超冷费米系统的集体激发与热力学性质研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
围绕超冷费米原子的零温集体激发性质和有限温度下的热力学性质,本文的研究工作如下:
     一,在第二章中,我们利用流体力学方程研究了在整个BCS-BEC超流区间无旋转效应的超冷费米系统在零温碟型谐振子势约束下的集体激发模式及其动力学行为,并给出其相应的线性声速、低动量下本征频率和轴向呼吸模式下有效质量的理论预言结果。我们进一步将所得到的结果与相应雪茄型谐振子势约束下无旋超冷费米系统的结果进行了比较与分析。
     二,我们研究了服从Haldane分数排斥统计任意维理想任意子有限温度的统计力学行为。在第三章中,我们推导出了任意维均匀及谐振子约束下理想任意子的粒子数、化学势、内能、熵、等容比热、等压比热、等温压缩系数、等温声速、绝热压缩系数和绝热声速的解析表达式,然后基于这些解析表达式,及相应的数值计算结果。我们发现:对于二维均匀理想任意子,其单粒子熵和等容比热的数值结果都不依赖于]Haldane分数排斥统计模型中统计参数g的取值。对于一维谐振子势约束下的理想任意子系统,单粒子熵和等容比热也具有类似于二维均匀理想任意子系统的性质,即:它们都不依赖于统计参数g的取值。在第四章中,我们推导得到了任意维均匀理想任意子和谐振子势约束下理想任意子系统的焦耳—汤姆森系数的解析表达式。在此基础上,我们考察了相应的焦耳—汤姆森转换温度随统计参数g的取值变化的行为。
     三,基于幺正极限下的标度不变性,我们假设Haldane分数排斥统计下三维理想任意子可以被用来模拟真实三维空间中有着强的电磁相互作用幺正费米系统的热力学行为。在第五章中,通过设定统计参数g的取值,分别计算了幺正费米系统的化学势、单粒子内能和熵,并将所得到的理论结果与文献上相应的蒙特卡洛数值模拟结果和实验数据进行比较后,发现:在误差允许的范围内,由此分数排斥统计模型所得到的结果与文献上相应的蒙特卡洛数值模拟结果和实验数据是一致的。
The main work of this thesis is based on our investigations of the zero-temperature collective excitation properties and finite-temperature thermodynamics of the ultra-cold Fermi system. There are three aspects of our work in the thesis as follows.
     At the first aspect, by using the hydrodynamic equations, the zero-temperature col-lective excitation modes and dynamical properties of the disk-shaped harmonically trapped three-dimensional nonrotating or irrotational Fermi system along the Bardeen-Cooper-Schrieffer (BCS) to Bose-Einstein condensate (BEC) crossover have been studied in the second chapter of the thesis theoretically. The corresponding theoretical predictions for the zero-temperature linear sound velocity and low-energy eigenfrequencies and the ef-fective mass of the axial breathing mode have also been obtained. Furthermore, we make a comparison of the results of the disk-shaped nonrotating Fermi gas with the correspond-ing results of the cigar-shaped nonrotating Fermi gas.
     At the second aspect, we investigated the finite-temperature statistical behaviors of the anyon gas within Haldane fractional exclusion statistics. In the third chapter of the thesis, the analytical expressions for the particle number, chemical potential, internal en-ergy, entropy, isochore heat capacity, isobar heat capacity, isothermal compressibility, isothermal sound velocity, adiabatic compressibility, and adiabatic sound velocity of the homogenous and harmonically trapped ideal anyon gases in arbitrary dimensions have been derived. Based on these analytical expressions, the corresponding numerical result-s for these thermodynamic quantities have also been calculated. With careful study, it is found that the entropy and isochore heat capacity per particle are both independen-t of the statistical parameter g in Haldane fractional exclusion statistics model for the two-dimensional homogenous ideal anyon gas. The entropy and isochore heat capaci- ty per particle of the one-dimensional trapped ideal anyon gas have the similar features to the ones of the two-dimensional uniform ideal anyon gas, which means that they do not depend on g. In the next chapter, the analytical expressions and numerical results of the Joule-Thomson coefficients for both homogeneous and harmonically trapped any-dimensional ideal anyons which obey Haldane fractional exclusion statistics are derived in the fourth chapter of the thesis. Furthermore, on the basis of the study of the Joule-Thomson coefficient, the relations between the Joule-Thomson inversion temperature and the statistical parameter g have been obtained.
     At the last aspect, due to the scale invariance at unitarity, it is assumed that the real strongly interacting unitary Fermi gas can be modeled by the three-dimensional non-interacting anyon gas as a hypothesis. On the basis of this hypothesis, by fixing the statis-tical parameter g, we calculate the finite-temperature chemical potential, internal energy and entropy per particle of the homogeneous and harmonically trapped unitary Fermi gas. Further, we compare the theoretical results with the corresponding Monte Carlo calcula-tions and experimental data. Within the allowed range of permissible experimental error, the obtained theoretical results are reasonably consistent with the data of the experiment.
