软开关PWM逆变器的研究及其在电气传动控制系统中的应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文围绕软开关PWM逆变器这个主题,在对三相软开关逆变器拓扑研究现状分析、评价的基础上,对新型的软开关三相PWM逆变器电路拓扑进行了深入的研究。本课题是国家高技术研究发展计划(863计划)重点项目资助的《电气传动及控制系统节能技术的研发》(课题编号:2006AA04Z183)中的一部分——软开关PWM逆变器的研究及应用。研究软开关三相PWM逆变器主电路拓扑结构及其控制策略,旨在探索一种控制简单、可靠性高的软开关三相PWM逆变器,为产业提供一种可行的软开关三相PWM逆变器方案,并将其应用到电气传动控制系统中。
     主要工作如下:
     1、提出了一种基于有源辅助换流的新型零电压零电流谐振极软开关PWM逆变器的拓扑结构,它是利用有源辅助开关器件来控制谐振过程,使主开关器件开通前电压先降到零,关断前电流先降到零,实现零电压开通和零电流关断,同时解决了容性开通损耗问题和拖尾电流造成的关断损耗问题。详细分析了该电路的工作原理,给出了参数设计方法,通过仿真和实验验证了该新型零电压零电流软开关电路的有效性。
     2、本文已经提出的三相零电压零电流软开关逆变器的拓扑结构中有6个辅助开关器件,为减少辅助开关器件的个数,简化控制方式和电路结构,提高可靠性,对已经提出的三相零电压零电流软开关逆变器的拓扑结构做了改进,提出了一种只有两个辅助开关器件的新型谐振直流环节软开关三相PWM逆变器,使主开关在零电压的条件下完成开通和关断。详细分析了该电路的工作原理和控制方式,给出了参数设计方法,通过仿真和实验验证了该新型谐振直流环节软开关电路的有效性。
     3、本文已经提出的两种软开关PWM逆变器虽然能有效地实现软开关,降低开关损耗,但是其拓扑结构中都需要设置有源辅助开关器件,导致控制复杂,附加成本较大,可靠性相对降低。为进一步简化三相软开关逆变器的控制方式,提高其可靠性,本文提出了一种新型三相无源软开关PWM逆变器的拓扑结构,其辅助谐振电路中没有辅助开关器件,控制简单,通过降低主开关开通瞬间的电流变化率和关断瞬间的电压变化率来减小开关损耗,实现了零电流开通和零电压关断;通过拓扑结构中的储能元件,在死区时间内,电路可以继续向负载供电,输出相电流可以续流,降低了死区的影响,减小了输出相电流在低频时的畸变率;直流母线之间串联了3个起均压作用的电解电容,分析了电解电容的电压偏差及其对输出电压和软开关的影响。探讨了在本电路拓扑下实现软开关动作的工作机理、实现软开关的条件,建立起了相应的控制策略,进行了仿真研究,并制作了1kW的实验样机来验证该软开关电路工作原理的正确性。
     4、对提出的新型三相无源软开关PWM逆变器的拓扑结构进行了改进,原拓扑结构中,三相辅助谐振电路共有一组谐振电感,这将会导致三相的谐振过程相互干扰,不能可靠地实现软开关,改进的结构中三相辅助谐振电路各有一组谐振电感,使三相的辅助谐振电路相互独立,提高了可靠性;另外对零电压关断的实现条件也进行了改进,改进后,通过选取合适的电感值就可以有效降低关断损耗,不需要为降低关断损耗去限制触发脉冲的最小宽度,通过仿真验证了以上改进的有效性,为将其应用到电气传动控制系统中奠定了基础。
     5、将改进后的新型三相无源软开关PWM逆变器的拓扑结构应用到了项目组自主研发的10kW电气传动控制系统中,简要介绍了该控制系统的组成和设计,对改进后的新型三相无源软开关PWM逆变器进行了实验研究,对实验结果进行了分析、总结,实验结论验证了本拓扑结构可以有效地在电气传动控制系统中起到节能作用。
Based on the analysis and evaluation of current research status of soft-switching topology of three-phase inverter, the dissertation focused on the topic of soft-switching three-phase PWM inverter, and made further research on circuit topology of soft-switching three-phase PWM inverter. The research topic of the dissertation is one part project of The Research of Energy Saving Technology of Electrical Driven and Control System (Project NO. is2006AA04Z183) that is supported by National High Technology Development Plan. The purpose of research on the main circuit topology and control strategy of soft-switching three-phase PWM inverter is to explore a soft-switching three-phase PWM inverter with high reliability and simple control, to study its working system and provide a feasible scheme of soft-switching three-phase PWM inverter for industry and apply it in electric drive control system.
