双转子活塞发动机基础理论研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
传统活塞式发动机主要包括往复活塞式发动机和旋转活塞式发动机,其中往复活塞式发动机经历了150余年的改进和优化,具有功率覆盖面广、转速范围宽、经济性好等特点,是目前汽车、飞机、轮船等各类移动装备的主要动力源。近年来,单人飞行器、无人机等高紧凑性新型移动平台蓬勃发展,对发动机的功率密度提出了越来越高的要求,而传统活塞式发动机的功率密度受机构限制,存在着诸多固有缺陷,基本没有大幅度提高的可能,这极大限制了新型移动平台的发展。另外,能源短缺和环境污染的形势越来越严峻,传统活塞式发动机在被用作新能源发动机时存在着经济性差、效率不高、动力不足、容易爆燃等一系列技术难题,能够良好适应新能源的发动机亟需得到研究。因此,在世界发动机技术变革的新起点上,瞄准未来需求,抓住机遇尽快研制出既能有效利用新能源又具备高功率密度潜力的新型发动机刻不容缓。
     论文研究来源于部委级重大项目,针对传统活塞式发动机存在的不足,在差速式发动机的基础上进行拓展和改进创新,发明了一款双转子活塞发动机。双转子活塞发动机具有作功密度高、排量大、动态扩容等优良特性,理论上具备高功率密度发动机和新能源发动机的应用潜力。本文将对双转子活塞发动机的若干基础理论和其关键创新机构部分—功率传输装置进行系统深入地研究,为进一步制作双转子活塞发动机工程试验样机提供理论依据和技术指导。主要内容如下:
     (1)研究了全系列N(N为正整数)叶片活塞双转子活塞发动机的结构组成和工作原理。对双转子活塞发动机与传统活塞式发动机在气体膨胀力的传递方式、工作腔容积变化规律、活塞线速度、作功密度等方面进行了详细比较。进行了双转子活塞发动机的总体方案设计,研究了消除双转子活塞发动机扭转惯性力的设计方案和实现双转子活塞发动机可靠密封、冷却等的结构方案,研究了双转子活塞发动机的六冲程方案和实现多级膨胀减压设计的方案。采取模块化的设计思路,将双转子活塞发动机功率传输装置的基本结构分成动力缸组件和差速运动机构两大部分进行设计,并通过创新结构设计和机构设计,使双转子活塞发动机与传统活塞式发动机相比,在获取高功率密度等性能方面具有三大技术优势:第一是主轴每转发动机作功至少16次,作功次数随某一特定参数成平方倍增加,且任意时刻至少有两个以上的均匀间隔的工作腔处于作功冲程;第二是对称和平衡的机械结构设计,纯力矩输出动力,传动特性良好;第三是完成发动机工作循环不需要复杂气门机构的参与。
     (2)建立了实现双转子活塞发动机高功率密度的基础设计理论,并且针对传统发动机设计尤其是改进过程中用“燃烧”适应“机构”的局限性,提出用“机构”适应“燃烧”的新思想指导双转子活塞发动机的设计过程:第一步是得到符合高效率燃烧、新能源使用、新工作循环模式等要求的工作腔容积变化规律,第二步是根据工作腔容积变化规律得到两个转子各自的运动规律,第三步是通过机构构型综合、运动学设计、机构试验研究等综合确定能约束转子按指定规律运动的机构布置。“机构”适应“燃烧”理论同样适用于其他新型活塞式发动机的设计。
     (3)建立了动力缸组件的数学模型,并对其进行了详细的设计与分析。得出了动力缸组件各部件间的基本数学关系。建立了双转子活塞发动机各冲程判别条件和充分进、排及膨胀作功条件。完成了双转子活塞发动机的指示性能指标、有效性能指标以及瞬时流量、排量的数学计算。进行了动力缸组件理想工作过程和工作腔容积变化规律的设计计算。利用绝热估计对转子上所述的气体输出转矩进行了详细的求解分析。分析结果表明:理论上,双转子活塞发动机的进、排气口所占角度都应等于叶片固定角,进、排气口间隔角应等于叶片间夹角的最小值;作用在转子上的气体输出转矩是一个纯扭矩,且在作功冲程还未结束前就会降低到零;合理设计工作腔的容积变化规律从而有效提高气体合力矩的输出功是非常必要的。
     (4)针对N叶片活塞转子的动力缸组件,发明了与之配套使用的定轴齿轮类、摆线类、凸轮类等十余套差速运动机构。差速运动机构是一类不仅可以被用于发动机、也可被用于泵、压缩机等领域的新型组合机构。差速运动机构是单自由度机构,具备一个输入构件和两个输出构件,且输入构件作匀速旋转运动,输出构件之间的相对运动是符合特定规律的运动。建立了差速运动机构的机构构型综合与分析方法,差速运动机构由非匀速运动机构和周期性拓展机构组合而成,差速运动机构能够约束动力缸组件中的两个转子作周期性的差速运动,从而导致工作腔的容积周期性地增大或减小,发动机的工作循环利用周期性变化的容腔完成。总结了形成新型差速运动机构的技术途径,建立了差速运动机构的运动学分析和运动学设计理论,完成了多套适应各类需求的双转子活塞发动机三维样机模型设计。
     (5)完成了基于摆线和基于凸轮的两套双转子活塞发动机的设计与样机制作。研究了一系列的关键技术参数,分析了容积变化次数、叶片活塞数目、齿数比、凸轮槽瓣数、摆线瓣数之间的关系。对基于内摆线、外摆线的各类双转子活塞发动机进行了运动学分析、仿真及比较研究。对摆线类发动机进行了运动学综合和传动质量分析。完成了双转子活塞发动机的参数设计方法研究,给定压缩比、叶片活塞数目、叶片固定角即可设计出具有瞬时停歇规律的功率传输装置。对摆线类发动机和凸轮类发动机进行了“机构”适应“燃烧”的参数化设计,通过差速运动机构的构型综合、摆线类发动机的函数综合、凸轮类发动机的凸轮槽设计可实现转子按指定规律运动,从而产生适合“燃烧”的工作腔容积变化规律。完成了双转子活塞发动机机构试验样机的研制,进行了机构样机运转试验,分析并解决了叶片活塞间憋气和相互碰撞等问题。