引文
[1]詹明生,中国科学院院刊,06期,407页,(2002年)。
    [2]Q. Chen, J. Stajic, S. Tan, K. Levin, Phys. Rep.412,1 (2005).
    [3]T. Schafer, D. Teaney, Rep. Prog. Phys.72,126001 (2009).
    [4]J. E. Thomas, Nuclear Physics A 830,665c (2009).
    [5]A. Turlapov, J. Kinast, B. Clancy, L. Luo, J. Joseph, J. E. Thomas, J. Low. Temp. Phys.150,567 (2008).
    [6]C. Chin, R. Grimm, P. Julienne, E. Tiesinga, Rev. Mod. Phys.82,1225 (2010).
    [7]L. Lianshou, Y. Meiling, Z. Yan, A Concise Course on Advanced Quantum Mechan-ics (Sciencd Press, Beijing, China) (2009) p198-200.
    [8]汪德新,《量子力学》,第二版,武汉:湖北科学技术出版社,(2003年)。
    [9]曾谨言,《量子力学》,第四版,北京:科学出版社,(2007年)。
    [10]J. J. Sakurai, Modern Quantum Mechanics (Pearson Education, US) (1994) p413.
    [11]H. Ouerdane, M. J. Jamieson, D. Vrinceanu, M. J. Cavagnero, J. Phys. B 36,4055 (2003).
    [12]K. M. O'Hara, S. L. Hemmer, M. E. Gehm, S. R. Granade, J. E. Thomas, Science 298,2179 (2002).
    [13]T. Bourdel, J. Cubizolles, L. Khaykovichl, K. M. F. Magalhaes, S. J. J. M. F. Kokkel-mans, G. V. Shlyapnikov, C. Salomon, Phys. Rev. Lett.91,020402 (2003).
    [14]H. Feshbach, Ann. Phys. (N.Y) 19,287 (1962).
    [15]I. Bloch, J. Dalibard, W. Zwerger, Rev. Mod. Phys.80,885 (2008).
    [16]文文,"BCS-BEC渡越过程中超冷费米原子气体的相干特性与非线性效应研究”,华东师范大学博士学位论文,(2010年)。
    [17]J. Bardeen, L. N. Cooper,J. R. Schrieffer, Phys. Rev.108,1175 (1957).
    [18]F. Dalfovo, S. Giorgini, L. P. Pitaevskii, S. Stringari, Rev. Mod. Phys.71,463 (1999).
    [19]S. Giorgini, L. P. Pitaevskii, S. Stringari, Rev. Mod. Phys.80,1215 (2008).
    [20]T.-L. Ho, Phys. Rev. Lett.92,090402 (2004).
    [21]T.-L. Ho, Science 305,1114 (2004).
    [22]H. Hu, P. D. Drummond, X.-J. Liu, Nature Physics 3,469 (2007).
    [23]H. Hu, X.-J. Liu, P. D. Drummond, New J. Phys.12,063038 (2010).
    [24]H. Hu, X.-J. Liu, P. D. Drummond, Phys. Rev. A 83,063610 (2011).
    [25]J. E. Thomas, J. Kinast, A. Turlapov, Phys. Rev. Lett.95,120402 (2005).
    [26]K. M. O'Hara, S. L. Hemmer, M. E. Gehm, S. R. Granade, J. E. Thomas, Science 298,2179 (2002).
    [27]T. Bourdel, J. Cubizolles, L. Khaykovich, K. M. F. Magalhaes, S. J. J. M. F. Kokkel-mans, G. V. Shlyapnikov, C. Salomon, Phys. Rev. Lett.91,020402 (2003).
    [28]J. Kinast, A. Turlapov, J. E. Thomas, Q. Chen, J. Stajic, K. Levin, Science 307,1296 (2005).
    [29]L. Luo, B. Clancy, J. Joseph, J. Kinast, J. E. Thomas, Phys. Rev. Lett.98,080402 (2007).
    [30]L. Luo, J. E. Thomas, J. Low. Temp. Phys.154,1 (2009).
    [31]L. Luo, Ph. D. Thesis, Duke University, (2008).
    [32]S. Nascimbene, N. Navon, K. J. Jiang, F. Chevy, C. Salomon, Nature 463,1057 (2010).
    [33]N. Navon, S. Nascimbne, F. Chevy, C. Salomon, Science 328,729 (2010).
    [34]F. Chevy, S. Nascimbene, N. Navon, K. Jiang, C. Lobo, C. Salomon, J. Phys.:Conf. Ser.264,012012 (2011).
    [35]M. J. H. Ku, A. T. Sommer, L. W. Cheuk, M. W. Zwierlein, Science 335,563 (2012).