     The main research work is as follows:
     1. A novel zero-voltage and zero-current soft-switching PWM inverter topology circuit with active auxiliary commutation is proposed, in which auxiliary switches are employed to control the resonant process. Because the voltage across main switches decreases to zero before main switches are turned on and the current decreases to zero before main switches are turned off in the novel topology, zero-voltage turn-on and zero-current turn-off can be realized. The problems of turn-on capacitive losses and the tail current are both solved. The equivalent circuits at different operation modes, the analysis of the circuit and parameter design method are presented. Simulation and experimental results are proposed to verify the validity.
     2. Six auxiliary switches are needed in the zero-voltage and zero-current three-phase soft-switching topology circuit which has been proposed in the dissertation. In order to reduce number of auxiliary switches, simplify the circuit structure and control strategy, improve reliability, author has improved the three-phase zero-voltage and zero-current soft-switching topology circuit and proposed a novel three-phase resonant DC link soft-switching PWM inverter topology circuit which only includes two auxiliary switches. The equivalent circuits at different operation modes, the analysis of the circuit, the control strategy and parameter design method are presented. Simulation and experimental results are proposed to verify the validity of the proposed three-phase resonant DC link soft-switching PWM inverter topology.
     3. Although two soft-switching PWM inverters which have been proposed in the paper can effectively realize soft-switching and reduce loss, active auxiliary switches are needed in the two topologies, which can lead to complicated control strategy, additional cost and relatively poor reliability. In order to simplify control strategy and improve reliability further, a novel three-phase passive soft-switching PWM inverter topology is proposed to reduce di/dt during turn-on transient and du/dt during turn-off transient to reduce switching loss of main switches. Zero-current turn-on and zero-voltage turn-off can be realized. There are no auxiliary switches in the auxiliary resonant circuit and control method is simple. In the novel topology, freewheeling of output current can be realized via energy storage components in the dead-time and the effect of dead-time is reduced. The distortion ratio of the output phase current in low frequency is also reduced. Three DC-bus electrolytic capacitors are placed for voltage sharing. The influence of voltage deviation of electrolytic capacitors on output voltage and soft-switching is analyzed. The working principles on how to realize soft-switching via the proposed topology are discussed. Besides, the realization conditions and control strategy are also studied. Furthermore, the topology is studied by simulation. Finally, a lkW experimental prototype is made to verify the validity of the proposed topology.
     4. The novel three-phase passive soft-switching topology is improved. There is only one common group of resonant inductors in three-phase resonant circuit of the original topology, which leads to mutual influence in resonant process and poor reliability; there are three groups of resonant inductors corresponding to three-phase resonant circuit of improved topology, so resonant process of every phase is independent, which enhances reliability. In addition, the realization condition of zero-voltage turn-off is also improved. By designing proper inductance parameters, loss during turn-off transient could also be reduced without the restriction of minimum width of trigger pulse. Simulation results verify the validity of the above improvement and establish foundation for application in electric drive control system.
     5. The improved three-phase passive soft-switching topology is applied in the10kW electric drive control system which is researched independently by project team. The composition and design of the system is described in brief. The improved three-phase passive soft-switching topology is experimentally studied. Experimental results show energy saving effectiveness of the improved three-phase passive soft-switching topology which is applied in electric drive control system.
引文
1.王兆安,黄俊.电力电子技术[M],北京:机械工业出版社,2000:2-7,152-153.
    2.王聪.软开关功率变换器及其应用[M],北京:科学出版社,2000:10-15.
    3.王星云,王平,陈莲华.软开关技术发展现状的研究[J],装备制造技术,2008,(10):1-2.
    4. Harashim F. Power Electronics and Motion Control-A Future Perspective [J], Proceedings of IEEE, 1994,82(8):1107-1111.
    5.郭琼,姚晓宁.软开关变流技术的发展[J],电气传动自动化,2003,13(4):1-4.
