小功率金属卤化物灯数字化电子镇流器的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着绿色照明工程的实施,气体放电灯被广泛地使用在室内照明、户外泛光照明、汽车照明等应用场合中。但是,与之配套工作的传统电感式镇流器由于重量大、体积大、功率因数低、工频闪烁、输出功率随着电网变化、控制功能单一等缺点,已不能满足绿色照明的要求。电子镇流器作为一种照明节能电器,是实现绿色照明的关键所在。
     本文以小功率金卤灯数字化电子镇流器为研究课题,对金卤灯的基本特性、拓扑结构,控制策略和启动技术等问题进行了研究,在此基础上提出了一些新方法及思路,并通过理论分析和实验加以验证。
     本文通过对逆变电路的改进,成功的将并联谐振电路和半桥双Buck电路结合起来,设计了一种结合谐振启动方式的新型两级式数字化低频方波电子镇流器。点火阶段逆变电路工作于并联谐振模式,以谐振启动方式代替传统的脉冲启动方式,去掉了点火变压器,简化了电路结构。在稳态阶段逆变器工作于半桥双Buck电路模式,灯电压电流为低频方波,有效地避免了声共振现象,本文阐明了其工作原理并给出了参数设计方法。另外针对谐振启动方式在实际应用遇到的谐振参数离散性问题和电感易饱和问题,本文提出一种连续冲击自适应软启动控制策略,取得了较好的效果。
     影响功率密度的主要因素是占系统绝大部分体积的无源器件,提高功率密度的最有效的方法是尽可能提高开关频率。但当开关频率提高到100kHz以上时,工作于CCM模式的半桥双Buck变换器将不再适用,主要原因是二极管反向恢复会带来较大的损耗,同时也使得EMI问题难以解决,另外电路工作在硬开关状态,开通损耗较大。为克服这些困难,本文提出了一种基于准方波谐振的自适应零电压开通双Buck功率变换器,详细分析其工作原理,推导出了精确的输出电压增益公式及软开关条件,并给出电路参数的设计方法。自适应零电压控制策略的采用保证了在整个点灯过程中以及点不同厂家灯泡时的零电压开通。照明专用单片机AT90PWM2的使用提高了控制性能,保证了高频工作下的PWM分辨率,简化了硬件设计。70W数字化金卤灯电子镇流器样机验证了所提拓扑结构及控制方法的正确性,稳态工作频率达到100kHz以上,整机效率可达92%。
     金属卤化物灯因其自身特性,它的启动过程比较复杂。本文根据金卤灯启动过程各阶段及稳态的特点给出了对应的控制方法,并提出了一种单周电流峰值控制策略,有效地抑制Run-up过渡过程中及低频换向时的电流过冲问题。自适应零电压开通控制方法和单周电流峰值控制策略贯穿于各个阶段的控制策略中。自适应零电压开通控制方法除了保证开关管零电压开通之外还可满足点火暂态过程实时性的要求。基于调节导通时间的逆变器输入平均功率控制方法简单有效,通过配接各种灯泡的实验证明了该功率闭环控制策略的可行性与准确性。
     谐振启动方式电路结构简单控制灵活,但也有回路电流峰值高的缺点,并且其对于例如单功率级等多数低频方波拓扑结构而言,谐振启动方式将不再适用。在实际应用中,低频方波电子镇流器通常都采用脉冲启动方式,因此有必要对其进行研究。本文介绍了电子镇流器脉冲启动电路的设计要求,并提出了一种基于双频触发的金卤灯脉冲启动电路,通过对电路模型进行计算细致分析了影响点火脉冲电压幅值和脉宽的各个参量。通过添加辅助电感的方式限制了回路电流峰值并克服变压器寄生电容离散性所引起的脉冲电压峰值波动,同时利用辅助电感和变压器寄生电容组成另一谐振回路与主谐振回路共同作用,产生两组不同频率的点火脉冲序列同时加到灯端。该双频触发脉冲电压既可以提供足够大的脉冲峰值电压,又可以保证足够的脉冲宽度,有效提高点火可靠性。
With the implementation of green lighting project, gas discharge lamps have been widely used in many applications including: home lighting, outdoor lighting and automotive lighting. However, traditional electromagnetic ballast cannot satisfy the demand of modern lighting system, due to drawback including large size, heavy weight, low power factor, flicker, poor power regulation and sensitive to line-voltage dips. As the new efficient lighting electrical appliance, electronic ballast is the critical issue in the green lighting project.
