栉孔扇贝(Chlamys farreri)组织凝集活性分析及一种C-型凝集素单克隆抗体的研制和特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
凝集素是贝类生物体液免疫的主要执行者之一,是抵御外来病原体侵袭和环境刺激的重要“屏障”,在病原识别以及止血、凝固、物质运输和创伤修复等生理过程中都具有重要作用。C-型凝集素(C-type lectin)作为宿主防御系统中的一种模式识别蛋白(Pattern recognition protein,PRP),在病原体识别和细胞间的相互作用上具有重要作用。本论文比较了栉孔扇贝血淋巴以及其它不同组织粗提液对高等动物血细胞和多种菌体的凝集活性;并从栉孔扇贝血淋巴中分离纯化了甘露聚糖结合凝集素(Mannan-binding lectin,MBL);制备了C-型凝集素CfLec290的单克隆抗体,并结合RT-PCR技术、原位杂交技术对其在栉孔扇贝(Chlamysfarreri)血细胞以及其它不同组织中的分布特性进行分析,为研究栉孔扇贝凝集素在免疫防御机制中作用积累了数据。本论文主要包括以下4个部分:
     (1)栉孔扇贝血淋巴以及其它不同组织粗提液的凝集活性分析。本论文通过超声波破碎或组织匀浆的方式分别制备了栉孔扇贝血细胞以及其它组织,包括鳃、外套膜、肝胰腺、性腺、肾脏以及肌肉组织的蛋白粗提液,并将其与血淋巴上清的蛋白浓度都调整为1mg/mL,然后分别测定这8组样品对2种动物红细胞血液和9种菌悬液的凝集活性,并测定EDTA、多种糖溶液对其凝集活性的影响。结果发现:血淋巴上清不仅可以凝集小鼠红细胞,还可以凝集鳗弧菌、金黄色葡萄球菌、枯草芽孢杆菌以及毕赤酵母,其凝集活性可以被EDTA、葡聚糖、甘露糖-6-磷酸、N-乙酰葡萄糖胺,甘露聚糖、酵母聚糖、硫酸软骨素、肽聚糖和脂多糖不同程度的抑制;鳃组织粗提液可以凝集金黄色葡萄球菌、枯草芽孢杆菌和毕赤酵母,且凝集活性可以被EDTA、N-乙酰半乳糖胺、甘露聚糖、酵母聚糖、硫酸软骨素、肽聚糖和脂多糖不同程度的抑制;外套膜、肝胰腺、性腺和肾脏提取液均只能凝集枯草芽孢杆菌,且该凝集反应主要受到甘露聚糖、酵母聚糖以及肽聚糖的抑制;此外,栉孔扇贝血细胞及肌肉组织粗提液并未发现凝集活性。这些结果表明,在栉孔扇贝体内有多种类型凝集素的存在,且在血淋巴上清中的类型和数量最为丰富,而这正与扇贝强大的体液免疫系统息息相关。
     (2)栉孔扇贝血淋巴甘露聚糖结合凝集素的分离纯化。本论文依次通过硫酸铵盐析和甘露聚糖-亲和层析柱亲和层析,从栉孔扇贝血淋巴上清中分离纯化出甘露聚糖结合凝集素,通过对其凝集活性的检测以及蛋白分子量的分析发现:提纯的MBL可以凝集鳗弧菌和毕赤酵母,对高等动物血细胞以及其它检测菌体并无凝集活性;MBL在Native-PAGE中的分子量为645kDa,在SDS-PAGE中的分子量为73kDa,表明该凝集素是由一种亚基组成的多聚体。
     (3)抗栉孔扇贝C-型凝集素Cflec290单克隆抗体的制备和筛选。本论文首先通过体外重组表达获得重组蛋白rCfLec290,免疫小鼠后,经细胞融合技术制备了抗rCfLec290单克隆抗体,并分别通过ELISA技术和Western blotting技术对抗体进行筛选,最后筛选出3株可稳定表达单抗的细胞株1A2、1A7和2B6。
     (4)C-型凝集素Cflec290在栉孔扇贝血细胞及其它不同组织中的分布。首先通过半定量RT-PCR技术检测Cflec290mRNA在血细胞以及其它不同组织中的表达含量,再通过制备地高辛标记的Cflec290的cRNA核酸探针,检测血细胞滴片以及其它不同组织切片中mRNA表达的位置,最后通过抗重组蛋白rCfLec290单克隆抗体检测该凝集素在血细胞滴片及不同组织切片中的分布情况。结果发现:通过半定量RT-PCR,Cflec290在血细胞以及其它各组织中均有表达,但在外套膜、肾脏以及性腺中的转录水平最高,血细胞、鳃和肝胰腺次之,在肌肉中的转录水平较弱;原位杂交显示,阳性信号主要发现在栉孔扇贝的外套膜表皮细胞以及肝胰腺管壁细胞中,在其它组织中并未发现;通过利用抗重组蛋白rCfLec290的单克隆抗体的间接免疫荧光检测发现,CfLec290蛋白主要分布在扇贝血细胞膜,以及鳃、外套膜、肝胰腺等组织表皮和腔体表面。结果表明,Cflec290可在栉孔扇贝血细胞、外套膜表皮细胞和肝胰腺管壁细胞中合成与表达,功能蛋白则广泛分布于扇贝血细胞及各组织器官中,在血细胞膜,鳃、外套膜、肝胰腺表皮,腔体表面尤为丰富。依此推测,血细胞、外套膜和肝胰腺在Cflec290合成和表达过程中发挥着重要作用,该凝集素在血细胞、外套膜或肝胰腺细胞内合成后,被分泌到细胞外,伴随着体液流动,被运输到全身多组织器官中行使功能。
Lectins contribute a lot to the scallop humoral immune system for avoidingthe pathogen invasion and environmental stimulus. They play an important role in thepathogen recognition, as well as the physiological process of hemostasis, coagulation,material transport and wound healing in scallops. In this dissertation, the agglutinationactivities of the cell-free haemolymph (CFH) and haemocyte, gills, mantle,hepatopancreas, gonad, kidney, adductor muscle of C. farreri were tested separatelyagainst the rabbit blood cells (RBC), mouse blood cells (MBC) and the fluoresceinisothiocyanate-labelled microbes, and a mannan-binding lectin (MBL) was purifiedfrom CFH by affinity chromatography.; and then, monoclonal antibodies wereproduced, and they were used to analyzed the CfLec290distribution characteristics ofC. farreri haemocytes as well as other organizations combined with RT-PCR and insitu hybridization.