Reciprocating piston engine and rotary piston engine are the two main traditionalpiston engines. After a hundred years’ effort to now, reciprocating piston engine iswidely used in cars, airplanes, ships and other forms of transportation because of itsefficiency and wide power range. Recently, one-man flight vehicle, and unmaned airvehicles, and other new high-compact transportations have a promising future, but thereare no engines available with the desirable attributes. Conventional piston engines havebeen developed to a near-perfect state with further improvement becoming ever moredifficult and costly to achieve. These engines always suffer from systematic losses suchas complex and costly valve systems, a high level of vibration and small power densitycaused by their mechanisms. In addition, by realizing the crisis of global fuels shortageand the need of a future engine with higher power density higher efficiency, peoplehave been devoted to exploring or reconsidering other engine designs.
     This work is supported by national pre-research foundation. Based on an olddifferential engine concept, it aims to invent an engine named by Twin-Rotor PistonEngine (TRPE). With advantages of multiple power storkes per revolution of the outputshaft, high volumetric output and variable compression ratio, This engine has thepotentiality to solve the above crisis in theory. Some basic theory and powertransmission device of TRPE are studied in this paper, which provides an importanttheoretical basis and technical guidance for the further production of the experimentalprototype. To sum up, the main results in this paper contain the following areas:
     (1) The structure and work principle of TRPE with N vane pistons are studied.Analysis and comparison with traditional engine in some aspects such as combustiongas force transmission, volume change of working chamber, power frequency, piston’svelocity, and power density are introduced.The overall design of TRPE is proposed.Layout of eliminating the inertia force and sealing the working chamber of TRPE isdesigned. Power transmission device of TRPE is composed of a Power Cylinde Module(PCM) and a Differential Velocity Mechanism (DVM). TRPE is expected to have threekey technical advantages for attaining higher power density than any available pistonengine: the first is sixteen or more power strokes per revolution of the output shaft andmore than two symmetrical working chambers exporting power at any time; the secondis symmetrical structure and well balanced kinetics; the third is performing thefour-stroke cycle without using the valve mechanism.