     Digital electronic ballast for low power metal halide lamp is selected as the research subject of this dissertation and several problems such as basic lamp characteristic, topology, control method and ignition technology are addressed. Some novel methods and ideas are proposed based on analysis and experiment. The main contents and achievements are listed below.
     Combining the Half-bridge dual Buck topology with parallel-loaded resonant (PLR) circuit, a novel two-stage low-frequency-square-wave (LFSW) digtal electronic ballast with resonant ignition is proposed. Inverter operates in the mode of PLR duiring ignition stage and external ignitor is removed. Inverter operates in mode of Half-bridge dual Buck converter in steady state. Lamp voltage and current are low-frequency-square-wave. Lamp arc is stable without acoustic resonance. Operating principle and parameter design method are represented. To solve the problem of resonant parameter tolerance and inductor saturation, an adaptive iterating ignition soft start-up control strategy is proposed and the effect is satisfied.
     The key factor affecting the power desity is the passive elements. The most effective way of enhancing the power desity is to increase the operating frequency. However, the Buck converter operating in CCM mode is not applicable when operating frequency is beyond 100 kHz because of the reverse recovery of diode and EMI problem. Meanwhile, the MOSFET is in hard switch mode and the turn-on loss is significant. To solve these problems, an adaptive ZVS dual Buck quasi-square-wave (QSW) dual Buck converter is proposed. The principle of QSW is explained in detail. Accurate voltage gain transfer function, bound of ZVS and parameter design method are given. Adaptive ZVS control strategy guarantees the zero voltage turn-on of switch during the whole process the lamp operation and is effective on various lamps of different manufactures too. Microcontroller AT90PWM2 for lighting helps to improve the performance and simplify the hardware circuit. The prototype of 70W digital electronic ballast for metal halide lamp proves the validity of the proposed topology and control strategy. Operating frequency is beyond 100 kHz and the whole system efficency is 92%.
     The start-up process is complex because of the characteristic of metal halide lamp. Corresponding control method is applied to the lamp according to features of each stage. One cycle peak current control strategy is proposed to limit the excessive current during commutation period and run-up stage. One cycle peak current contrl strategy and adaptive ZVS control strategy play an important role in each stage. The adaptive ZVS control strategy can not only guarantee the zero voltage turn-on of switch but also satisfy the rapid response requirement in ignition transient state. The average input power control method based on the adjustment of turn-on time is simple and effective. The experiments with different lamps prove the feasibility and accuracy of constant power control strategy.
     Resonant ignition method enjoys the simple circuit and flexible control but it can not avoid the excessive current. Meanwhile, resonant ignition method is not proper for most of LFSW topology such as single stage topology. In practice, pulse ignition method is adopted in most of the LFSW ballast. The requirements for the pulse ignition circuit are introduced and a new dual frequency trigger pulse ignition circuit is proposed. Circuit model is analysised in detail and the influence of circuit parameters on pulse amplitude and width is given. Peak current is limited and amplitude variation caused by transformer parasitic capacitor torlance is restricted by the auxiliary inductor. The auxiliary inductor and ransformer parasitic capacitor form another resonant circuit. As a result, an igniting pulse sequence with two different frequencies is applied to the lamp and both pulse amplitude and width are guaranteed.