     (1) Agglutination activities of haemolymph and tissue extracts in scallop C.farreri were tested. In this dissertation, cell-free haemolymph (CFH) and crudeextracts from the haemocytes, gills, mantle, hepatopancreas, gonad, kidney andadductor muscle of C. farreri were obtained, and their agglutination activities weretested separately against RBC, MBC and fluorescein isothiocyanate-labeled microbes.Agglutination inhibition were carried out with EDTA and saccharides. The resultsshowed the CFH could aggregate Vibrio anguillarum, Staphylococcus aureus,Bacillus subtilis, Pichia pastoris and MBC, and the agglutination could be inhibitedby DEAE dextran, EDTA, D-mannose-6-phosphate (M6P), N-acetyl glucosamine(GlcNAc), mannan, zymosan A, chondroitin sulphate, peptidoglycan (PGN) andlipopolysaccharides (LPS); Gill extracts aggregated S. aureus, B. subtilis and P.pastoris, and the agglutination activity could be inhibited by EDTA, N-acetyl galactosamine (GalNAc), mannan, zymosan A, chondroitin sulphate, PGN and LPS;Mantle, hepatopancreas, gonad and kidney extracts could only aggregate B. subtilis,and this could be inhibited by mannan, zymosan A and PGN; however, noagglutination activity was detected using haemocyte or adductor muscle extracts. Theresults indicated that multiple types of lectins exist in C. farreri, and CFH has thehighest agglutination activity.
     (2) Mannan-binding lectin (MBL) was purified from haemolymph of C.farreri.MBL was purified from CFH by affinity chromatography using a mannan-sepharosecolumn and analyzed using native-and denaturing-PAGE. The results showed that thepurified MBL could aggregate Vibrio anguillarum, and exhibited a molecular mass of645kDa using native-PAGE and73kDa using SDS-PAGE, suggesting that C. farreriMBL is an polymer composed of one subunit.
     (3) Production of the monoclonal antibodies against rCfLec290. Therecombinant protein rCfLec290were produced and purified in vitro. And then thepurified rCfLec290was used to immunize the mouse, and after the cell fusion, ELISAand western blotting were employed to screen the fusion cells, Finally,3hybridomaswere achieved, MAb1A2,1A7and2B6.
     (4) Distribution of C-type lectin Cflec290in C. farreri were detected. First,Semi-quantitative RT-PCR and in situ hybridization was employed to detect theCflec290mRNA distribution, and the monoclonal antibodies against rCfLec290wereproduced to detect the distribution of the protein CfLec290in different tissue by IIFAand western blotting. The results showed that: In semi-quantitative RT-PCR, Cflec290mRNA expressed at the highest level in mantle, kidneys and gonads, moderate in gillsand adductor muscles, least in hepatopancreas; In ISH, positive signals were mainlyobserved in the epithelium of mantle and hepatopancreas cells; In IIFA, the positivefluorescent signals were mainly distributed in the membrane of haemocytes, and theedge of gills, mantle, kidney and glands.