     (2) Basic design theory of realizing high power density of TRPE is built. A newtheory of “mechanism” adapt to “combustion” is introduced and used for guiding thedesign procedure of TRPE: The first step is getting a change law of working chamber volume which fit the new energy and cycle. The second step is getting the motion of thetwo rotors based on the first step. The third step is choosing the suitable mechanismwhich can restrict the two rotors’ motion follow the special pattern after mechanismsynthesize, kinetic design, experiment test, etc.
     (3) Design and Analysis of Mathematical model of PCM are done. Basicrelationship of components of PCM is derived. The conditions of intake, compression,combustion, and exhaust are presented. The displacement and the instantaneous flow ofthe engine are deduced. Numerical examples that illustrate the kinematic characteristicswere presented. Expression of the compression ratio of the two engine mechanismswere derived. The instruction and effective performance of TRPE is calculated. The gastorque in a TRPE is modeled using adiabatic approximation with instantaneouscombustion. Mathematical modeling of gas force transmission is built. Differentvariation patterns of the volume change of working chamber are introduced. It'sconcluded that: the vector sum of combustion gas forces acting on each rotor piston inTRPE is a pure torque, and the combustion gas rotates the rotors while compresses thegas in the compression chamber at the same time.The value of gas torque in TRPE willfall to be less than zero before the time when the combustion phase is finish; It isnecessary to design the moment based on the in order to export the maximum of energy.
     (4) Some DVMs based on ordinary gear train, cycloid, or cam are invented whichis assembled with corresponding PCM with N vane pistons. DVM is a new combinedmechanism which can be applied in piston engine, pump, compressor, etc. DVM is aone degree-of-freedom mechanism which has one input part and two output parts. Theinput part rotates with the same speed. The relative motion between the two output partsshould follow a special law which in accordance with “combustion”. Synthesization andanalysis method of DVM is built. Method of forming a new DVM is summerized.Kinematic analysis and design of DVM is done. Three3D-models of powertransmission device are designed. DVM is composed of the non-uniform mechanismand the period mechanism, which constrain the two rotors fixed inside the housingrotating with periodical nonuniform velocity. Thus the volume of the working chambersvaries, and opens and closes periodically.
     (5) Two prototypes of TRPE had been designed and manufactured. One prototypeis based on cycloid. The other is based on cam. These prototype is intended for highpower density engines and can produce more power strokes per shaft revolution. Somekey technique parameters such as the relationship between the number of vane pistons,the gear ratio, and the number of petals on cam are determined. Kinematic analysis andsimulation of three TRPEs based on epicycloid, hypocycloid, and pericycloidal curveare presented. Kinematic synthesis and transmission quality of TRPE based on cycloidare done. A suitable TRPE which rotor may cease can be designed as the gear ratio, the number of vane pistons, and the angle of vane piston are given. Parametric designmethod of TRPE which follow a special law is presented. The pattern of workingchamber volume adapted to “combustion” can be created by the synthesis of DVM, thefuction synthesis of mechanism based on cycloid, and the cam groove which mayachieve any motion of the rotor. Two prototypes of TRPE mechansim and theircorresponding operation experiment are carried out. The interference and collisionproblem among the vane pistons is analysed and solved.
引文
[1]任继文,吴建全,张然治等.未来战斗系统与高功率密度柴油机[J].车用发动机,2002,6(4).
    [2]马世杰.鱼雷热动力装置设计原理[M].北京:兵器工业出版社,1992.
    [3]李晓东,梁振彪.单人飞行器:为士兵插上飞翔的翅膀[J].环球军事,2009,01(190).