    [36]T. Papenbrock, Phys. Rev. A 72,041603(R) (2005).
    [37]B. P. van Zyl, D. A. W. Hutchinson, M. Need, Phys. Rev. A 76,025601 (2007).
    [38]B. P. van Zyl, D. A. W. Hutchinson, Laser Physics Letters 5,162 (2008).
    [39]F. Werner, Phys. Rev. A 78,025601 (2008).
    [40]周昱,“超流费米原子气体中的集体激发及其相互作用研究”,华东师范大学博士学位论文,(2009年)。
    [41]J. Kinast, S. L. Hemmer, M. E. Gehm, A. Turlapov, J. E. Thomas, Phys. Rev. Lett. 92,150402(2004).
    [42]J. Kinast, A. Turlapov, J. E. Thomas, Phys. Rev. A 70,051401(R) (2004); Phys. Rev. A 71,029901 (E) (2005).
    [43]J. Kinast, A. Turlapov, J. E. Thomas, Phys. Rev. Lett.94,170404 (2005).
    [44]C. Cao, E. Elliott, J. Joseph, H. Wu, J. Petricka, T. Schafer, J. E. Thomas, Science 331,58(2011).
    [45]C. Cao, E. Elliott, H. Wu, J. E. Thomas, New J. Phys.13,075007 (2011).
    [46]P. K. Kovtun, D. T. Son, A. O. Starinets, Phys. Rev. Lett.94,111601 (2005).
    [47]Z.-B. Lu, J.-S. Chen, J.-R. Li, Eur. Phys. J. D 66,45 (2012).
    [48]Z.-B. Lu, J.-S. Chen, J.-R. Li, J. Stat. Mech. P01020 (2012).
    [49]陆振帮,“幺正费米气集体模式的流体力学研究”,华中师范大学博士学位论文,(2012年)。
    [50]E. Vogt, M. Feld, B. Frohlich, D. Pertot, M. Koschorreck, M. Kohl, Phys. Rev. Lett. 108,070404(2012).
    [51]L. Wu, Y. Zhang, Phys. Rev. A 85,045601 (2012).
    [52]L. Wu, Y. Zhang, EPL 97,16003 (2012).
    [53]G. M. Bruun, Phys. Rev. A 85,013636 (2012).
    [54]T. Enss, C. Kuppersbusch, L. Fritz, Phys. Rev. A 86,013617 (2012).
    [55]T. Schafer, Phys. Rev. A 85,033623 (2012).
    [56]H. T. C. Stoof, B. M. Dennis, K. Gubbels, Ultracold Quantum Fields, Springer, Berlin (2009).
    [57]J. I. Kapusta, C. Gale, Finite-Temperature Field Theory Principles and Applications, Second edition, Cambridge University Press, Cambridge, UK (2006).
    [58]A. L. Fetter, J. D. Walecka, Quantum Theory of Many-Particle Physics, McGraw-Hill, New York (1971).
    [59]B. Huang, S. Wan, Phys. Rev. A 75,053608 (2007).
    [60]黄备兵,“超冷原子气体中的BEC和BCS-BEC转换”,中国科学技术大学博士学位论文,(2009年)。
    [61]G. Cao, L. He, P. Zhuang, Phys. Rev. A 87,013613 (2013).
    [62]M. W. Zwierlein, J. R. Abo-Shaeer, A. Schirotzek, C. H. Schunck, W. Ketterle, Nature 435,1047(2005).
    [63]T. K. Ghosh, K. Machida, Phys. Rev. A 73,025601 (2006).
    [64]T. N. D. Silva, Phys. Rev. A 78,023623 (2008).
    [65]M. Antezza, M. Cozzini, S. Stringari, Phys. Rev. A 75,053609 (2007).
    [66]T.-L. Song, C. R. Ma, Y.-L. Ma, Annals of Physics 327,1933 (2012).
    [67]T. Sogo, L. He, T. Miyakawa, S. Yi, H. Lu, H. Pu, New J. Phys.11,055017 (2009).
    [68]J.-N. Zhang, R.-Z. Qiu, L. He, S. Yi, Phys. Rev. A 83,053628 (2011).
    [69]Z.-Q. Yu, H. Zhai, Phys. Rev. Lett.107,195305 (2011).
    [70]H. Zhai, Int. J. Mod. Phys. B 26,1230001 (2012).
    [71]P. Wang, Z.-Q. Yu, Z. Fu, J. Miao, L. Huang, S. Chai, H. Zhai, J. Zhang, Phys. Rev. Lett.109,095301 (2012).
    [72]X.-J. Liu, L. Jiang, H. Pu, H. Hu, Phys. Rev. A 85,021603(R) (2012).
    [73]L. He, Z.-Q. Yu, Phys. Rev. A 84,025601 (2011).