引文
[1] Devyatyarova-Johnson M, Rees IH, Robertson BD, et al.. The lipopolysaccharide structuresof salmonella enterica serovar typhimurium and neisseria gonorrhoeae determine theattachment of human mannose-binding lectin to intact organisms. Infection and immunity,2000,68(7):3894~3899
    [2]陈皓文,孙不喜,宋庆云.外源凝集素-水产动物御敌的有利兵器[J].黄渤海海岸,1995,13(3):61~70
    [3] Edelman G.M., Rutishauser U, Millette C. F., Cell fractionation and arrangement on fibers,beads and surfaces. Proceedings of the National Academy of Sciences,1971,68(9):2153~2157.
    [4] Kawasaki T, Etoh R, Yamashina I. Isolation and characterization of a mannan-bindingprotein from rabbit liver. Biochem Biophys Res Commun,1978,81(3):1018~1024
    [5]陆晨,侯丽娜,岳华.甘露糖结合蛋白的研究进展.医学综述,2008,14(6):928~930
    [6]刘亚军,孔晓瑜,喻子牛.栉孔扇贝(Chlamys farreri)自然群体遗传多样性的RAPD分析.海洋与湖沼,2006,37(4):289~296
    [7]王如才,郑小东.我国海产贝类养殖进展及发展前景.中国海洋大学学报,2004,34(5):775~780
    [8]王璐.论扇贝的营养价值、生物活性及养殖.牡丹江大学学报,2007,16(3):92~94
    [9]杜美荣,王彬,张继红,等.一龄栉孔扇贝壳长与壳高对湿重的相关性和通径分析,012,28(20):136~139
    [10]贺桂珍,李赟,宋微波,等.栉孔扇贝病原感染与病害发生关系探讨.2003,27(3):273~277
    [11]王运涛,相建海.栉孔扇贝大规模死亡病因的探讨.海洋与湖沼,1999,30(6):770~774
    [12] Tang BJ, Liu BZ, Wang XM, et al.. Physiological and immune responses of Zhikongscallop Chlamys farreri to the acute viral necrobiotic virus infection. Fish&ShellfishImmunology,2010,29:42~48
    [13]于瑞海,王如才,田传远,等.栉孔扇贝大面积死亡的原因分析及预防探讨.海洋湖沼通报,1998,3:69~72
    [14]王崇明,王秀华,宋晓玲,等.栉孔扇贝一种球形病毒的分离纯化及其超微结构观察.水产学报,2002,26(2):180~184
    [15]张福绥,杨红生.山东沿岸夏季栉孔扇贝大规模死亡原因分析.海洋科学,1999,1:44~47
    [16]杨秀生,王勇强,叶海斌,等.扇贝常见病害种类及其流行趋势和防控.齐鲁渔业,2008,25(9):13~15
    [17] Feng SY. Pinocytosis of proteins by oyster leucocytes. The Biological Bulletin,1965,129:95~105
    [18]柯佳颖,陈寅山,戴聪杰.贝类免疫机制研究概况.宁德师专学报(自然科学版),2009,21(2):113~118
    [19]王宜艳,孙虎山,孙秀琴,等.海湾扇贝消化系统粘液细胞的类型与分布.中国水产科学,2003,10(3):254~257
    [20]孙虎山,王宜艳,王平,等.栉孔扇贝外套膜和鳃粘液细胞的类型与分布.中国水产科学,2002,9(4):315~318
    [21] Kong PF, Zhang H, Wang L, et al.. AiC1qDC-1, a novel gC1q-domain-containing proteinfrom bay scallop Argopecten irradians with fungi agglutinating activity. Developmentaland Comparative Immunology,2010,34:837~846
    [22] Espinosa EP, Perrigault M, Ward JE, et al.. Microalgal cell surface carbohydrates asrecognition sites for particle sorting in suspension-feeding bivalves. Bio Bull,2010,218(1):75~86
    [23]陈蜀娜,石安静.河蚌外套膜的组织化学定位及运输途径的研究.四川大学学报(自然科学版),1994,31:175~178
    [24] Mount AS, Wheeler AP, Paradkar RP, et al.. Hemocyte-mediated shell mineralization in theeastern oyster. Science,2004,304:297~300
    [25] Christophides GK, Vlachou D, Kafatos FC. Comparative and functional genomics of theinnate immune system in the malaria vector Anopheles gambiae. Immunological Reviews,2004,198:127~148
    [26] Battistella S, Bonivento P, Amirante GA. Hemocytes and immunological reactions incrustaceans. Italian Journal of Zoology,1996,63(4):337-343
    [27] Wang L, Qiu L, Zhou Z, et al.. Research progress on the mollusc immunity in China.Developmental and Comparative Immunology,2013,39:2~10
    [28] Tamplin ML, Fisher WS. Occurrence and characteristics of agglutination of Vibrio choleraeby serum from the eastern oyster, Crassostrea virginica. Applied and EnvironmentalMicrobiology,1989,55(11):2882~2887
    [29] Koizumi N, Imamura M, Kadotani T, et al.. The lipopolysaccharide-binding proteinparticipating in hemocyte nodule formation in the silkworm Bombyx mori is a novelmember of the C-type lectin in superfamily with two different tandemcarbohydrate-recognition domains. FEBS lett1999,443:139~143
    [30] Rowley AF, Powell A. Invertebrate immune systems-specific, quasi-specific, ornonspecific?. The Journal of Immunology,2007,179:7209~214
    [31]马洪明,麦康森.贝类血细胞的吞噬作用和非我识别.海洋科学,2003,27(2):16~18
    [32] Schmid LS. Chemotaxis of hemocytes from the snail Viviparus malleatus. Journal ofInvertebrate Pathology.1975,25:125~132