    [4]袁鲁江,方清华.压缩空气/燃油混合动力发动机工作过程的数值模拟与试验研究[J].农村实用科技信息,2009,6(7).
    [5]方清华.压缩空气/燃油混合动力发动机工作过程的数值模拟与试验研究[D].杭州:浙江大学,2009.
    [6]邓荣冰.压缩空气发动机电控系统的研究[D].合肥:合肥工业大学,2009.
    [7]左承基,王斌,傅秋阳等.配气系统参数对压缩空气发动机性能的影响[J].机械工程学报,2008,44(4).
    [8]方清华,刘昊,陈鹰等.压缩空气/燃油混合动力发动机工作过程可用能分析[J].中国机械工程,2008,19(16).
    [9]翟昕,俞小莉,刘忠民等.压缩空气-燃油混合动力的研究[J].浙江大学学报(工学版),2006,40(4).
    [10]左承基,傅秋阳,欧阳明高等.压缩空气发动机系统的数值模拟[J].合肥工业大学学报(自然科学版),2005,28(9).
    [11]阮吉芳,杨继荣,何为等.单螺杆压缩空气动力系统性能研究[J].中国工程热物理学会传热传质学2009年学术会议论文集,2009,6(1).
    [12]林大渊,梁肇基,朱仙鼎.关于内燃机功率传输机构问题的初步探讨[J].内燃机学报,1985,8(4):301-313.
    [13]周龙保.内燃机学(第2版)[M].北京:机械工业出版社,2009:1-6.
    [14]邓豪.内燃机新型功率传输机构的设计与研究[D].长沙:国防科学技术大学,2008.
    [15]朱拥勇,王德石,李冬梅等.筒形发动机机构演变与空间机构动力学问题的研究[J].机械设计与制造,2005,11(12).
    [16]YUAN P, WANG D-S, WANG S-Z. Kinematics and Dynamics ofContrapositive Cam Engine[J]. TORPEDO TECHNOLOGY,2007,15(6):13-16.
    [17]LIAN Y-Q, WANG S-Z, MA S-J. Dynamic Simulation of the Air-poweredSwashplate Engine[J]. Chinese Journal of Mechanical Engineering (Chinese Edition),2008,44(1):243-246.
    [18]钱志博,胡欲立.鱼雷摆盘发动机基本结构参数优化数学模型的研究[J].机械科学与技术(西安),2000,19(002):234-235.
    [19]卢法,余乃彪.三角转子发动机[M].北京:国防工业出版社,1990.
    [20]Yamamoto K. Rotory engine[M]. Tokyo, Japan: Sankaido Co., Ltd,1981.
    [21]Peter AJ. A review of free piston engine concepts[J]. SAE paper941176,1994:40-44.
    [22]杨华勇,夏必忠,傅新.液压自由活塞发动机的发展历程及研究现状[J].机械工程学报,2001,37(2):1-7.
    [23]钟晓晖,王小雷,勾昱君等.微型三角转子发动机的研制与实验研究[J].机电工程,2007,24(5).
    [24]钟晓晖,王小雷,勾昱君等.1台微型三角转子发动机的研制与试验研究[J].航空发动机,2007,33(4).
    [25]于雷,郭峥,马培勇等. Wankel微型转子发动机的设计方案研究[J].机电工程,2009,26(7).
    [26]李振华,李立君,徐学林等.微型转子发动机参数设计方案研究[J].四川兵工学报,2009,30(10).
    [27]吴庆亮.微型摆式内燃机的热力场分析与研究[D].呼和浩特:内蒙古工业大学,2006.
    [28]刘一鸣,张华葆,魏金海等.无连杆汽油机的研究[J].小型内燃机,1995,24(4).
    [29]张丹,曾励,戴敏等.一种新型齿轮齿条发动机的结构及其机理分析[J].扬州大学学报(自然科学版),2009,12(4).
    [30]莫世海.齿轮齿条活塞换向发动机的设想[J].2006,6.
    [31]梁锡昌,周曙光,王光建.发动机扇齿转换机构的运动分析[J].2005,12.