    [74]H. Hu, B. Ramachandhran, H. Pu, X.-J. Liu, Phys. Rev. Lett.108,010402 (2012).
    [75]H. Hu, X.-J. Liu, Phys. Rev. A 85,013619 (2012).
    [76]L. Jiang, X.-J. Liu, H. Hu, Han Pu, Phys. Rev. A 84,063618 (2011).
    [77]L. He, X.-G. Huang, Phys. Rev. Lett.108,145302 (2012).
    [78]L. He, X.-G. Huang, Phys. Rev. B 86,014511 (2012).
    [79]G. Chen, M. Gong, C. Zhang, Phys. Rev. A 85,013601 (2012).
    [80]X. Yang, S. Wan, Phys. Rev. A 85,023633 (2012).
    [81]X. Yang, S. Wan, J. Phys. B 45,065301 (2012).
    [82]杨孝森,“超冷费米气体的BCS-BEC转换”,中国科学技术大学博士学位论文,(2012年)。
    [83]J. Zhou, W. Zhang, W. Yi, Phys. Rev. A 84,063603 (2011).
    [84]周晶,“超冷原子系统物理性质研究”,中国科学技术大学博士学位论文,(2012年)。
    [85]M. Gong, G. Chen, S. Jia, C. Zhang, Phys. Rev. Lett.109,105302 (2012).
    [86]M. Iskin, Phys. Rev. A 86,065601 (2012).
    [87]M. Iskin, A. L. Suba, Phys. Rev. A 84,041610(R) (2011).
    [88]W. Yi, G.-C. Guo, Phys. Rev. A 84,031608(R) (2011).
    [89]L. Dell'Anna, G. Mazzarella, L. Salasnich, Phys. Rev. A 84,033633 (2011).
    [90]Y. Deng, J. Cheng, H. Jing, C.-P. Sun, S. Yi, Phys. Rev. Lett.108,125301 (2012).
    [91]J. Lian, Y. Zhang, J.-Q. Liang, J. Ma, G. Chen, S. Jia, Phys. Rev. A 86,063620 (2012).
    [92]M. Horikoshi, S. Nakajima, M. Ueda and T. Mukaiyama, Science 327,442 (2010).
    [93]G. B. Partridge, W. Li, R. I. Kamar, Y.-a. Liao, R. G. Hulet, Science 311,503 (2006).
    [94]M. W. Zwierlein, W. Ketterle, Science 314,54 (2006).
    [95]G. B. Partridge, W. Li, R. I. Kamar, Y.-a. Liao, R. G. Hulet, Science 314,54 (2006).
    [96]M. W. Zwierlein, A. Schirotzek, C. H. Schunck, W. Ketterle, Science 311,492 (2006).
    [97]X.-J. Liu, H. Hu, P. D. Drummond, Phys. Rev. A 75,023614 (2007).
    [98]L. Salasnich, N. Manini, A. Parola, Phys. Rev. A 72,023621 (2005).
    [99]L. Salasnich, Phys. Rev. A 76,015601 (2007).
    [100]J.-J. Du, C. Chen, J.-J. Liang, Phys. Rev. A 80,023601 (2009).
    [101]任燕朋,“超冷费米气体的平均场理论”,山西大学硕士学位论文,(2008年)。
    [102]刘旭东,“二维不对称两组分费米气体的拓扑相变”,山西大学硕士学位论文,(2011年)。
    [103]W. Yi, BCS-BEC crossover in an ultracold Fermi gas, Ph.D. thesis, University of Michigan, (2007).
    [104]A. Bulgac, J. E. Drut, P. Magierski, Phys. Rev. Lett 96,090404 (2006).
    [105]A. Bulgac, J. E. Drut, P. Magierski, Phys. Rev. A 78,023625 (2008).
    [106]E. Burovski, N. Prokofev, B. Svistunov, M. Troyer, Phys. Rev. Lett.96,160402 (2006).
    [107]E. Burovski, N. Prokofev, B. Svistunov, M. Troyer, Phys. Rev. Lett. 97,239902(E) (2006)
    [108]E. Burovski, N. Prokofev, B. Svistunov, M. Troyer, New J. Phys.8,153 (2006).
    [109]A. Bulgac, J. E. Drut, P. Magierski, Phys. Rev. Lett.99,120401 (2007).
    [110]V. K. Akkineni, D. M. Ceperley, N. Trivedi, Phys. Rev. B 76,165116 (2007).
    [111]C. A. R. Sade Melo, M. Randeria, J. R. Engelbrecht, Phys. Rev. Lett.71,3202 (1993).
    [112]K. Huang, Z.-Q. Yu, L. Yin, Phys. Rev. A 79,053602 (2009).
    [113]L. Yin, P. Ao, Phys. Rev. A 71,041603(R) (2005);
    [114]H.-Y. Wu, L. Yin, Acta Physica Sin.55,490 (2006).