    6.曲学基,曲敬铠,于明扬.逆变技术基础与应用[M],北京:电子工业出版社,2007:1-7.
    7.陈延钧.逆变器软开关技术的研究[D],南京:南京航空航天大学,2006.
    8.阮新波,严仰光.直流开关电源的软开关技术[M],北京:科学出版社,2000:58-79.
    9.吴守薇,减英杰.电气传动的脉宽调制技术[M],北京:机械工业出版社,1997:47-63.
    10.董概,林周布.非隔离型PWM变换器的无源软开关技术[J],电气时代,2005,9(3):56-58.
    11.邓焰,叶浩屹,何湘宁.完全的无源软开关功率逆变器研究[J],电工技术学报,2002,17(1):40-46.
    12.张卫平.绿色电源[M],北京:科学出版社,2001:99-122.
    13. Zhi Yang Pan, Fang Lin Luo. Novel resonant pole inverter for brushless DC motor drive system [J], IEEE Transactions on Power Electronics,2005,20(1):173-181.
    14.周文云.新型软开关变频器研究[D],西安:西安理工大学,2003.
    15.魏少华.6kVA三相逆变器的研制[D],南京:南京航空航天大学,2003.
    16.郑连清,王青峰,朱军,王腾.逆变器软开关技术的发展和现状[J],智能电器及计算机应用,2007,13(5):1-5.
    17.黄宇清,谢运样,周炼等.软开关技术发展现状评述[J],中国电工技术学会电力电力电子学会第七次学术年会论文集,2002,17(3):460-464.
    18.王增福,李旭,魏永明.软开关电源原理与应用[M],北京:电子工业出版社,2006:4-6.
    19.张占松,蔡宣三.开关电源的原理与设计[M],北京:电子工业出版社,2004:340-347.
    20. Peng F Z, Gui Jia Su and Tolbert L M. A passives soft switching snubber for PWM inverters [J], Power Electronics Specialists Conference.2002 IEEE 33rd Annual,2002,1(23-27):129-134.
    21.阮新波,严仰光.谐振直流环节逆变器:一种新颖的零电压开关拓扑[J],电力电子技术,1994,28(4):l-5.
    22.吴军吕.谐振直流环节逆变器的研究[D],长沙:湖南大学,2006.
    23.齐群,张波.软开关PWM变换器发展综述[J],电路与系统学报,2000,5(3):50-56.
    24. P.J.M.Menegaz, J.L.F.Vieira, D.S.L.Simonetti. A magnetically coupled regenerative turn-on and turn-off snubber configuration [J], IEEE Trans, Ind, Electron,2000,47(4):722-728.
    25. K. Mark Smith, Key Smedly. A comparison of voltage-mode soft-switching methods for PWM converters [J], IEEE Transactions on power electronics,1997,12(2):376-386.
    26. K. Mark Smith, Keyue Smedly Ma Smedley. Lossless passive soft-switching methods for inverters and amplifiers [J], IEEE Transactions on power electronics,2000,15(1):164-173.
    27.贺虎成,刘卫国,解恩.一种新型无刷直流电机谐振极软开关逆变器[J],电工技术学报,2008,9(12):1-8.
    28.周志敏,周纪海,纪爱华.现代开关电源控制电路设计及应用[M],北京:人民邮电出版社,2005:69-80.
    29.孙醒涛,孙力,张云,康尔良.一种新型电压型逆变器拓扑结构及其PWM控制方法[J],电力电子技术,2008,12(7):1-6.
    30. Yu Q, Nelms R M. A single-phase resonant snubber inverter with fixed timing control for a UPS [J], PESC, Mexico,2003,18(4):1633-1638.
    31.潘三博,潘俊民.一种新型的零电压谐振极型逆变器[J],中国电机工程学报,2006,26(24):55-59.
    32.姚钢,Mahammad Mansoor Khan,周荔丹,等.基于变压器辅助换流的新型ZVS-ZCS逆变器[J],中国电机工程学报,2006,26(6):61-67.
    33.许春雨,陈国呈,孙承波,屈克庆.ZVT软开关三相PWM逆变器控制策略研究[J],电工技术学报,2004,19(11):36-42.