    [33] Cajaraville MP, Pal SG. Morphofunctional study of the haemocytes of the bivalve molluscMytilus galloprovincialis with emphasis on the endolysosomal compartment. Cell structureand function.1995,20:355~367
    [34] Jiravanichpaisal P, Lee BL, S derh ll K. Cell-mediated immunity in arthropods:Hematopoiesis, coagulation, melanization and opsonization. Immunobiology,2006,211:213~236
    [35] Feng SY, Feng JS. The effect of temperature on cellular reactions of Crassostrea virginicato the injection of avian erythrocytes. Journal of Invertebrate Pathology,1974,23:22~37
    [36] Jiravanichpaisal P, Lee BL, S derh ll K. Cell-mediated immunity in arthropods:Hematopoiesis, coagulation, melanization and opsonization. Immunobiology,2006,211:213~236
    [37] Feng SY. Cellular defense mechanisms of oysters and mussels. Am Fish Soc Spec Public,1988,18:153~168
    [38] Tasumi S, Vasta GR. A galectin of unique domain organization from hemocytes of theeastern oyster (Crassostrea virginica) is a receptor for the protistan parasite Perkinsusmarinus. The Journal of Immunology,2007,179:3086~3098
    [39] Cheng TC. Bivalves. In: N.A. Ratcliffe andA. F. Rowley, Editors, Invertebrate Blood Cells,Academic Press, London,1981, pp.233~299
    [40] Battistella S, Bonivento P, Amirante GA. Hemocytes and immunological reactions incrustaceans. Italian Journal of Zoology,1996,63(4):337~343
    [41] S derh ll K, Cerenius L. Role of the prophenoloxidase-activating system in invertebrateimmunity. Current Opinion in Immunology,1998,10:23~28
    [42] Ling E, Yu XQ. Prophenoloxidase binds to the surface of haemocytes and is involved inhaemocyte melanization in Manduca sexta. Insect Biochemistry and Molecular Biology,2005,35:1356~1366
    [43] Goldsworthy G, Chandrakant S, Opoku-Ware K. Adipokinetic hormone enhances noduleformation and phenoloxidase activation in adult locusts injected with bacteriallipopolysaccharide. Journal of Insect Physiology,2003,49:795~803
    [44] Iwanaga S, Lee BL. Recent advances in the innate immunity of invertebrate animals.journal of biochemistry and molecular biology,2005,38(2):128-~150
    [45] Baier-Anderson C, Anderson RS. The effects of chlorothalonil on oyster hemocyteactivation: phagocytosis, reduced pyridine nucleotides, and reactive oxygen speciesproduction. Environmental Research,2000,83:72~78
    [46] Bachèrea, E, Mialhe E, No l D, et al.. Knowledge and research prospects in marine molluscand crustacean immunology.Aquaculture,1995,132:17~32
    [47]张峰,李光友.贝类血细胞活性氧体内防御作用的研究进展.海洋科学,1999,2:16~19
    [48] Pipe RK. Generation of reactive oxygen metabolites by the haemocytes of the musselMytilus edulis. Developmental&Comparative Immunology,1992,16:111~122
    [49] Holmblad T, S derh ll K. Cell adhesion molecules and antioxidative enzymes in acrustacean, possible role in immunity.Aquaculture,1999,172:111~123
    [50] Dikkeboom R, Van der Knaap WPW, Meuleman EA, et al.. Comparative study on theinternal defence systen of juvenile and adult Lymnaea stagnalis. Immunology,1985,55:547~533
    [51] Nakamura M, Mori K, Inooka S, et al.. In vitro production of hydrogen peroxide by theamoebocytes of the scallop, Potinopecten yessoensis. Developmental and ComparativeImmunology,1985,9:407~417
    [52] Heise K, Puntarulo S, P rtner HO, et al.. Production of reactive oxygen species by isolatedmitochondria of the Antarctic bivalve Laternula elliptica (King and roderip) under heatstress. Comparative Biochemistry and Physiology,2003,134:79~90
    [53] Bramble L, Anderson RS. Modulation of Crasostrea virginica hemocyte reactive oxygenspecies production by Listonella anguillarum. Developmental and ComparativeImmunology,1997,21(4):337~348
    [54]吴曙,王淑红,王艺磊,等.软体动物和甲壳动物酚氧化酶的研究进展.动物学杂志,2009,44(5):137~146
    [55]蒋经伟.栉孔扇贝(Chlamys farreri)酚氧化酶的分离纯化及特性研究[博士学位论文].青岛,中国海洋大学,水产养殖专业,2011.