    [115]M. Gao, H.-Y. Wu, L. Yin, Phys. Rev. A 74,023604 (2006).
    [116]M. Gao, L. Yin, Int. J. Mod. Phys. B 22,3967 (2008).
    [117]P. Nozieres, S. Schmitt-Rink, J. Low Temp. Phys.59,195 (1985).
    [118]H. Hu, X.-J. Liu, P. D. Drummond, Europhys. Lett.74,574 (2006).
    [119]H. Hu, X.-J. Liu, P. D. Drummond, Phys. Rev. A 77,061605(R) (2008).
    [120]K. Levin, Q. Chen, C. Chien, Y. He, Ann. Phys.325,233 (2010).
    [121]R. B. Diener, R. Sensarma, M. Randeria, Phys. Rev. A 77,023626 (2008).
    [122]M. M. Parish, F. M. Marchetti, A. Lamacraft, B. D. Simons, Nature Phys.3,124 (2007).
    [123]R. Haussmann, W. Rantner, S. Cerrito, W. Zwerger, Phys. Rev. A 75,023610 (2007).
    [124]R. Haussmann, W. Zwerger, Phys. Rev. A 78,063602 (2008).
    [125]Z.-Q. Yu, K. Huang, L. Yin, Phys. Rev. A 79,053636 (2009).
    [126]Z.-Q. Yu, L. Yin, Phys. Rev. A 82,013605 (2010).
    [127]M. A. Resende, A. L. Mota, R. L. S. Farias, and H. Caldas, Phys. Rev. A 86,033603 (2012).
    [128]J.-S. Chen, C.-M. Cheng, J.-R. Li, Y.-P. Wang, Phys. Rev. A 76,033617 (2007).
    [129]J.-S. Chen, Chin. Phys. Lett.24,1825 (2007).
    [130]J.-S. Chen, Commun. Theor. Phys.48,99 (2007).
    [131]J.-S. Chen, J.-R. Li, Y.-P. Wang, X.-J. Xia, J. Stat. Mech. P12008 (2008).
    [132]Y.-P. Wang, J.-S. Chen, Chin. Phys. B 17,4401 (2008).
    [133]J.-S. Chen, J. Stat. Mech. L08002 (2009).
    [134]J.-S. Chen, F. Qin, Y.-P. Wang, Sci. China. Ser. G 52,1324 (2009).
    [135]Z.-B. Lu, J.-S. Chen, J.-R. Li, Laser Physics 20,910 (2010).
    [136]K. Liu, J.-S. Chen, Chen, Chin. Phys. B 20,020501 (2011).
    [137]K. Liu, J.-S. Chen, Chen, Chin. Phys. B 21,030309 (2012).
    [138]王艳萍,“强作用费米物质色散关系及热力学低温展开”,华中师范大学硕士学位论文,(2009年)。
    [139]J.-N. Zhang, S. Yi Phys. Rev. A 80,053614 (2009).
    [140]J.-N. Zhang, S. Yi Phys. Rev. A 81,033617 (2010).
    [141]B. Liu, L. Yin, Phys. Rev. A 84,053603 (2011).
    [142]D. Baillie, P. B. Blakie, Phys. Rev. A 82,033605 (2010).
    [143]Y. Endo, T. Miyakawa, T. Nikuni, Phys. Rev. A 81,063624 (2010).
    [144]G. Gentile, Nuovo Cimento 17,493 (1940).
    [145]G. Gentile, Nuovo Cimento 19,109 (1942).
    [146]W.-S. Dai, M. Xie, Ann. Phys. (N.Y.) 309,295 (2004).
    [147]S. Katsura, K. Kaminishi, S. Inawashiro, J. Math. Phys.11,2691 (1970).
    [148]W.-S. Dai, M. Xie, Physica A 331,497 (2004).
    [149]W.-S. Dai, M. Xie, Phys. Lett. A 373,1524 (2009).
    [150]Y. Shen, W.-S. Dai, M. Xie, Phys. Rev. A 75,042111 (2007).
    [151]沈尧,"Gentile统计的算符实现及应用”,天津大学硕士学位论文,(2007年)。
    [152]H. Oshima, T. Obata, H. Hara, J. Phys. A 32,6373 (1999).
    [153]A. P. Polychronakos, Phys. Lett. B 365,202 (1996).
    [154]F. D. M. Haldane, Phys. Rev. Lett.67,937 (1991).
    [155]F. Wilczek, Phys. Rev. Lett.48,1144 (1982).
    [156]F. Wilczek, Phys. Rev. Lett.49,957 (1982).
    [157]S. Guruswamy, K. Schoutens, Nucl. Phys. B 556,530 (1999).
    [158]W.-H. Huang, Phys. Lett. A 269,333 (2000).
    [159]B. Mirza, H. Mohammadzadeh, Phys. Rev. E 84,031114 (2011).