    34. Jumar L. Russi, Jose Renes Pinheiro, Helio Leaes Hey. Analysis and synthesis of novel hybrid integrated soft-switching cells for power converter systems with two switching poles [J], IEEE Trans. Ind. Electron.,2008,55(9):3340-3351.
    35. Ehsan Adib, Hosein Farzanehfard. Zero-voltage transition current-fed full-bridge PWM converter [J], IEEE Trans. Power Electron.,2009,24(4):1041-1049.
    36. Yao-Ching Hsieh, Te-Chin Hsueh, Hau-Chen Yen. An interleaved boost converter with zero-voltage transition [J], IEEE Trans. Power Electron.,2009,24(4):973-978.
    37. K.H.Chao, C.M.Liaw. Three-phase soft-switching inverter for induction motor drives [J], IEE Proc-Electr. Power Appl,2001,148(1):pp.8-20.
    38. Hyun-Ki Yoon, Sang-Kyoo Han, Eun-Seok Choi, Gun-Woo Moon, Myung-Joong Youn. Zero-voltage switching and soft-commutating two-transformer full-bridge PWM converter using the voltage-ripple [J], IEEE Trans. Ind. Electron.,2008,55(3):1478-1488.
    39. Jih-Sheng Lai. Resonant snubber-based soft-switching inverters for electric propulsion drives [J], IEEE Trans, on Industrial Electronics,1997,44(1):71-80.
    40. M. Mezaroba, D. C. Martins, and I. Barbi, A ZVS PWM half-bridge voltage source inverter with active clamping [J], IEEE Trans. Ind. Electron.,2007,54(5):2665-2672.
    41. Mario Lucio da Silva Martins, Jumar Luis Russi, Helio Leaes Hey. Novel design methodology and comparative analysis for ZVT PWM converters with resonant auxiliary circuit [J], IEEE Trans. Ind. Appl.,2006,42(3):779-796.
    42. Bor-Ren Lin, Chien-Lan Huang, Jin-Fa Wan. Analysis, design, and implementation of a parallel ZVS converter [J], IEEE Trans. Ind. Electron.,2008,55(4):1586-1594.
    43. Xinke Wu, Junming Zhang, Xin Ye, Zhaoming Qian. Analysis and derivations for a family ZVS converter based on a new active clamp ZVS cell [J], IEEE Trans. Ind. Electron.,2008,55(2): 773-781.
    44. K.Mark Smith, Jr., Keyue M. Smedley. Intelligent magnetic-amplifier-controlled soft-switching method for amplifiers and inverters [J], IEEE Trans, on Power Electronics,1998,13(1):84-92.
    45. Wu Chen, Xinbo Ruan, Rongrong Zhang. A novel zero-voltage-switching PWM full bridge converter [J], IEEE Trans. Power Electron.,2008,23(2):793-801.
    46. Akio Toba, Toshihisa Shimizu, Gunji Kimura, Mitsuo Shioya, Shigeru Sano. Auxiliary resonant commutated pole inverter using two internal voltage-points of DC source [J], IEEE Trans. Ind. Electron.,1998,45(2):200-206.
    47. Jose Eduardo Baggio, Jose Renes Pinheiro. A simple active auxiliary commutation circuit for three-level PWM single-phase inverters [J], IEEE Trans. Ind. Electron.,2001,48(6):1166-1173.
    48. Chien-Ming Wang, Ching-Hung Su, Maoh-Chin Jiang, Yan-Chun Lin. A ZVS-PWM single-phase inverter using a simple ZVS-PWM commutation cell [J], IEEE Trans. Ind. Electron.,2008,55(2): 758-766.
    49. Wensong Yu, Jih-Sheng Lai, Sung-Yeul Park. An improved zero-voltage-switching inverter using two coupled magnetics in one resonant pole [J], in Proc. IEEE APEC Conf.,2009:401-406.
    50. Jie (Jay) Chang, Jun Hu. Modular design of soft-switching circuits for two-level and three-level inverters [J], IEEE Trans. Power Electron.,2006,21(1):131-139.
