玻色—爱因斯坦凝聚体中孤子和干涉的理论研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
自从玻色‐爱因斯坦凝聚体在稀薄碱金属气体中实现后,人们在玻色‐爱因斯坦凝聚体方向上做了大量的理论和实验研究,例如在凝聚体中关于孤立子、涡旋、约瑟夫森震荡、混沌、对称性破缺的研究。另一方面玻色‐爱因斯坦凝聚体具有非常好的相干性可以作为理想相干光源来用于研究物质波的干涉。现在大家都采用平均场近似理论研究玻色‐爱因斯坦凝聚体,这种理论为研究玻色‐爱因斯坦凝聚体性质提供了方向。我们采用平均场理论研究玻色‐爱因斯坦凝聚体中孤子和干涉行为,具体工作分成三部分。
     第一,旋量玻色‐爱因斯坦凝聚体具有内部自由度,这种自由度来源于原子自旋。当旋量玻色‐爱因斯坦凝聚体被囚禁在磁势阱中时,其自旋自由被冻结,即所有原子只有一个自由度,此时可形成单组分玻色‐爱因斯坦凝聚体。然而当旋量玻色‐爱因斯坦凝聚体囚禁在光势阱中,其自旋自由度被释放。这里我们只考虑spin-1的玻色凝聚体系。数值求解spin-1的玻色‐爱因斯坦凝聚在谐振子势阱中的一维含时GP方程。结果表明,当GP方程的耦合参数为负时,我们在spin-1的玻色‐爱因斯坦凝聚体的单组分、双组分和三组分解中发现了孤子呼吸子解。当散射长度随时间变化时,在凝聚体的单组分态上可形成孤子呼吸子。在双组分态中具有种间排斥相互作用和种内吸引相互作用的两团凝聚体发生弹性碰撞,此时凝聚体中出现了孤子呼吸子;没有种间相互作用的两团凝聚体形成了稳定的亮孤子;具有种间排斥相互作用和种内排斥相互作用的两团凝聚体发生非弹性碰撞,此时凝聚体中没有孤子产生。三组分态在吸引相互作用参数条件下,三团凝聚体中都出现了孤子呼吸子,并且出现的自旋交换反应。此时之外,在本论文中我们还给出了这些孤子呼吸子产生的原因。
     第二,柱状势阱中双组分玻色‐爱因斯坦凝聚体的动力学可通过数值求解耦合GP方程来实现。我们展示了由于种间相互作用和初始状态中不同比例的双组分原子混合可导致不同数目的环状暗孤子同时在双组分中产生。而这些孤子在密度最低处或者密度为零处会有相位突变,这些相突变点处的粒子具有非常大的运动速度,如果伴随非常大的几率流密度则此处为灰孤子,如果其几率流密度为零则此处为暗孤子。这些孤子都是不稳定的,会经过非常短的时间就会演化成其他的孤子态。
     最后,两团玻色-爱因斯坦凝聚体的干涉可以通过数值求解一维含时GP方程来实现。两团玻色爱因斯坦凝聚体初始时被置放在由两个在不同位置截断的谐振子势阱组成的双势阱中。在本文中我们展示了两团玻色爱因斯坦凝聚体可以形成周期性的干涉,并且当两团凝聚体重叠时,则会出现暗孤立子。两团凝聚体的周期性干涉可以用一维谐振子波函数的来解释,我们发现由于原子间的相互作用部分原子会在基态与激发态中进行跃迁,这种跃迁与凝聚体的能量变化一致。
Since the realization of Bose-Einstein condensates (BECs) in dilute alkali-metalgases, lots of theoretical and experimental studies of BECs have been reported such assolitons, vortices, josephson oscillation, chaos and symmetry breaking. In anotherregard, the Bose-Einstein condensates have long coherence time and highcontrollability, they as ideal coherent sources have been widely used to study matterwave interference. In the mean-field approximation, the condensates may bedescribed by a macroscopic wavefunction. This theory paves a way toward studyingthe properties of condensates theoretically. In this thesis, we theoretically investigatethe soliton and interference in Bose-Einstein condensates. Our detailed research workcan be divided into three sections.