    [160]A. Lavagno, P. N. Swamy, Phys. Rev. E 61,1218 (2000).
    [161]Y Shu, J. Chen, L. Chen, Phys. Lett. A 292,309 (2002).
    [162]Q.-J. Zeng, Z. Cheng, J.-H. Yuan, Eur. Phys. J. B 81,275 (2011).
    [163]A. Lavagno, P. N. Swamy, Phys. Rev. E 65,036101 (2002).
    [164]S. Cai, G. Su, J. Chen, J. Phys. A 40,11245 (2007).
    [165]B. Mirza, H. Mohammadzadeh, J. Phys. A 44,475003 (2011).
    [166]G. Su, J. Chen, L. Chen, J. Phys. A 36,10141 (2003).
    [167]Q.-J. Zeng, Z. Cheng, J.-H. Yuan, Physica A 391,563 (2011).
    [168]F. A. Brito, A. A. Marinho, Physica A 390,2497 (2011).
    [169]C. Tsallis, J. Stat. Phys.52,479 (1988).
    [170]J. Chen, Z. Zhang, G. Su, L. Chen, Y. Shu, Phys. Lett. A 300,65 (2002).
    [171]C. Ou, J. Chen, Phys. Rev. E 68,026123 (2003).
    [172]C. Ou, J. Chen, Eur. Phys. J. B 43,271 (2005).
    [173]S. Abe, Phys. Rev. E 66,046134 (2002).
    [174]S. Abe, A. K. Rajagopal, Phys. Rev. Lett.91,120601 (2003).
    [175]S. Abe, G. B. Bagci, Phys. Rev. E 71,016139 (2005).
    [176]S. Abe, Phys. Rev. E 79,041116 (2009).
    [177]S. Abe, C. Beck, E. G. D. Cohen, Phys. Rev. E 76,031102 (2007).
    [178]S. Abe, Phys. Rev. E 82,011131 (2010).
    [179]F. Qin, J.-S. Chen, J. Low. Temp. Phys.169,25 (2012).
    [180]M. Bartenstein, A. Altmeyer, S. Riedl, S. Jochim, C. Chin, J. H. Denschlag, R. Grimm, Phys. Rev. Lett.92,203201 (2004).
    [181]R. Combescot, X. Leyronas, Phys. Rev. Lett.93,138901 (2004).
    [182]M. Bartenstein, A. Altmeyer, S. Riedl, S. Jochim, C. Chin, J. H. Denschlag, R. Grimm, Phys. Rev. Lett.92,120401 (2004).
    [183]J. Joseph, B. Clancy, L. Luo, J. Kinast, A. Turlapov, J. E. Thomas, Phys. Rev. Lett. 98,170401 (2007).
    [184]J. Joseph, Ph. D. Thesis, Duke University, (2010).
    [185]J. Joseph, J. Thomas, M. Kulkarni, A. Abanov, Phys. Rev. Lett.106,150401 (2011).
    [186]A. Altmeyer, S. Riedl, C. Kohstall, M. J. Wright, R. Geursen, M. Bartenstein, C. Chin, J. H. Denschlag, R. Grimm, Phys. Rev. Lett.98,040401 (2007).
    [187]A. Altmeyer, S. Riedl, M. J. Wright, C. Kohstall, J. H. Denschlag, R. Grimm, Phys. Rev. A 76,033610 (2007).
    [188]P. Capuzzi, P. Vignolo, F. Federici, M. P. Tosi, Phys. Rev. A 73,021603(R) (2006).
    [189]T. K. Ghosh, K. Machida, Phys. Rev. A 73,013613 (2006).
    [190]P. Capuzzi, P. Vignolo, F. Federici, M. P. Tosi, Phys. Rev. A 74,057601 (2006).
    [191]T. K. Ghosh, K. Machida, Phys. Rev. A 74,057602 (2006).
    [192]W. Wen, S. Q. Shen, G. Huang, Phys. Rev. B 81,014528 (2010).
    [193]N. Manini, L. Salasnich, Phys. Rev. A 71,033625 (2005).
    [194]H. Heiselberg, Phys. Rev. A 73,013607 (2006).
    [195]G. Diana, N. Manini, L. Salasnich, Phys. Rev. A 73,065601 (2006).
    [196]W. Wen, G. Huang, Phys. Lett. A 362,331 (2007).
    [197]Y. E. Kim, A. L. Zubarev, Phys. Rev. A 70,033612 (2004).
    [198]Y. E. Kim, A. L. Zubarev, Phys. Lett. A 327,397 (2004).
    [199]J. Yin, Y. Ma, G. Huang, Phys. Rev. A 74,013609 (2006).
    [200]C. Wang, C. R. Ma, Y. Ma, J. Low. Temp. Phys.154,85 (2009).