引文
1朱绍龙.美国有关节能照明的标准和规定.中国照明电器, 1997, (3):1~5
    2葛葆硅.绿色照明与发光.光机电信息, 2002, (4):37~42
    3刘虹.中国绿色照明工程实施展望.中国绿色照明工程, 2004, (3):30~33
    4 Fengfeng Tao. Advanced High-Frequency Electronic Ballasting Techniques for Ggas Discharge Lamps. Thesis for Doctor degree in Virginia Polytechnic Institute and State university, 2001
    5 J.M.Davenport, R.J.Pettl. Acoustic Resonance Phenomena in Low Wattage Metal Halide Lamps. Journal of the Illuminating Engineering Society, April 1985:633-641
    6 Motorola Semiconductor Selection Guide, 1996
    7 International Rectifier Selection Guide, 2000
    8 Zheren Lai , etc.. A Family of Continuous-Conduction-Mode Power-Factor -Correction Controllers Based on the General Pulse-Width-Modulator. IEEE Transactions on Power Electronics, 1998, 13(3): 501~510
    9 Jinrong Qian, Fred.C.Lee. A High-Efficiency Single-Stage Single-Switch High-Power-Factor AC/DC Converter with Universal Input. IEEE Transactions on Power Electronics, 1988, 13(4): 699~705
    10 Chin S. Moo, Ying C. Chuang, Ching R. Lee. A New Power-Factor-Correction Circuit for Electronic Ballasts with Series-Load Resonant Inverter. IEEE Transactions on Power Electronics, 1998, 13(4): 273~278
    11 Marek Gotfryd. Output Voltage and Power Limits in Boost Power Factor Corrector Operating in Discontinuous Inductor Current Mode. IEEE Transactions on Power Electronics, 2000, 15(1): 51~57
    12 Giorgio Spiazzi, et.al. Power Factor Preregulators with Improved Dynamic Response. IEEE Transactions on Power Electronics, 1997, 12(2): 343~349
    13胡宗波,邓卫华.电子镇流器的拓扑结构设计方法及其发展趋势.电力电子技术, 2001(4): 51~56
    14李大友. HID灯镇流器选用要点.中国照明电器, 2000, (2): 27~30
    15 Han-Juergin Faehnrich,Irhard Rasch. Electronic Ballasts For Metal Halide Lamps. Journal of the Illuminating Engineering Society, Summer 1998:131~140
    16姚立真.通用电路模拟技术及软件应用——Spice和PSpice.电子工业出版社, 1994: 55~162
    17郑光钦.全能混合电路仿真OrCAD PSpice A/D V9.中国铁道出版社. 2000
    18戴国骏,高济平.荧光灯的动态PSPICE模型.中国照明电器, 1999(4): 1~4
    19 Marent, Zudrell-Koch. Novel Electronic Ballast with Integrated Digital Power Factor Controller. Industry Applications Conference, 2003, (2): 791~798
    20 Zhang Weiqiang, Xu Dianguo, Chi-Hwan Lee. Design and Performance of Digital Ballast for HPS Lamps. IEEE Applied Power Electronics Conference and Exposition, 2003:1205~1208
    21 Radecker. M, Dawson. F. Ballast-on-a-chip: Realistic Expectation or Technical Delusion. IEEE Transactions on Industry Applications, 2001, 10(1): 48 ~58
    22 Tsai-Fu Wu, Te-Hung Yu. An Electronic Dimming Ballast with Bifrequency and Fuzzy Logic Control. IEEE Transactions on Industry Applications, 2000, 36(5): 1308~1317
    23 J.M. Alonso, J. Diaz, C. Nlanco and M. Rico. A Microcontroller-Based Emergency Ballast for Fluorescent Lamps. IEEE Transactions on Industrial Electronics, 1997, 44(2):207~216