     In the first section, spinor Bose–Einstein condensates has internal degree offreedom, this freedom is due to the hyperfine spin of atom. When spinor condensatesare trapped in a magnetic potential, the spin degree of freedom is frozen. While whenspinor condensates are trapped in an optical potential, the spin degree of freedomcomes into play. Here we consider spin-1Bose–Einstein condensates which aretrapped in a harmonic potential with different nonlinearity coefficients. We illustratethe dynamics of soliton breathers in one-component, two-component andthree-component states by numerically solving one-dimensional time-dependentcoupled Gross–Pitaecskii (GP) equations. The condensate in one-component stateform soliton breather when scattering length are changed with time. In thetwo-component state, two condensates with repulsive interspecies interactions and attractive interaction make elastic collision and novel soliton breathers are created; thetwo condensates without interspecies interaction form stable bright soliton; the twocondensates with repulsive interspecies interaction and repulsive intraspeciesinteraction make inelastic collision and no soliton created in two condensates. Inthree-component state soliton breathers are generated in three codensates, spinorexchange collision is found. Besides, possible reasons for creating those solitonbreathers are discussed in thesis.
     In the second section, we demonstrate the the dynamical evolution oftwo-component Bose–Einstein condensates which are trapped in a cylindrical well bysolving the coupled GP equations numerically. We present that, due to intercomponentinteraction and different initial component populations, different numbers of ring darksolitons are generated in two components at the same time. These solitons all havedensity zeros (minima) accompanied with phase jumps, the phase jumps can causelarge superfluid velocities. At phase jump points those ring dark solitons have zerosuperfluid currents, while those ring gray solitons have large superfluid currents. Allsolitons are unstable and will evolve into other soliton states after a brief time.
     In the end, we study the interference between two condensates with repulsiveinteraction, which is investigated by numerical solution of the one-dimensionaltime-dependent GP equation. The two condensates are initially prepared in adouble-well potential. This potential consists two truncated harmonic wells centeredat different positions. The two condensates can form periodic interference pattern,while dark solitons are generated when two condensates overlap. The evolution oftwo condensates is described by the ground state and excited states ofone-dimensional harmonic oscillator wavefunctions. Due to the existence ofatom-atom interactions, many atoms are transferred among ground state and excitedstates, atom transfer coincides with the variation of the energy of system.
引文
[1] Hecht C E. The possible superfluid behaviour of hydrogen atoms gases and liquids [J].Physica,1959,25:1159-1161.
    [2] Hulin D, Mysyriwucz A, Guillaume C B. Evidence for Bose-Einstein statistics in an excitongas [J]. Phys. Rev. Lett.,1980,45:1970-1973.
    [3] Anderson M H, Enscher J R, Methews M R, Wieman C E, Cornell E A. Observation ofBose-Einstein Condensation in a dilute atomic vapor [J]. Science,1995,269:198-201.
    [4] Davis K B, Mewes M O, Anderson M R, Druten N J van, Durfee D S, Kurn D M, Ketterle W.Bose-Einstein Condensation in a Gas of Sodium Atoms [J]. Phys, Rev. Lett.,1995,75:3969-3974.
    [5] Hess H F, Kochanski G P, Doyle J M, et al., Magnetic trapping of spin-polarized atomichydrogen, Phys. Rev. Lett.,1987,59:672-675.
    [6] Roijen R V, Berkhout J J, Jaakkola S, Walraven J T M, Experiments with atomic hydrogenin a magnetic trapping field, Phys. Rev. Lett.,1988,61:931-934.
    [7] Masuhara N, Doyle J M, Sandberg J C, Kleppner D, Greytak T J, Hess H F, Kochanski G P,Evaporative cooling of spin-polarised atomic hydrogen, Phys. Rev. Lett.,1988,61:935-938.