    [201]王成涛,"BCS-BEC交叉区域囚禁费米凝聚体基态与激发谱的理论研究”,复旦大学硕士学位论文,(2008年)。
    [202]S. Cao, Y. Ma, G. Huang, Phys. Rev. A 79,013620 (2009).
    [203]曹思勤,“费米凝聚体系的集体效应”,复旦大学硕士学位论文,(2009年)。
    [204]A.-X. Zhang, J.-K. Xue, Phys. Rev. A 80,043617 (2009).
    [205]S. Stringari, Europhys. Lett.65,749 (2004).
    [206]S. Stringari, Phys. Rev. A 58,2385 (1998).
    [207]S. Stringari, Phys. Rev. Lett.77,2360 (1996).
    [208]H. Heiselberg, Phys. Rev. Lett.93,040402 (2004).
    [209]C. J. Pethick, H. Smith, Bose-Einstein Condensation in Dilute Gases (Cambridge University Press, Cambridge, UK) (2002) p 301.
    [210]A. M. Mateo, V. Delgado, Phys. Rev. A 77,013617 (2008).
    [211]G. Mazzarella, L. Salasnich, F. Toigo, Phys. Rev. A 79,023615 (2009).
    [212]Y. Zhou, W. Wen, G. Huang, Phys. Rev. B 77,104527 (2008).
    [213]G. Bertaina, L. Pitaevskii, S. Stringari, Phys. Rev. Lett.105,150402 (2010).
    [214]E. Taylor, H. Hu, X.-J. Liu, L. P. Pitaevskii, A. Griffin, S. Stringari, Phys. Rev. A 80,053601 (2009).
    [215]H. Hu, E. Taylor, X.-J. Liu, S. Stringari, A. Griffin, New J. Phys.12,043040 (2010).
    [216]E. Arahata, T. Nikuni, Phys. Rev. A 80,043613 (2009).
    [217]L. Salasnich, Phys. Rev. A 82,063619 (2010).
    [218]T. K. Ghosh, K. Machida, Phys. Rev. A 72,053623 (2005).
    [219]J. P. Martikainen, H. T. C. Stoof, Phys. Rev. A 68,013610 (2003).
    [220]R. K. Pathria, Statistical Mechanics, (2nd edition), Butterworth-Heinemann, Ox-ford (1996).
    [221]Y.-S. Wu, Phys. Rev. Lett.73,922 (1994); Phys. Rev. Lett.74,3906 (1995).
    [222]W.-P. Su, Y.-S. Wu, J. Yang, Phys. Rev. Lett.77,3423 (1996).
    [223]Y. Hatsugai, M. Kohmoto, Tohru Koma, Y.-S. Wu, Phys. Rev. B 54,5358 (1996).
    [224]Y.-S. Wu, Y. Yu, Y. Hatsugai, M. Kohmoto, Phys. Rev. B 57,9907 (1998).
    [225]K. Iguchi, Phys. Rev. B 58,6892 (1998); Phys. Rev. B 59,10370 (1999).
    [226]K. Iguchi, Phys. Rev. B 61,12757 (2000).
    [227]D. V. Anghel, J. Phys. A 40, F1013 (2007).
    [228]D. V. Anghel, Phys. Lett. A 372,5745 (2008); Phys. Lett. A 376,892 (2012).
    [229]D. V. Anghel, Rom. J. Phys.54,281 (2009).
    [230]D. V. Anghel, Europhys. Lett.87,60009 (2009).
    [231]D. V. Anghel, Phys. Rev. Lett.104,198901 (2010).
    [232]Y.-S. Wu, Phys. Rev. Lett.104,198902 (2010).
    [233]M. D. Johnson, G. S. Canright, Phys. Rev. B 49,2947 (1994).
    [234]D. Bernard, Y.-S. Wu, in New developments on integrable systems and long-ranged interaction models, edited by M. L. Ge and Y.-S. Wu (World Scientific, Singapore, 1995), p 10.
    [235]D. Bernard, Y.-S. Wu, arXiv:cond-mat/9404025.
    [236]S. B. Isakov, Int. J. Mod. Phys. A 9,2563 (1994).
    [237]M. V. N. Murthy, R. Shankar, Phys. Rev. Lett.73,3331 (1994).
    [238]M. V. N. Murthy, R. Shankar, Phys. Rev. B 60,6517 (1999).
    [239]A. Dasnieres de Veigy, S. Ouvry, Phys. Rev. Lett.75,352 (1995).
    [240]M. V. N. Murthy, R. Shankar, Phys. Rev. Lett.75,353 (1995).
    [241]W.-H. Huang, Phys. Rev. E 51,3729 (1995).
    [242]W.-H. Huang, Phys. Rev. B 53,15842 (1996).
    [243]W.-H. Huang, Phys. Rev. Lett.81,2392 (1998).
    [244]W.-H. Huang, Phys. Rev. B 60,15742 (1999).