    [56]樊廷俊,任秉新,樊现远,等.甲壳动物酚氧化酶分子结构与生物化学性质的研究进展.山东大学学报(理学版),2012,47(1):1~7
    [57]李国荣,张士催,李红岩,等.酚氧化酶研究概况.海洋科学,2003,27(4):4~8
    [58] Jiravanichpaisal P, Lee BL, S derh ll K. Cell-mediated immunity in arthropods:Hemotopoiesis, coagulation, melanization and opsonization. Immunobiology,2006,211:213~236
    [59] Cerenius L, Lee BL, Soderhall K. The proPO-system: pros and cons for its role ininvertebrate immunity. Trends in Immunology,2008,29(6):263~271
    [60] Soderhall K, Cerenius L. Role of the prophenoloxidase-activating system in invertebrateimmunity. Current Opinion in Immunology,1998,10:23~28
    [61] Saul SJ, Bin L, Sugumaran M. The majority of prophenoloxidase in the hemolymph of ispresent in the plasma and not in the hemocytes. Developmental and ComparativeImmunology,1987,11:479~485
    [62] Waite JH. The phylogeny and chemical diversity of quinoned-tanned glues and varnishes.Comparative Biochemistry and Physiology-Part B,1995,156:491~496
    [63] Parrinello N, Arizza V, Chinnici C, et al.. Phenoloxidases in ascidian hemocytes:characterization of the prophenoloxidase activating system. Comparative Biochemistry andPhysiology-Part B,2003,135:583~591
    [64] Luna-Acosta A, Saulnier D, Pommier M, et al.. First evidence of a potential antibacterialactivity involving a laccase-type enzyme of the phenoloxidase system in Pacific oysterCrassostrea gigas haemocytes. Fish&Shellfish Immunology,2011,31:795~800
    [65]孙虎山,李光友.免疫多糖对栉孔扇贝血淋巴中氧化酶活力的影响.高技术通讯,2001,5:10~12
    [66] Hong XT, Xiang LX, Shao JZ. The immunostimulating effect of bacterial genomic DNAon the innate immune responses of bivalve mussel, Hyriopsis cumingii Lea. Fish&Shellfish Immunology,2006,21:357~364
    [67] Aladaileh S, Rodney P, Nair SV, et al.. Characterization of phenoloxidase activity inSydney rock oysters (Saccostrea glomerata). Comparative Biochemistry andPhysiology-Part B,2007,148:470~480
    [68] Cong M, Song LS, Wang LL, et al.. The enhanced immune protection of Zhikong scallopChlamys farreri on the secondary encounter with Listonella anguillarum. ComparativeBiochemistry and Physiology-Part B,2008,151:191~196
    [69] Xing J, Lin TT, Zhan WB. Variations of enzyme activities in the haemocytes of scallopChlamys farreri after infection with the acute virus necrobiotic virus (AVNV). Fish&Shellfish Immunology,2008,25:847~852
    [70] Cheng TC. The role of lysosmal hydrolases in molluscan cellular response to immunologicchallenge. Journal of Comparative Pathology,1978,4:59~71
    [71]刘志鸿,牟海津,王清印.软体动物免疫相关酶研究进展.海洋水产研究,2003,24(3):86~90
    [72] Foley DA, Cheng TC. Degranulation and other changes of molluscan granulocytesassociated with phagocytosis. J Invertebr Pathol,1977,29:321~325
    [73]刘志鸿.海洋双壳贝类的免疫特性及调节[博士学位论文].青岛,中国海洋大学,海洋生物学专业,2004
    [74]林听听.栉孔扇贝(Chlamys farreri)血细胞酶联免疫检测试剂盒的研制与应用[博士学位论文].青岛,中国海洋大学,水产养殖专业,2010.