    [8] Setija I D, Weerij H G C, Luiten O J, Reynolds M W, Hijmans T W, Walraven J T M,Optical cooling of atomic hydrogen in a magnetic trap, Phys. Rev. Lett.,1994,70:2257-2260.
    [9]王晓辉,李义民,王义遒.玻色-爱因斯坦凝聚的物理实现及其应用展望[J].物理,1998,27(1):3-1.
    [10] Bradley C C, Sacket C A, Tollent J J, Hulet R G. Evidence of Bose-Einstein Condensation inan Atomie Gas with Attractive Interactions lJ]. Phys. Rev. Lett.,1995,75:1687-1691.
    [11] London F. On the Bose-Einstein condensation [J]. Phys. Rev.,1938,54:947-954.
    [12]尹澜,玻色-爱因斯坦凝聚领域Feshbach共振现象研究进展[J].物理,2004,33:558-561.
    [13] Dalfovo F, Giorgini Pitaevskii S P, Stringari S. Theory of Bose-Einstein condensation intrapped gases [J]. Rev. Mod. Phys.,1999,71:463-512.
    [14] Sinatra A, Fediehev P O, Castin Y, Dalibard J, Shlypanikov G V, Dynamics of TwoInteracting Bose-Einstein Condensates [J], Phys. Rev. Lett.,1999,82:251-254.
    [15] Hoston W. You L. Interference of two condensates [J]. Phys. Rev. A,1996,53:4254-4256.
    [16] Trombettoni A, Smerzi A. Discrete Solitons and Breathers with Dilute Bose-EinsteinCondensates[J]. Phys. Rev. Lett.,2001,86:2353-2356.
    [17] Burger S, Carr L D, hberg P, Sengstock K, Sanpera A. Generation and interaction ofsolitons in Bose-Einstein condensates [J]. Phys. Rev. A,2002,65:043611.
    [18] Khawaja U A, Stoof H T C, Hulet R G, Strecker K E, Partridge G B. Bright Soliton Trains ofTrapped Bose-Einstein Condensates [J]. Phys. Rev. Lett.,2002,89:200404.
    [19] Ichihara R, Danshita I, Nikuni T. Matter-wave dark solitons in a double-well potentiall [J].Phys. Rev. A,2008,78:063604.
    [20] Bao W Z, Jaksch D, Markowich P A. Numerical solution of the Gross–Pitaevskii equationfor Bose–Einstein condensation [J]. J. Comput. Phys,2003,187:318–342.
    [21] Muruganandam P, Adhikari S K. Fortran programs for the time-dependent Gross-Pitaevskiiequation in a fully anisotropic trap [J]. Comput. Phys. Commun,2009,180:1888-1912.
    [22] Burger S, Bongs K, Dettmer S, Ertmer W, Sengstock K, Dark Solitons in Bose-EinsteinCondensates [J], Phys. Rev. Lett.,1999,83:5198-5201.
    [23] Becker C, Stellmer S, Soltan-Panahi P et al. Oscillations and interactions of dark anddark-bright solitons in Bose-Einstein condensates [J]. Nat. Phys.,2008,4:496-501.
    [24] Stellmer S, Becker C, Soltan-Panahi P, Richter E M, D rscher S, Baumert M, Kronj ger J,Bongs K, Sengstock K. Collisions of Dark Solitons in Elongated Bose-Einstein Condensates[J]. Phys. Rev. Lett.,2008,101:120406.
    [25] Stock S et al. Observation of Phase defects in quasi-two-dimensional Bose-Einsteincondensates [J]. Phys. Rev. Lett.,2005,95:190403.
    [26] Andrews M R, Towsend C G, Miesner H J, Durfee D S, Kurn D M, Ketterle M. Observationof Interferenee Between Two Bose Condensates [J]. Science,1997,275:637-641.