    24 J.M. Alonso, Javier Ribas etc. Development of a Distributive Control Scheme for Fluorescent Lighting Based on Lon works Technology. IEEE Transactions on Industrial Electronics, 2000, 47(6): 1253~1262
    25 Tsai-Fu Wu, Te-Hung Yu, Yong-Jing Wu. A Microprocessor-Based Toggle-Control Lighting System. IEEE Transactions on Industrial Electronics, 1998, 45(3): 525~528
    26鲍志云,王卫,张伟强,徐殿国.一种有效抑制金卤灯声共振问题的方法.中国照明电器, 2002, (9):1~5
    27周景海,钱照明.高强度气体放电灯的新型声谐振检测.中国照明电器, 2000, (2):22~26
    28 J.Zhou, L.Ma, Z.Qian. A Novel Method for Testing Acoustic Resonance ofHID Lamps. Applied Power Electronics Conference and Exposition, 1999, (1):480~485
    29 Cfarles F Schoiz. Characteristics of Acoustical Resonance in Discharge Lamps. Journal of Illuminating Engineering Society, 1970:713~715
    30 Yao C. Hsieh, Chin S Moo, Hsien W. Chen, Ming J. Soong. Detection of Acoustic Resonance in Metal Halide Lamps. IEEE International Symposium on Industrial Electronics, 2001, (2):881~885
    31 H. Peng, S. Ratanapanachote, P. Enjeti,L. Laskai,I. Pitel. Evaluation of Acoustic Resonance in Metal Halide(MH) Lamps and an Approach to Detect Its Occurrence. IEEE Industry Applications Society Annual Meeting, 1997, (3):2276~2283
    32 Jo Olsen, Warren P. Moskowitz. Time Resolved Measurement of HID Lamp Acoustic Frequency Spectra. IEEE Industry Applications Society Annual Meeting, 1998, (3):2111~2116
    33 Wei Yan, Y.K.E. Ho, S.Y.R. Hui. Investigation on Methods of Eliminating Acoustic Resonance in Small Wattage High-Intensity-Discharge (HID) Lamps. IEEE Industry Applications Society Annual Meeting, 2000, (5):3399~3406
    34王汝文,姚晓莉,姚建军.一种高气压金属卤化物气体放电灯用新型电源的原理研究.西安交通大学学报, 2001, (6):568~572
    35彭端,彭珞丽.金属卤化物灯高频开关电源的研究.电力电子技术, 1998, (5):51~52
    36毛兴武,浦以宁.介绍一种250W金卤灯电子镇流器电路.中国照明电器, 1999, (8):19~21
    37 H. Nishimura, H. Nagase, K. Uchihashi, T. Shiomi, M. Fukuhara. A New Electronic Ballast for HID Lamps. Journal of Illuminating Engineering Society, summer, 1988:92~98
    38 S wada, A okada, S Morir. Study of HID Lamps with reduced acoustic resonance. Journal of the Illuminating Engineering Society, 1987:162~175
    39 R Schafer. Investigation On the Fundamental Longitudinal Acoustic Resonance in High Pressure Discharge Lamps. Journal of the Illuminating Engineering Society, 1998, 34(3):597~605
    40 Wei Yan, Y.K.E. Ho, S.Y.R.Hui. Stability Study and Control Methods forSmall-Wattage High-Intensity-Discharge(HID) Lamps. IEEE Transactions on Industry Applications,2001, 37(5):1522~1530
    41 Márcio A. Có. Microcontrolled Electronic Gear for Low Wattage Metal Halide (MH) and High-Pressure Sodium(HPS) Lamps. IEEE Industry Applications Society Annual Meeting , 2002, (3):1863~1868
    42 Duk Jin Oh, Hee Jun Kim,Won Seok Oh, Kyu Min Cho. A Novel Complex Modulation for the Metal Halide Lamp Ballast. IECON Proceedings (Industrial Electronics Conference), 2002, (1):377~382
