensional simple cubic woodpile photonic crystals made from chalcogenide glasses, Appl. Phys. Lett., 2003, 83: 4480-4482
    [16] S. Shoji, H. B. Sun, and S. Kawata, Photofabrication of wood-pile three-dimensional photonic crystals using four-beam laser interference, Appl. Phys. Lett., 2003, 83: 608-610
    [17] Y. Lin, D. Rivera, and K. P. Chen, Woodpile-type photonic crystals with orthorhombic or tetragonal symmetry formed through phase mask techniques, Opt. Express, 2006, 14: 887-892
    [18] K. M. Ho, C. T. Chan, C. M. Soukoulis, R. Biswas, and M. Sigalas, Photonic band gaps in three dimensions: new layer-by-layer periodic structures, Solid State Commun., 1994, 89: 413-416
    [19] S. Y. Lin, J. G. Fleming, D. L. Hetherington, B. K. Smith, R. Biswas, K. M. Ho, M. M. Sigalas, W. Zubrzycki, S. R. Kurtz, and Jim Bur, A three-dimensional photonic crystal operating at infrared wavelengths, Nature, 1998, 394: 251-253
    [20] K. M. Ho, C. T. Chan, and C. M. Soukoulis, Existence of a photonic gap in periodic dielectric structures, Phys. Rev. Lett., 1990, 65: 3152-3155
    [21] C. M. Anderson, and K. P. Giapis, Larger two-dimensional photonic band gaps, Phys. Rev. Lett., 1996, 77: 2949-2952

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700