    [27] Shin Y, Saba M, Schirotzek A, Pasquini T A, Leanhardt A E, Pritchard D E, Ketterle W.Distillation of Bose-Einstein Condensates in a Double-Well Potential [J]. Phys. Rev. Lett.,2004,92:150401.
    [28] Stenger J, Inouye S, Stamper-Kurn D M, Miesner H-J, Chikkatur A P, Ketterle W, Spindomains in ground-state Bose-Einstein condensates [J]. Science,1998,396:345-348.
    [29] Kawaguchi Y, Ueda M. Spinor Bose–Einstein condensates [J], Phys. Rep.,2012,07:005.
    [30] Chang M S, Qin Q S, Zhang W X, You L, Chapman M A. Coherent spinor dynamics in aspin-1Bose condensate [J]. Nat. Phys.2005,01:111-116.
    [31] Song S W, Wang D S, Wang H Q, Liu W M. Generation of ring dark solitons by phaseengineering and their oscillations in spin-1Bose-Einstein condensates [J]. Phys. Rev. A,2012,85:063617
    [32] Ieda J, Miyakawa T, Wadati M. Exact Analysis of Soliton Dynamics in Spinor Bose-EinsteinCondensates [J]. Phys. Rev. Lett.,2004,93:194102.
    [33] Li L, Li Z D, Malomed B A, Mihalache D, Liu W M. Exact soliton solutions and nonlinearmodulation instability in spinor Bose-Einstein condensates [J]. Phys. Rev. A,2005,72:033611.
    [34] Zhou F. Spin Correlation and Discrete Symmetry in Spinor Bose-Einstein Condensates [J].Phys. Rev. Lett.,2001,87:080401.
    [35] Juliá-Díaz B, Guilleumas M, Lewenstein M, Polls A, Sanpera A. Josephson oscillations inbinary mixtures of F=1spinor Bose-Einstein condensates [J]. Phys. Rev. A,2009,80:023616.
    [36] Watabe S, Kato Y. Transmission of excitations in a spin-1Bose-Einstein condensate througha barrier [J]. Phys. Rev. A,2011,83:053624.
    [37] Fujimoto K, Tsubota M. Spin turbulence in a trapped spin-1spinor Bose-Einstein condensate[J]. Phys. Rev. A,2012,85:053641.
    [38] Klausen N N, Bohn J L, Greene C H. Nature of spinor Bose-Einstein condensates inrubidium [J], Phys. Lett. A,2001,64:053602.
    [39] Robins N P, Zhang W P, Ostrovskaya E A, Kivshar Y S. Modulational instability of spinorcondensates [J], Phys. Lett. A,2001,64:021601.
    [40] Itin A P, Morishita T, Satoh M, Tolstikhin O I, Watanabe S. Vortex creation during magnetictrap manipulations of spinor Bose-Einstein condensates [J]. Phys. Rev. A,2006,73:063615.
    [41] Matuszewski M. Rotonlike instability and pattern formation in spinor Bose-Einsteincondensates [J]. Phys. Rev. Lett.,2010,105:020405.
    [42] Pechkis H K, Wrubel J P, Schwettmann A, Griffin P F, Barnett R, Tiesinga E, Lett P D.Spinor Dynamics in an Antiferromagnetic Spin-1Thermal Bose Gas [J]. Phys. Rev. Lett.,2013,111,025301.
    [43] Saito H and Ueda M. Spontaneous magnetization and structure formation in a spin-1ferromagnetic Bose-Einstein condensate [J]. Phys. Rev. A,2005,72:023610.
    [44] Lim F Y, Bao W Z. Numerical methods for computing the ground state of spin-1Bose-Einstein condensates in a uniform magnetic field [J]. Phys. Rev. E,2008,78:066704.
    [45] Scherer M, Lücke B, Peise J, Topic O, Gebreyesus G, Deuretzbacher F, Ertmer W, Santos L,Klempt C, Arlt J J. Spontaneous symmetry breaking in spinor Bose-Einstein condensates [J].Phys. Rev. A,2013,88:053624.