    43 Duk Jin Oh, Hee Jun Kim, Kyu Min Cho. A Digital Controlled Electronic Ballast Using High Frequency Modulation Method for the Metal Halide Lamp. IEEE Annual Power Electronics Specialists Conference, 2002, (1): 181~186
    44 Duk Jin Oh, Hee Jun Kim, Won Seok Oh, Kyu Min Cho. Development of a Digital Controller Using a Novel Complex Modulation Method for the Metal Halide Lamp Ballast. IEEE Transactions on Power Electronics, 2003, 18(1):390~400
    45杨正名,罗宗南,崔一平,钟嫄.金属卤化物灯声谐振效应的研究.灯与照明, 2000, (2):1~7
    46 Laszlo Laskai, Prasad Enjeti, Ira J. Pitel. A Unity Power Factor Electronic Ballast for Metal Halide Lamps. IEEE Applied Power Electronics Conference and Exposition, 1994, (1):31~37
    47蒋光明.小功率金属卤化物灯电子镇流器述评.照明工程学报, 1994,(12):16~21
    48林国庆,陈大华,陈和平,张文雄.低频方波输出的单级软开关DC/AC变换器的研究.电工电能新技术, 2003, 22(3):69~72
    49 Tsorng-Juu Liang, Chun-An Cheng and Wen-Shang Lai. A Novel Two-Stage High-Power-Factor Low-Frequency HID Electronic Ballast. IEEE IECON Proceedings, 2003, (3):2607~2612
    50 Masato H. Ohsato, Qing Mao, Hideki Ohguch. Megahertz Operation of Voltage-Fed Inverter for HID Lamps Using Distributed Constant Line. IEEE Transactions on Industry Application, 1998, 34(4):747~751
    51 Miaosen Shen, Zhaoming Qian, Fang Z Peng. Control Strategy of a Novel Two-Stage Acoustic Resonance Free Electronic Ballast for HID Lamps.IEEE Annual Power Electronics Specialists Conference, 2002, (1):209~212
    52 Miaosen Shen, Zhaoming Qian, Fang Z Peng. A Novel Two-Stage Acoustic Resonance Free Electronic Ballast for HID Lamps. IEEE Industry Applications Society Annual Meeting , 2002, (3):1869~1874
    53 Miaosen Shen, Zhaoming Qian, Fang Z Peng. Design of a Two-Stage Low-Frequency Square-Wave Electronic Ballast for HID Lamps. IEEE Transactions on Industry Application, 2003, 39(2):424~430
    54 I.K.Lee, B.H.Cho. A High Efficiency MHD Lamp Ballast with a Frequency Controlled Synchronous Rectifier. IEEE Applied Power Electronics Conference and Exposition, 2004, (2):973~977
    55 M.Ponce, A.Lopez, J.Correa, J.Arau, J.M.Alonso. Electronic Ballast for HID Lamps with High Frequency Square Waveform to Avoid Acoustic Resonances. Journal of Circuits, Systems and Computers, 2004, 3(14):658~663
    56 Ichirou Oota, Noriaki Hara, Fumio Ueno. A High Efficiency Power Control Circuit for Metal Halide Lamp. IEEE Applied Power Electronics Conference and Exposition, 1998, (2):1168~1173
    57 Garcia-Garcia J, Cardesin J. New Control Strategy in Square-Wave Inverters for Low Wattage Metal Halide Lamps Supply to Avoid Acoustic Resonances. IEEE Applied Power Electronics Conference and Exposition, 2004, (2):984~990
    58 Michael Gulko, Sam Ben-Yaakov. A MHz Electronic Ballast for Automotive-Type Lamps. Proceedings of IEEE Power Electronics Specialists Conference, 1997:634~640