    [32]易际明,杨靖,张亮峰.双连杆内燃机三维参数化建模与仿真[J].湖南工程学院学报(自然科学版),2004,14(1).
    [33]易际明,杨靖.双连杆内燃机动态仿真[J].系统仿真学报,2004,16(12).
    [34]王宇,黄静安,任成君.大偏心双曲柄单缸柴油机运动规律及工作过程的研究[J].小型内燃机与摩托车,2001,30(6).
    [35]黄星梅,龚志辉,谭理刚.双连杆双曲轴内燃机运动仿真分析[J].湖南大学学报(自然科学版),2004,31(4):24-27.
    [36]韩树,毕小平,张更云.双连杆机构发动机运动学分析[J].装甲兵工程学院学报,2001,15(1).
    [37]张霖.多杆内燃机柔性体优化分析[D].天津:天津大学,2006.
    [38]王姗.多杆内燃机疲劳摩擦分析平台的应用研究[J].2008.
    [39]王姗.多杆内燃机摩擦耦合柔性多体动力学分析[J].2007.
    [40]林建生,张宝欢,付伟成等.一种新型多杆内燃机的机构运动学与动力学的虚拟仿真研究[J].内燃机学报,2006,24(6):565-568.
    [41]朱俊鹏.新型无侧压内摆线内燃机的研制与性能试验研究[D].广州:华南理工大学,2009.
    [42]占文锋.无侧压虚连杆内摆线内燃机能量转换机构的研究[D].广州:华南理工大学,2007.
    [43]陈宇,杜群贵.新型内摆线内燃机曲轴模态分析[J].机械设计与制造,2010,(5).
    [44]Karhula J. Cardan gear mechanism versus slider-crank mechanism in pumpsand engines[D]. Finland: Lappeenranta University of Technology,2008.
    [45]Grip R. A mechanical model of an axial piston machine[D]. Stockholm: RoyalInstitute of Technology,2009.
    [46]何为,吴玉庭,马重芳等.两级单螺杆膨胀机空气动力系统性能研究[J].机械工程学报,2010,46(10):139-143.
    [47]黎正中.蚌线发动机论文专利集[J].
    [48]Blount D. Rotary-reciprocal combustion engines[P]. US pat.043344,1994-09-12.
    [49]张红忠.单缸四冲程摆动活塞式发动机的研究及结构设计[D].泉州:华侨大学,2006.
    [50]谈诚.单一或多个摆动活塞串联为二缸或多缸四冲程内燃发动机[P].CN200610135808.6,2007-05-09.
    [51]孙旭,张开雪.摆动叶片式发动机的研究探讨[J].大众科技,2010,6(1).
    [52]卢洪胜.活塞摆动式内燃机曲柄摇杆机构设计[J].机械,2007,34(11).
    [53]Hudson B. The Production of Power by Pure Rotary Means[D]. Melbourne,Australia: RMIT University,2008.
    [54]Roy J. Hartfield J. Development of a Rotary Vane Gas Cycle Heat Engine:proceedings of the44th AIAAA/AIASAM-E20/S0A8-E4/7A0S3E E Joint PropulsionConference&Exhibit [C].2008.
    [55]Gilles S-H, Roxan S-H, Ylian S-H. Quasiturbine low rpm high torque pressuredriven turbine for efficiency power modulation: proceedings of the ASME Turbo Expo2007[C]: power for land, sea and air, Montreal, Canada.
    [56]章炜,孙齐虎,左承基等.不同负荷下二甲醚发动机缸内燃烧过程的数值仿真研究[J].内燃机与动力装置,2009,6(1).
    [57]Korakianitis T, Boruta M, Jerovsek J. Performance of a single nutating diskengine in the2to500kW power range[J]. Applied Energy,2009,86(10):2213-2221.
    [58]Meitner PL. the nutating engine-prototype engine progress report and testresults[J].2006.
    [59]BULLINGTON F. Internal combustion engine[P]:US Pat.1821139.1925-08-24.