    [46] Uchiyama M, Ieda J, Wadati M. Dark Solitons in F=1Spinor Bose–Einstein Condensate [J].J. Phys. Soc. Jpn.,2006,75:064002.
    [47] Julia-Diaz B, Mele-Messeguer M, Guilleumas M, Polls A. Spinor Bose-Einstein condensatesin a double well: Population transfer and Josephson oscillations [J]. Phys. Rev. A,2009,80:043622.
    [48] Juliá-Díaz B, Melé-Messeguer M, Guilleumas M, Polls A. Spinor Bose-Einstein condensatesin a double well: Population transfer and Josephson oscillations [J]. Phys. Rev. A,2009,80:043622.
    [49] Zhong W P, Beli M R, Lu Y Q, Huang T W. Traveling and solitary wave solutions to theone-dimensional Gross-Pitaevskii equation [J]. Phys. Rev. E,2010,81:016605.
    [50] Myatt C J, Burt E A, Ghrist R W, Cornell E A, Wieman C E. Production of two overlappingBose-Einstein condensates by sympathetic cooling [J]. Phys. Rev. Lett.,1997,78:586-589..
    [51] Stamper-Kurn D M, Andrews M R, Chikkatur A P, Inouye S, Miesner H-J, Stenger J,Ketterle W. Optical confinement of a Bose-Einstein condensate [J]. Phys. Rev. Lett.,1998,80:2027-2030.
    [52] hberg P, Santos L. Dark Solitons in a Two-Component Bose-Einstein Condensate [J]. Phys.Rev. Lett.,2001,86:2918-2921.
    [53] Busch T, Anglin J R. Dark-Bright Solitons in Inhomogeneous Bose-Einstein Condensates [J].Phys. Rev. Lett.,2001,87:010401.
    [54] Sabbatini J, Zurek W H, Davis M J. Phase Separation and Pattern Formation in a BinaryBose-Einstein Condensate [J]. Phys. Rev. Lett.,2011,107:230402.
    [55] Nistazakis H E, Frantzeskakis D J, Malomed B A, Kevrekidis P G. Head-on collisions of ringdark solitons [J], Phys. Lett. A,2001,285:157-164.
    [56] Zhang Y Z, Bao W Z, Li H L. Dynamics of rotating two-component Bose–Einsteincondensates and its efficient computation [J]. Phys. D,2007,234:49-69.
    [57] Zhang X F, Hu X H, Liu X X, Liu W M. Vector solitons in two-component Bose-Einsteincondensates with tunable interactions and harmonic potential [J]. Phys. Rev. A,2009,79:033630.
    [58] Wang D S, Hu X H, Liu W M. Localized nonlinear matter waves in two-componentBose-Einstein condensates with time-and space-modulated nonlinearities [J]. Phys. Rev. A,2010,82:023612.
    [59] hberg P, Santos L. Solitons in two-component Bose–Einstein condensates [J]. J. Phys. B:At. Mol. Opt. Phys.,2011,34:4721–4735.
    [60] Hoefer M A, Chang J J, Hamner C, and Engels P. Dark-dark solitons and modulationalinstability in miscible two-component Bose-Einstein condensates [J]. Phys. Rev. A,2011,84:041605.
    [61] Cambournac C, Sylvestre T, Maillotte H, Vanderlinden B, Kockaert P, Emplit P, HaeltermanM. Symmetry-Breaking Instability of Multimode Vector Solitons [J]. Phys. Rev. Lett.,2002,89:083901.
    [62] Zhang X F, Hu X H, Liu X X, Liu W M. Vector solitons in two-component Bose-Einsteincondensates with tunable interactions and harmonic potential [J]. Phys. Rev. A,2009,79:033630.