    59屈素辉.汽车用HID灯新型电子镇流器.中国照明电器, 2003, (10): 28~33
    60 J. Garcia-Garcia, J. Cardesin, J. Ribas, A.J. Calleja, E.L. Corominas, M. Rico-Secades, J. M. Alonso. Using High Frequency Current Square Waveforms to Avoid Acoustic Resonances in Low Wattage Metal Halide Lamps. Proceedings of IEEE Power Electronics Specialists Conference, 2004, (4): 2799~2804
    61 Ponce-Silva. Mario, Luna. Diego Balderrama, Juarez. Mario Alberto. Integrated Square Waveform Electronic Ballast with High Efficiency andHigh power Factor for High Pressure Sodium Lamps. IEEE Annual Power Electronics Specialists Conference, 2008, pp:2851~2856
    62 J. Garcia, J. Cardesin, J.M. Alonso, J. Riba, A. Calleja. New HF Square-Waveform Ballast for Low Wattage Metal Halide Lamps Free of Acoustic Resonances. Proceedings of IEEE Industry Applications Conference, 2004, (1):655~662
    63 Tiago B. Marchesan, Douglas Pappis, Murilo Cervi, Alexandre Campos, Ricardo Nederson do Prado. An Electronic Ballast to Supply Automotive HID Lamps in a Low Frequency Square Waveform. Proceedings of IEEE Industry Applications Society Conference, 2005, (3): 1598~1602
    64 R. Osorio, M. Ponce, M. A. Oliver. Analysis and Design of a Dimming Control Using Sliding Mode Control Strategy for Electronic Ballast Free of Acoustic Resonances. Proceedings of IEEE Applied Power Electronics Conference and Exposition, 2004, (1):159~163
    65 J. Olsen, W. P. Moskowitz. Time Resolved Measurements of HID Lamp Acoustic Frequency Spectra. Proceedings of IEEE Industry Applications Conference, 1998, (3): 2111~ 2116
    66 C.R. Lee, K.H. Chen, C.S. Moo. Operating Characteristics of Small-Wattage Metal HalideLamps with Square Wave Current from 50Hz to 50kHz. Proceedings of IEEE Industry Applications Conference, 2003, (2): 1030~1035
    67 M. Ponce, E. Flores, R. Osorio. Analysis and Design of Igniters for HID Lamps Fed with Square Waveforms. Proceedings of IEEE Power Electronics Specialists Conference, 2004, (1):396~400
    68 Hua Li, Miaosen Shen, Zhaoming Qian. A Novel Low Frequency Electronic Ballast for HID Lamps. Proceedings of IEEE Industry Applications Conference, 2004, (1):668~673
    69 P. Van Tichelen, D. Weyen, G.. Meynen. Test Results from High Intensity Discharge Lamps with Current Supplied at 50Hz, 400Hz and Modulated between 15 And 35 kHz. Proceedings of IEEE Industry Applications Conference, 1996, (4):2225~2230
    70 Jianqiang Wang, Dianguo Xu, Hua Yang. Low-Frequency Sine Wave Modulation of 250W High-Frequency Metal Halide Lamp Ballasts.Proceedings of IEEE Applied Power Electronics Conference and Exposition, 2004, (2):1003~1007
    71 Laszlo Laskai, Senior Member, Prasad N. Enjeti, Ira J. Pitel. White-noise Modulation of High-Frequency High-Iintensity Discharge Lamp Ballasts. IEEE Transactions on Industry Application, 1998, 34(3):597~605