    [60]李鑫,彭博,何长富等.鱼雷凸轮发动机动力传动机构相关参数化建模与仿真研究[J].鱼雷技术,2006,14(5).
    [61]Tschudi T. The Tschudi engine[P]. US Pat.3381669.1969-8-21.
    [62]Ashley S. A new spin on the rotary engine[J]. Mechanical Engineering,1995,117(4):80-82.
    [63]NORBYE J. Rivals to the Wankel: a roundup of rotary engines[J]. Popular Sci,1967:80-85.
    [64]Kauertz E. rotary radial-piston machine[P],US Pat.3144007.1964-8-11.
    [65]马向平,骆清国,张更云等.一种转叶式发动机的初步设计和研究[J].小型内燃机与摩托车,2006,35(4).
    [66]Librovich B, Tucker RW, Wang C. On gear modelling in multistage rotaryvane engines[J]. Meccanica,2004,39(1):47-61.
    [67]Librovich BV, Nowakowski AF. Dynamic Behaviour of Rotary Vane EnginesWith One, Two and Four Work Units[C]. ASME Conference Proceedings,2004,2004(4174X):483-494.
    [68]Librovich BV, Nowakowski AF. Analysis, Design, and Modeling of a RotaryVane Engine (RVE)[J]. Journal of Mechanical Design,2004,126(4):711-720.
    [69]LIANG L. A rotary engine with two rotors and its design method[P],WO Pat.2005/124122A1.2005-10-6.
    [70]Fong ch. Alternative-step appliance rotary piston engine[P],US Pat.20040261758A1.2004-12-30.
    [71]Kurisu M. cat and mouse type rotary device utilizing grooves and rods forpower conveyance[P],US Pat.20010046446A1.2001-11-29.
    [72]Wieslaw JO. About a New Conception of Internal Combustion EngineConstruction I. Rotary Engines: proceedings of the2008ASME InternationalMechanical Engineering Congress and Exposition[C], Boston, Massachusetts, USA,October31-November6,2008.
    [73]Morgado RG. Internal combusiton engine and method[P],US Pat.20070199537A1.2007-8-30.
    [74] Sakita M. A cat-and-mouse type rotary engine: Engine design andperformance evaluation[J]. Proceedings of the Institution of Mechanical Engineers, PartD: Journal of Automobile Engineering,2006,220(Compendex):1139-1151.
    [75]Sakita M. Rotary piston engine[P]. US6446595B1,2004-1-12.
    [76]http://www. yo-mobile.com.
    [77]Herbert. Oscillating piston engine[P]. US7435064B2,2008-10-14.
    [78]Lopez W. elliptical-drive oscillating compressor and pump[P]. US Pat.4844708.1989-7-4.
    [79]CHENG M, WANG G-L, LIU F-L. Study of eccentric circular-noncirculargears driving system of differential velocity vanes pump[J]. Chinese Journal ofMechanical Engineering (Chinese Edition),2005,41(3):98-101.
    [80]CHENG M, ZHANG Y, Zi J-F. Differential velocity vane pump driven byrotating guide-bar-gear mechanism[J]. Chinese Journal of Mechanical Engineering(Chinese Edition),2006,42(Supp.):54-59.
    [81]Sakita m. rotary piston engine[P]. US Pat.20080011267A1.2002-09-10.
    [82]王茂春.变速齿轮[P].ZL200510102372.6.2005-12-19.
    [83]黎耕.变速齿轮旋转活塞动力机[P],200610126406.x.2007-03-21.
    [84]陈明,张勇.转动导杆-齿轮机构驱动的叶片差速泵[J].机械工程学报,2006,42.
    [85]陈明,王广林,刘福利等.叶片差速泵偏心圆-非圆齿轮驱动系统的研究[J].机械工程学报[J],2005,41(3).
    [86]陈明,李丽伟,焦映厚等.四叶片差速泵的理论研究[J].机械工程学报,2002,38(11).
    [87]郑伟勇.环形气缸旋转式发动机[P]. ZL04128411.3.2003-11-26.