    [63] Yakimenko A I, Shchebetovska K O, Vilchinskii S I, Weyrauch M. Stable bright solitons intwo-component Bose-Einstein condensates [J]. Phys. Rev. A,201285:053640.
    [64] Hamner C, Zhang Y P, Chang J J, Zhang C W, Engels P. Phase Winding a Two-ComponentBose-Einstein Condensate in an Elongated Trap Experimental Observation of MovingMagnetic Orders and Dark-Bright Solitons [J]. Phys. Rev. Lett.,2013,111:264101.
    [65] Kamchatnov A M, Korneev S V. Dynamics of ring dark solitons in Bose–Einsteincondensates and nonlinear optics [J]. Phys. Lett. A,2010,374:4625-4628.
    [66] Hu X H, Zhang X F, Zhao D, Luo H G, Liu W M. Dynamics and modulation of ring darksolitons in two-dimensional Bose-Einstein condensates with tunable interactionn [J]. Phys.Rev. A,2009,79:023619.
    [67] Anderson B P, Haljan P C, Regal C A, Feder D L, Collins L A, Clark C W, Cornell E A.Watching Dark Solitons Decay into Vortex Rings in a Bose-Einstein Condensate [J]. Phys.Rev. Lett.,2001,86:2926-2929.
    [68] Theocharis G, Frantzeskakis D J, Kevrekidis P G, Malomed B A, Kivshar Y S. Ring DarkSolitons and Vortex Necklaces in Bose-Einstein Condensates [J]. Phys. Rev. Lett.,2003,90:120403.
    [69] Yang S J, Wu Q S, Zhang S N, Feng S P, Guo W N, Wen Y C, Yu Y. Generating ring darksolitons in an evolving Bose-Einstein condensate [J]. Phys. Rev. A,2007,76:063606.
    [70] Eto M, Kasamatsu K, Nitta M, Takeuchi H, Tsubota M. Interaction of half-quantized vorticesin two-component Bose-Einstein condensates[J]. Phys. Rev. A,2011,83:063603.
    [71] Adhikari S K, Malomed B A, Salasnich L, Toigo F. Spontaneous symmetry breaking ofBose-Fermi mixtures in double-well potentials [J]. Phys. Rev. A,2010,81:053630.
    [72] Qi P T, Duan W S. Tunneling dynamics and phase transition of a Bose-Fermi mixture in adouble well [J]. Phys. Rev. A,2011,84:033627.
    [73] Wang Y S,Yan P G, Li B, Liu X S, Symmetry breaking of a Bose–Fermi mixture in atwo-dimensional double-well potential [J]. Chin. Phys. B,2012,21:010309.
    [74] Yan P G, Wang Y S, Ji S T, Liu X S, Symmetry breaking of a Bose–Fermi mixture in atriple-well potential [J]. Phys. Lett. A,2012,376:3141-3145.
    [75] Shin Y, Sanner C, Jo G-B, Pasquini T A, Saba M, Ketterle W, Pritchard D E, Vengalattore M,Prentiss M. Interference of Bose-Einstein condensates split with an atom chip [J]. Phys. Rev.A,2005,72:021604.
    [76] Liu W M, Wu B, Niu Q. Nonlinear effects in interference of Bose-Einstein condensates [J].Phys. Rev. Lett.,2000,84:2294.
    [77] Lee C H, Huang J H, Deng H M, Dai H, Xu J. Nonlinear quantum interferometry with Bosecondensed atoms [J]. Front. Phys.,2012,7(1):109–130.
    [78] Polo J, Ahufinger V. Soliton-based matter-wave interferometer [J]. Phys. Rev. A,2013,88:053628.
    [79] Müntinga H, Ahlers H, Krutzik M et al. Interferometry with Bose-Einstein Condensates inMicrogravity [J]. Phys. Rev. Lett.,2013,110:093602.
    [80] Leung V Y F, Truscott A G, Baldwin K G H. Nonlinear atom optics with bright matter-wavesoliton trains [J]. Phys. Rev. A,2002,66:061602.