    [245]D. V. Anghel, J. Phys. A 35,7255 (2002).
    [246]K. Iguchi, Phys. Rev. Lett.81,2393 (1998).
    [247]R. K. Bhaduri, M. V. N. Murthy, M. K. Srivastava, J. Phys. B 40,1775 (2007).
    [248]R. K. Bhaduri, M. V. N. Murthy, M. Brack, J. Phys. B 41,115301 (2008).
    [249]R. K. Bhaduri, M. V. N. Murthy, M. K. Srivastava, J. Phys. B 42,235302 (2009).
    [250]R. K. Bhaduri, M. V. N. Murthy, M. K. Srivastava, J. Phys. B 44,169802 (2011).
    [251]F. Qin, J.-S. Chen, Phys. Rev. A 79,043625 (2009).
    [252]R Qin, J.-S. Chen, J. Phys. B 43,055302 (2010).
    [253]F. Qin, J.-S. Chen, Phys. Rev. E 83,021111 (2011).
    [254]F. Qin, J.-S. Chen, Commun. Theor. Phys.58,573 (2012).
    [255]覃防,“有限温度下幺正费米气体热力学性质的模型化研究”,华中师范大学硕士学位论文,(2010年)。
    [256]T. Aoyama, Eur. Phys. J. B 20,123 (2001).
    [257]G. Su, M. Suzuki, Eur. Phys. J. B 5,577 (1998).
    [258]G. G. Potter, G. Miiller, M. Karbach, Phys. Rev. E 75,061120 (2007).
    [259]G. S. Joyce, S. Sarkar, J. Spalek, K. Byczuk, Phys. Rev. B 53,990 (1996).
    [260]C. Nayak, F. Wilczek, Phys. Rev. Lett.73,2740 (1994).
    [261]S. B. Isakov, D. P. Arovas, J. Myrheim, A. P. Polychronakos, Phys. Lett. A 212, 299 (1996).
    [262]A. Khare, Fractional Statistics and Quantum Theory, World Scientific, Singapore (1997).
    [263]K. Iguchi, Phys. Rev. Lett.78,3233 (1997).
    [264]F. Qin, J.-S. Chen, Phys. Lett. A 376,1191 (2012).
    [265]S. Sevincli, B. Tanatar, Phys. Lett. A 371,389 (2007).
    [266]F. M. D. Pellegrino, G. G. N. Angilella, N. H. March, R. Pucci, Phys. Rev. E 76, 061123(2007).
    [267]B. Mirza, H. Mohammadzadeh, Phys. Rev. E 78,021127 (2008).
    [268]B. Mirza, H. Mohammadzadeh, Phys. Rev. E 80,011132 (2009).
    [269]B. Mirza, H. Mohammadzadeh, Phys. Rev. E 82,031137 (2010).
    [270]L. Arkeryd, Commun. Math. Phys.298,573 (2010).
    [271]R. K. Bhaduri, R. S. Bhalerao, M. V. N. Murthy, J. Stat. Phys.82,1659 (1996).
    [272]P. Lu, J. Vanasse, C. Piecuch, M. Karbach, G. Muller, J. Phys. A 41,265003 (2008).
    [273]P. Lu, D. Liu, G.Muller, M. Karbach, Condens. Matter Phys.15,13001:1-17 (2012).
    [274]D. Liu, P. Lu, G. Muller, M. Karbach, Phys. Rev. E 84,021136 (2011).
    [275]D. Liu, J. Vanasse, G. Muller, M. Karbach, Phys. Rev. E 85,011144 (2012).
    [276]O. Zobay, G. Metikas, G. Alber, Phys. Rev. A 69,063615 (2004).
    [277]C. Ou, J. Chen, Phys. Rev. E 68,026123 (2003).
    [278]M. Li, L. Chen, C. Chen, Phys. Rev. A 59,3109 (1999).
    [279]Z. Yan, Phys. Rev. A 59,4657 (1999).
    [280]Z. Yan, Phys. Rev. A 61,063607 (2000).
    [281]V. Romero-Rochin, Phys. Rev. Lett.94, (2005) 130601.
    [282]N. Sandoval-Figueroa, V. Romero-Rochin, Phys. Rev. E 78, (2008) 061129.
    [283]H. Saygin, A. Sisman, Appl. Energy 70,49 (2001).
    [284]D.-Q. Yuan, C.-J. Wang, Phys. Lett. A 363,487 (2007).
    [285]D.-Q. Yuan, C.-J. Wang, Commun. Theor. Phys.53,669 (2010).
    [286]J. Guo, G. Su, J. Chen, J. Low. Temp. Phys.163,34 (2011).
    [287]K. Liao, J.-S. Chen, C. Li, Commun. Theor. Phys.54,489 (2010).
    [288]R. K. Kumar, P. Muruganandam, J. Phys. B 45,215301 (2012).

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700