    72徐殿国,王健强.基于半桥双Buck功率变换器的电子镇流器.电子器件, 2005, 28(2):378~382
    73徐殿国,鲍志云,王卫,张伟强.一种有效抑制金卤灯声共振问题的方法.中国照明电器, 2003, (4):1~5
    74 X. Cao, W. Yan, S.Y.R. Hui, H. Chung. Lamp Arc Resistance Modelling of High-Intensity-Discharge (HID) Lamps. Proceedings of the IEE Measurement and Technology, 2002, 149 (1):45~48
    75 J.M. Alonso, J. Ribas, M. Rico-Secades, J. Garcia, J. Cardesin, M.A. DallaCosta. Evaluation of High-Frequency Sinusoidal Waveform Superposed with Third Harmonic for Stable Operation of Metal Halide Lamps. IEEE Transactions on Industry Applications, 2002, 41(3):721~727
    76 J. Garcia-Garcia, J. Cardesin, J. Ribas, A.J. Calleja, E.L. Corominas, M. Rico-Secades, J.M. Alonso. New Control Strategy in A Square-wave Inverter for Low Wattage Metal Halide Lamp Supply to Avoid Acoustic Resonances. IEEE Transactions on Power Electronics, 2006, 21(1):243~253
    77 Yan Jiang, Miaosen Shen, Hua Li, Zhaoming Qian. An Adaptive Acoustic Resonance Free Electronic Ballast for HID Lamps. Proceedings of IEEE Industrial Applications Society Conference, 2003, (2):1020~1024
    78 Duk Jin Oh, Hee Jun Kim, Kyu Min Cho. A Digital Controlled Electronic Ballast Using High Frequency Modulation Method for the Metal Halide Lamp. Proceedings of IEEE Power Electronics Specialists Conference, 2002, (1):181~186
    79 Cheng, C.A., Lin, K.J., Kao, Y.M. Acoustic-resonance-free Electronic Ballast for Automotive HID Lamps. Electronics Letters, 2008, 44(17):390~400
    80 Chin S. Moo, Chunk K. Huang, Ying N. Hsiao. High-Frequency Electronic Ballast with Auto-Tracking Control for Metal Halide Lamps. Proceedings of IEEE Industry Applications Society Conference, 2003, (2):1025~1029
    81 Shmuel, Ben-Yakkov, Michael Gulko. Design and Performance of An Electronic Ballast for High-Pressure Sodium (HPS) Lamps. IEEE Transactions On Industry Applications, 1997, 40(4):486~490
    82 Janos Melis, Oscar Vila-Masot. Low Frequency Square Wave Electronic Ballast for Gas Discharge Lamps. United States patent No.5428268, date of patent, Jun, 27, 1995
    83 M. Shen, Z. Qian, and F. Z. Peng. Design of a Two-stage Low-frequency Square-wave Electronic Ballast for HID Llamps. IEEE Transactions On Industry Applications, 2003, 39(2):424~430
    84魏全禄.高强度气体放电灯电子镇流器研究.国防科技大学硕士学位论文,2005
    85 J.M.Alonso. Analysis and Design of a High Power Factor Single Stage Electronic Ballast for High-intensity Discharge Lamps. IEEE Transactions on Power Electronics, 2003, 18(2):558~569
    86 David K.W.Cheng, Xiao Sun, Yim-Shu Lee. A Simple Electronic Ballast with High Power Factor for Metal Halide (MH) Lamps. Power Electronics and Drive Systems, 2003, (2):1386~1390
    87 Ananth N. Bhoj, Mark J. Kushner. Plasma Dynamics during Breakdown in an HID Lamp. IEEE Transactions on Plasma Science, 2005, 33(2):518-519.