    [88]Baksi S, Grote K, Harris N. DYNAMIC STRESS ANALYSIS OF ANEPICYCLIC GEAR PUMP: proceedings of the Proceedings of DETCí03, ASME2003Design Engineering Technical Conferences, Chicago, Illinois, USA,2003[C].2003.
    [89]Prasanta R. a piston assembly for an engine and an engine comprising thesame[P].2006-01-12.
    [90]楚兆鼎.差速式旋转活塞内燃机[P]. ZL88210886.7.1988-03-17.
    [91]赵家维.步进式旋转活塞发动机[P].ZL89106309.9.1989-07-10
    [92] Kurisu M. cat and mouse type rotary device utilizing grooves and rods forpower conveyance,US Pat.20010046446A1[P].2001-11-29.
    [93]聂再安.差速式旋转活塞发动机[P],ZL98112217.1985-05-28
    [94]梁良.一种双转子旋转发动机的设计方法和装置[P].WO2005/124122.2005-12-29.
    [95]刘三卫.弹簧传动差速转子发动机[P].ZL02224704.1.2002-04-03.
    [96]Parsons BNV. oscillatory rotating engine[P].GB2249350A.1990-05-11
    [97]Kazimierski Z, Wojewoda J. Double internal combustion piston engine[J].Applied Energy,2011,88(5):1983-1985.
    [98]DENG H, PAN C-Y, XU H-J. Theoretical research on the power transmissionsystem of a twin-rotor piston engine[J]. Chinese Journal of Mechanical Engineering,2012,48(1):64-68.
    [99]周龙保.内燃机学(第2版)[M].北京:机械工业出版社,2009:1-6.
    [100]张保成,苏铁熊,张林仙.内燃机动力学[M].北京:国防工业出版社,2009.
    [101]Yamamoto K. mazda rotary engine[M]. Tokyo,Japan: Sankaido Co., Ltd,1981.
    [102]钱叶剑,左承基,滕勤等.发动机变组分煤层气的起动特性与怠速稳定性[J].合肥工业大学学报(自然科学版),2004,27(5).
    [103]方清华,刘昊,陈鹰等.压缩空气/燃油混合动力发动机热力学分析[J].中国机械工程,2008,19(9).
    [104]刘小勇,王云.压缩空气发动机发展综述[J].机械,2008,(9).
    [105]左承基,钱叶剑,欧阳明高等.气动发动机能量转移系统分析[J].中国机械工程,2007,18(7).
    [106]楚兆鼎.内燃机能量贬值原理[J].内燃机与动力装置,2008,6(3).
    [107]Quintero HF, Romero A, Useche LVV. Thermodynamic and dynamicanalysis of an internal combustion engine with a noncircular-gear based modifiedcrank-slider mechanism: proceedings of the12th IFToMM World Congress,[C].2007.
    [108]ZHOU L-B. Internal combustion Engine[M]. Beijing: China machine press,2009.
    [109]Mikalsen R, Wang YD, Roskilly AP. A comparison of Miller and Otto cyclenatural gas engines for small scale CHP applications[J]. Applied Energy,2009,86:922-927.
    [110]张文波.按给定传动比要求设计平面四杆机构[J].机械设计与研究,2010,26(6).
    [111]李立,张剑,陈永.同伦迭代法的研究及其应用于机构学问题的求解[J].西南交通大学学报,2000,35(1).
    [112]汪德才,安鲁陵.同伦法理论及其在机构综合中的应用[J].山东矿业学院学报,1998,17(3).
    [113]Zhang W, Pan C, Deng H等. Modeling and analysis of the transmissioncharacteristics of a geared linkage mechanism: proceedings of the2011InternationalConference on Advanced Design and Manufacturing Engineering, ADME2011,September16,2011-September18,2011, Guangzhou, China,2011[C]. Trans TechPublications.
    [114]张威扬.差速式转子发动机功率传输机构动力特性分析[D].长沙:国防科技大学,2011.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700