    [75]朱齐,陈彦.溶菌酶及其应用.生物学通报,1998,33(10):9~10
    [76]吴晓英,林影,陈慧英.溶菌酶的研究进展.工业微生物,2002,32(4):55~58
    [77]王文琪,徐申波,姜令绪,等.菲律宾蛤仔血淋巴溶菌酶活性的研究.海洋科学,2006,30(8):46~49
    [78] Blake CC, Koeig DF, Mair GA, et al.. Structure of hen egg-white lysozyme. Athree-dimensional Fourier synthesis at2Angstrom resolution. Nature.1965,206:757~761
    [79] Vanderkelen L, Van Herreweghe JM, Vanoirbeek KG et al.. Identification of a bacterialinhibitor against g-type lysozyme. Cellular and Molecular Life Sciences,2011,68(6):1053~1064
    [80] Li L, Zhao J, Wang L, et al.. The polymorphism of lysozyme gene in Zhikong scallop(Chlamys farreri) and its association with susceptibility/resistance to Listonellaanguillarum. Fish&Shellfish Immunology,2009,27(2):136~142
    [81] Wang Q, Zhang L, Zhao J, et al.. Two Goose-Type Lysozymes in Mytilus galloprovincialis:Possible Function Diversification and Adaptive Evolution. PLoS ONE,2012,7(9): e45148.doi:10.1371/journal.pone.0045148
    [82] Zhao J, Song L, Li C, et al.. Molecular cloning of an invertebrate goose-type lysozymegene from Chlamys farreri, and lytic activity of the recombinant protein. MolecularImmunology,2007,44:1198~1208
    [83] Zhang ZY. PROTEIN TYROSINE PHOSPHATASES: Structure and Function, SubstrateSpecificity, and Inhibitor Development. Annual Review of Pharmacology and Toxicology,2002,42:209~234
    [84] Mumby MC, Walter G. Protein Serine/Threonine Phosphatases:Structure, Regulation, andFunctions in Cell Growth, Physiological Reviews,1993,73(4):673~699
    [85] Camps S, Nichols A, Arkinstal S. Dual specificity phosphatases: a gene family for controlof MAP kinase function. The FASEN Journal,2000,14(1):6~16
    [86] Baumner H, M urer A, Krieglstein J, et al.. Expression of Protein Histidine Phosphatase inEscherichia coli, Purification, and Determination of Enzyme Activity. Methods Mol Biol,2007,365:247~260
    [87] Maehama T, Okahara F, Kanaho Y. The tumour suppressor PTEN: involvement of a tumoursuppressor candidate protein in PTEN turnover. Biochemical Society Transactions,2004,32(Pt2):343~347
    [88]林静瑜.合浦珠母贝碱性磷酸酶的分离纯化和性质研究.厦门,厦门大学,生物化学与分子生物学,2001
    [89] Cheng TC, Yoshino TP. Lipase activity in the hemolymph of Biomphalaria glabrata(mollusca) challenged with bacteria lipids. Journal of Invertebrate Pathology,1976,28(1):143~146
    [90] Yoshino TP, Cheng TC. Experimentally induced elevation of aminopeptidase activity inhemolymph cells of the American oyster, Crassostrea virginica. Journal of InvertebratePathology,1976,27:367~370
    [91]刘梅.后壳贻贝抗菌肽mytilin的纯化、鉴定及基因克隆.浙江,浙江海洋学院,海洋生物学,2010
    [92] Mitta G, Hubert F, No l T, et al.. Myticin, a novel cysteine-rich antimicrobial peptideisolated from hemocytes and plasma of the mussel Mytilus galloprovincialis. EuropeanJournal of Biochemistry,1999a,265:71~78
    [93] Mitta G, Vandenbulcke F, Hubert F, et al.. Mussel defensins are synthesised and processedin granulocytes then released into the plasma after bacterial challenge. Journal of CellScience.1999b,112:4233~4242
    [94] Mitta G, Vandenbulcke F, Hubert F, et al.. Involvement of mytilins in mussel antimicrobialdefence.The Journal of Biological Chemistry,2000,275:12954~12962.