    88 John F. Waymouth. LTE and Near-LTE Lighting Plasmas. IEEE Transactions on Plasma Science, 1991, 19(6):10011~012
    89 Christian Braiias, Francisco J. Azcondo, Salvador Bracho. Experimental Study of HPS Lamp Ignition by Using LC Network Resonance. IECON Proceedings (Industrial Electronics Conference), 2002, (1):473~478
    90 Wei Yan, S. Y. R. Hui. A universal Pspice model for HID lamps. IEEE Industry Applications Society Annual Meeting, 2002, (2):1475~1482
    91 Wei Yan. Genetic Algorithm Optimized High–Intensity-Discharge Lamp Model. Electronics Letters, 38 (3):110~112
    92 Shiatsus M. A SPICE Compatible Model of High Intensity Discharge Lamps. IEEE Annual Power Electronics Specialists Conference, 1999, (2):1037~1042
    93 Anton J.C. An Equivalent Conductance Model for High Intensity Discharge Lamps. IEEE Industry Applications Society Annual Meeting, 2002,(2):1494~1498
    94 E.L. Laskowski, and J. F. Donghue. A Model of a Mercury Arc Lamp’s Terminal V-I Behavior. IEEE Transactions on Industry Applications, 1981, 17(4): 419~426
    95 Cao, X., etc. High-frequency modeling of low-wattage high-intensity-discharge (HID) lamps. IEEE Annual Power Electronics Specialists Conference, 2001, (1): 62~66
    96 Ponce M. A Simple PSpice High-Frequency Dynamic Model for Discharge Lamps. IEEE Workshop on Computers in Power Electronics, 2000:293~297
    97张卫平. MH灯电气模型及其电子镇流器控制规律的研究.电子学报,1999,(8):142~143
    98 Nachbaur A. Lamp-Modeling from the Measurement to the Simulation Model. IEEE Industry Applications Society Annual Meeting, 2001, (2):1254~1259
    99 E. Deng. Negative Incremental Impedance and Stability of Fluorescent Lamps. IEEE Applied Power Electronics Conference and Exposition, 1997, (2):1050~1056
    100 In-Kyu Lee, etc. Modeling and Control of Automotive HID Lamp Ballast. Proceedings of the International Conference on Power Electronics and Drive Systems, 1999, (1):506~510
    101 Ribas J. Small Signal Dynamic Characterization of HID lamps. IEEE Industry Applications Society Annual Meeting, 2002, (2):1489~1493
    102 Park Jong-Yeon, Jung Dong-Youl. Electronic Ballast with Constant Power Output Controller for 250W MHD Lamp. IEEE International Symposium on Industrial Electronics, 2001, (1):46~51
    103 Zhang Weiqiang, Xu Dianguo. Novel ConstantPower Control of Electronic Ballast for HPS Lamps Industrial Technology. IEEE ICIT '02, (1):129~132
    104 Branas, C, Azcondo, F.J, Bracho, S. Contributions to the Design and Control of LCsCp Resonant Inverters to Drive High-Power HPS Lamps. IEEE Transactions on Industry Applications, 47(4):796~808
    105 Branas, C., Azcondo, F.J., Bracho, S. Study of Output Power Variation due to Component Tolerances in LCsCp Resonant Inverters Applied to HPS Lamp. IECON Proceedings (Industrial Electronics Conference), 2001, (2):1021~1026
    106 Moo, C.S., Lin, T.F., Hsieh, Y.C. Single-Stage High Power Factor Electronic Ballast for Fluorescent Lamps with Constant Power Operation. IEE Proceedings: Electric Power Applications, 2001, 148(5):465~ 468
    107 Ho, Y.K.E., Lee, S.T.S., Chung, H.S.-H.; Hui, S.Y. A Comparative Study on Dimming Control Methods for Electronic Ballasts. IEEE Transactions on Power Electronics, 2001, 16(6):828~836
    108 L. C. Pitchford, K. B.I.peres, J.P. Boeuf. The Breakdown and Glow Phases During the Ignition of Discharges for Lamps. Jurnal of Applied Physics, 1997, 82(1):112~119
    109 Stormberg, H.P. Schafer, R. Excitation of Acoustic Instabilities in Discharge Lamps with Pulsed Supply Voltage. Lighting Research & Technology, 1983, 15(3):127~132
    110 Zhou Jingha, Fengfeng Tao, Fred C. Lee. High Power Density Electronic Ballast for HID Lamps. IEEE Industry Applications Society Annual Meeting, 2002, (3):1875~1880
    111 Jianbing Xu, Min Chen, Zhaoming Qian. New Control Strategy for a Two-Stage Low-Frequency Square-Wave Electronic Ballast for MHD Lamp. IEEE Applied Power Electronics Conference and Exposition, 2006:1028~1032

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700