    [81] Frantzeskakis D J, Theocharis G, Diakonos F K, Schmelcher P, Kivshar Y S. Interaction ofdark solitons with localized impurities in Bose-Einstein condensates [J]. Phys. Rev. A,2002,66:053608.
    [82] Adhikari S K. Dynamics of collapsing and exploding Bose-Einstein condensate [J], Phys.Lett. A,2002,296:145–150
    [83] Chen S, Egger R. Destruction of interference by many-body interactions in cold atomic Bosegases [J]. Phys. Rev. A,2003,68:063605.
    [84] Zhang S, Wang F. Interference effect of three Bose-Einstein condensates [J]. Modern Phys.Lett. B,2002,16:519.
    [85] Hai W H, Lee C H, Chong G S. Propagation and breathing of matter–wave-packet trains [J].Phys. Rev. A,2004,70:053621.
    [86] Adhikari S K. Evolution of a collapsing and exploding Bose-Einstein condensate in differenttrap symmetries [J]. Phys. Rev. A,2005,71:053603.
    [87] Yang S J, Wu Q S, Feng S P, Wen Y C, Yu Y. Solitons and vortices in an evolvingBose-Einstein condensate [J]. Phys. Rev. A,2008,77:035602.
    [88] Adhikari S K. Josephson oscillation and induced collapse in an attractive Bose-Einsteincondensate [J]. Phys. Rev. A,2005,72:013619.
    [89] Weller A, Ronzheimer J P, Gross C, Esteve J, Oberthaler M K, Frantzeskakis D J, TheocharisG, Kevrekidis P G. Experimental Observation of Oscillating and Interacting Matter WaveDark Solitons [J]. Phys. Rev. Lett.,2008,101:130401.
    [90] Xiong B, Gong J B, Pu H, Bao W Z, Li B W. Symmetry breaking and self-trapping of adipolar Bose-Einstein condensate in a double-well potential [J]. Phys. Rev. A,2009,79:013626.
    [91] Wang D S, Song S W, Xiong B, Liu W M. Quantized vortices in a rotating Bose-Einsteincondensate with spatiotemporally modulated interaction [J]. Phys. Rev. A,2011,84:053607.
    [92] Billam T P, Cornish S L, Gardiner S A. Realizing bright-matter-wave-soliton collisions withcontrolled relative phase [J]. Phys. Rev. A,2011,83:041602.
    [93] Michinel H, Paredes A, Valado M M, Feijoo D. Coherent emission of atomic soliton pairs byFeshbach-resonance tuning [J]. Phys. Rev. A,2012,86:013620.
    [94] Wadkin-Snaith D C, Gangardt D M. Quantum Gray Solitons in Confining Potentials [J].Phys. Rev. Lett.,2012,108:085301.
    [95] Denschlag J, Simsarian J E, Feder D L, Clark C W et al, Generating solitons by phaseengineering of a Bose-Einstein condensate[J]. Science,2000,287:97-101.
    [96] Dalfovo F, Stringari S. Bosons in anisotropic traps: Ground state and vortices [J]. Phys. Rev.A,1995,53:2477-2485.
    [97] Hua W, Li B, Liu X S. Tunneling of Bose—Einstein condensate and interference effect in aharmonic trap with a Gaussian energy barrier. Chin. Phys. B,2011,20:060308.
    [98] Madison K W, Chevy F, Wohlleben W, Dalibard J. Vortex Formation in a StirredBose-Einstein Condensate [J]. Phys. Rev. Lett.,2000,84:806-809.
    [99] Adhikari S K. Collapse of attractive Bose-Einstein condensed vortex states in a cylindricaltrap [J]. Phys. Rev. E,2001,65:016703.
    [100] Carr L D, Brand J, Burger S, Sanpera A. Dark-soliton creation in Bose-Einstein condensates[J], Phys. Lett. A,2001,63:051601.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700