    [95]杨婷婷,叶梦晓,尤仲杰,等.抗菌肽及其在贝类中的研究进展.基因组学与应用生物学,2012,31(6):644~649
    [96] Fujita T. Evolution of the lectin-complement pathway and its role in innate immunity.Nature Reviews Immunology,2002,2:346~353
    [97] Andrews CA, Rizki TM. Studies on lectin-induced agglutination of Drosophila embryoniccell lines. Journal of Insect Physiology,1978,24:9~12
    [98] Beck G, Habicht GS. Evolution of immunity and invertebrates. Scientific American,1996,Nov,275(5):60~3,66
    [99]柯佳颖,陈寅山,许友勤.泥蚶体液和肌肉提取液凝集素的初步研究.泉州师范学院学报,2005,24(2):81~85
    [100]许高云,林静,陈寅山,等.蚶形无齿蚌(Anodonta arcaeformis)血清、肌肉和生殖腺凝集素的初步研究.天然产物研究与开发,2008,20:43~47
    [101]陈寅山,柯佳颖,饶小珍.泥蚶(Tegillarca franosa Linnaeus)血淋巴液凝集素的分离纯化及其性质研究.分子细胞生物学报,2006,39(5):453~461
    [102]陈琳,许高云,饶小珍,等.香螺血清、肌肉和唾液腺凝集素凝集性能的初步研究.天然产物研究与开发,2010,22:651~657,670
    [103] Chen CL, Rowley AF, Newton RP, et al.. Identification, purification and properties of aβ-1,3-glucan-specific lectin from the serum of the cockroach, Blaberus discoidalis which isimplicated in immune defence reactions. Comparative Biochemistry and Physiology Part B,1999,122:309~319
    [104] Yu XQ, Gan H, Kanost MR. Immulectin, an inducible C-type lectin from an insect,Manduca sexta, stimulates activation of plasma prophenol oxidase. Insect Biochemistry andMolecular Biology,1999,29:585~597
    [105] McCoy JJ, Mann BJ. Proteomic analysis of Gal/GalNAc lectin-associated proteins inEntamoeba histolytica. Experimental Parasitology,2005,110:220~225
    [106] Zelensky AN, Gready JE. The C-type lectin-like domain superfamily. The FEBS Journal,2005,272:6179~6217
    [107]杨嘉龙.栉孔扇贝关键模式识别受体介导的免疫应答机制研究.青岛,中国科学院海洋研究所,海洋生物学,2011
    [108]谢建辉,顾建新.C型凝集素.生命科学,2011,23(6):555~562
    [109] Drickamer K. C-type lectin-like domains. Current Opinion in Structural Biology,1999,9(5):585~590
    [110] Zelensky AN, Gready JE. The C-type lectin-like domain superfamily. The FEBS Journal,2005,272(24):6179~6217
    [111] Suzuki, T., Mori, K.,1991. Immunolocalization and in vitro secretion of hemolymph lectinof the pearl oyster, Pinctada fucata martensii. Zoological Science8,23-29.
    [112] Marques, M.R.F., Barracco, M.A.,2000. Lectins, as non-self-recognition factors, incrustaceans.Aquaculture191,23-44.
    [113] Dahms, N.M., Kancock, M.K.,2002. P-type lectins. Biochimic et Biophysica Acta1572,317-340.
    [114] Barondes, S.H., Cooper, D.N.W., Gitt, M.A., Leffler, H.,1994. Galectins. Structure andfunction of a large family of animal lectins. The Journal of Biological Chemistry269,20807-20810.
    [115] Tunkijjanukij, S., Olafsen, J.A.,1998. Sialic acid-binding lectin with antibacterial activityfrom the horse mussel: further characterization and immunolocalization. Developmentaland Comparative Immunology22,139-150.
    [116] Sekine H, Kenjo A, Azumi K, et al.. An ancient lectin-dependent complement system in anascidian: Novel lectin isolated from the plasma of the solitary ascidian, Halocynthia roretzi.Journal of Immunology,2001,167:4504~4510.
    [117] Yu XQ, Kanost MR. Immunlectin-2, a lipopolysaccharide-specific lectin from an insect,Manduca sexta, is induced in response to gram-negative bacteria. The Journal of BiologicalChemistry,2000,275:37373~37381.
    [118] Battison AL, Summerfield RL. Isolation and partial characterisation of four novel plasmalectins from the American lobster Homarus americanus. Developmental and ComparativeImmunology,2009,33:198~204.
    [119] Kang CJ, Wang JX, Zhao XF, et al.. Molecular cloning and expression analysis ofCh-penaeidin, an antimicrobial peptide from Chinese shrimp, Fenneropenaeus chinensis.Fish&Shellfish Immunology,2004,16:513~525
    [120] Yu XQ, Kanost MR. Immulectin-2, a pattern recognition receptor that stimulates hemocyteencapsulation and melanization in the tobacco hornworm, Manduca sexta. Dev. Comp.Immunol.,2004,28(9):891~900.
    [121] Schmit AR, Ratcliffe NA. The encapsulation of foreign tissue implants in Galleriamellonella larvae. J. Insect Physiol.,1977,23:175~184.
    [122] Barondes SH. Bifunctional properties of lectins: lectins redefined: Trends Biochem Sci1988;13:480~482.
    [123]陈政强,黄倢、战文斌,等.贝类凝集素的特性与功能.集美大学学报,2007,12(4):314~321
    [124] Sharon N, Lis H.. Lectins as cell recognition molecules. Science,1989,246,227~234.
    [125] Goldstein IJ, Hughes RC, Monsigny M, et al.. What should be called a lectin. Nature,1980,285:66
    [126]柯佳颖,陈寅山,饶小珍.凝集素及其生物学作用.宁德师专学报:自然科学版,2005,17(1):19~22
    [127]赵寅生.凝集素生物学功能及应用.安徽农业大学学报,2001,28(4):445~447
    [128]薛江楠,石安静.淡水育珠蚌血清凝集素的研究.四川大学学报,2000,37(2):242~246
    [129]冯建军,王艺磊,关瑞章.杂色鲍血清凝集素的初步研究.集美大学学报:自然科学版,2004,9(4):287~293
    [130] Drickamer K. C-type lectin-like domains. Current Opinion in Structural Biology.1999,9(5):585~590
    [131] Kerrigan AM, Brown GD. C-type lectins and phagocytosis. Immunobiology,2009,214(7):562~575.
    [132]金桥.2种海洋无脊椎动物凝集素性质及其与微生物相互作用的研究.沈阳,沈阳农业大学食品学院,食品科学,2011.
    [133] Drickamer K, Taylor ME. Biology of animal lectins. Annu Rev Cell Biol,1993,9:237~264
    [134] Takahashi KG, Kuroda T, Muroga K. Purification and antibacterial characterization of anovel isoform of the Manila clam lectin (MCL-4) from the plasma of the Manila clam,Ruditapes philippinarum. Comparative Biochemistry and Physiology-Part B:Biochemistry&Molecular Biology,2008,150(1):45~52
    [135] Jayaraj SS, Thiagarajan R, Arumugam M, et al.. Isolation, purification and characterizationof β-1,3-glucan binding protein from the plasma of marine mussel Perna viridis. Fish&Shellfish Immunology,2008,24(6):15~25
    [136] Barondes SH, Cooper DNW, Gitt MA, et al.. Galectins. Structure and function of a largefamily of animal lectins. The Journal of Biological Chemistry,1994,269(33):20807~20810
    [137]李春华,魏晓锋,李祥瑞.半乳糖结合凝集素的结构与功能.动物医学进展,2003,24(4):19~21
    [138] Yang RY, Rabinovich GA, Liu FT. Galectins: structure, function and therapeutic potential.Expert Reviews in Molecular Medicine,2008,13:10~17
    [139] Dahms NM, Kancock MK. P-type lectins. Biochimic et Biophysica Acta,2002,1572:317~340.
    [140] Tunkijjanukij S, Olafsen JA. Sialic acid-binding lectin with antibacterial activity from thehorse mussel: further characterization and immunolocalization. Developmental andComparative Immunology,1998,22(2):139~150
    [141] Mandal C, Mandal C. Sialic acid binding lectins. Experientia,1990,46Birkh user Verlag,CH-4010Basel/Switzerland
    [142]蒋琼,王雷.唾液酸专一性凝集素的研究进展.海洋科学,2001,25(6):21~22
    [143] Mantovani A, Garlanda C, Doni A. Pentraxins in Innate Immunity: From C-ReactiveProtein to the Long Pentraxin PTX3. Journal of Clinical Immunology,2008,28:1~13
    [144]刘源,肖瑾.微生物凝集素的研究进展.国际口腔医学杂志,2007,34(1):1~3,21
    [145]舒晓燕,阮期平,侯大斌.植物凝集素的研究进展.现代中药研究与实践,2006,20(6):53~56
    [146]周晓宇,陈杰,杨敬,等.植物凝集素及其在抗虫基因工程中的应用.山地农业生物学报,2010,29(3):255~260
    [147] Zhang H, Song XY, Wang LL, et al.. AiCTL-6, a novel C-type lectin from bay scallopArgopecten irradians with a long C-type lectin-like domain. Fish&Shellfish Immunology,2011,30:17~26.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700