    51. Kutkut N H, Divan D M, Novotny D W, et al. Design considerations and topology selection for a 120kW IGBT converter for EV fast charging [C], IEEE Power Electronics Specialists Conference, Atlanta, USA,1995.
    52. Yong Li, Lee F C, Boroyevich D. A three-phase soft-transition inverter with a novel control strategy for zero-current and near zero-voltage switching [J], IEEE Transactions on power electronics,2001, 16(5):710-723.
    53. Li Y, Lee F C. Design methodologies for high-power three phase zero-current-transition inverters [C], IEEE Power Electronics Specialists Conference, Vancouver, Canada,2001.
    54. Ehsan Adib, Hosein Farzanehfard. Family of zero-current transition PWM converters [J], IEEE Trans. Ind. Electron.,2008,55(8):3055-3063.
    55. Li Y, Lee F C. Design considerations for a 50 kW soft transition inverter with zero-current and near-zero-voltage switching [C], IEEE Applied Power Electronics Conference, Anaheim, Canada, 2001.
    56. P. Das, G. Moschopoulos. A comparative study of zero-current transition PWM converters [J], IEEE Trans. Ind. Electron.,2007,54(3):1319-1328.
    57. Li Yong, Lee F C, Lai J, et al. A low-cost three-phase zero-current-transition inverter with three auxiliary switches [C], IEEE Power Electronics Specialists Conference, Galway, Ireland,2000.
    58. Yong P. Li, Fred C. Lee, Dushan Boroyevich. A simplified three-phase zero-current-transition inverter with three auxiliary switches [J], IEEE Trans. Power Electron.,2003,18(3):802-813.
    59. Paolo Tomasin. A novel topology of zero-current-switching voltage-source PWM inverter for high-power applications [J], IEEE Trans. Power Electron.,1998,13(1):186-193.
    60. Jumar L. Russi, Mario Lucio da Silva Martins, Helio Leaes Hey. Coupled-filter-inductor soft-switching techniques:principles and topologies [J], IEEE Trans. Ind. Electron.,2008,55(9): 3361-3373.
    61.王强,张化光,褚恩辉,刘秀翀,侯利民.新型零电压零电流谐振极型软开关逆变器[J],中国电机工程学报,2009,29(27):15-21.
    62. Bellar M D, Wu T S, Tchamdjou A, et al. A review of soft-switched DC-AC converters [J], IEEE Transactions on Industry Applications,1998,34(4):847-860.
    63.祁晓蕾,阮新波.一种新的双幅控制有源箝位谐振直流环节逆变器[J],中国电机工程学报,2008,28(27):42-47.
    64.应建平,沈红,张德华,等.双滞环控制的三相双幅有源箝位谐振直流环节逆变器[J],中国电机工程学报,2004,24(2):8-12.
    65.张德华,应建平,刘腾,等.双幅有源箝位谐振直流环节逆变器的分析和设计[J],中国电机工程学报,2002,22(9):48-53.
    66.张德华,汪范彬,刘腾,等.一种新型的串联有源箝位谐振直流环节逆变器双幅控制策略[J],中国电机工程学报,2002,22(7):7-12.
    67. Deshpande V V, Doradla S R. A new topology for parallel resonant DC link with reduced peak voltage [J], IEEE Trans. on Industry Applications,1996,32(2):301-307.
    68. Jafar J J, Fernandes B G. A new quasi-resonant DC-link PWM inverter using single switch for soft switching [J], IEEE Trans. on Power Electronics,2002,17(6):1010-1016.
    69. Chen Shaotang, Thomas A L. A novel soft-switched PWM inverter for AC motor drives [J]. IEEE Trans, on Power Electronics,1996,11(4):653-659.
    70.杨迎化,谢顺依,钟祺,等.一种新型直流环节并联谐振软开关逆变器[J],中国电机工程学报,2008,28(12):50-54.
    71.杨迎化,谢顺依,高洪林,王新华,陈晔.降低电机逆变系统电磁污染的软开关技术研究[J],电气传动,2009,39(1):56-58.
    72.贺虎成,刘卫国,李榕,等.电机驱动用新型谐振直流环节电压源逆变器[J],中国电机工程学报,2008,28(12):60-65.
    73.明正峰,钟彦儒,宁耀斌,等.一种新的直流母线并联谐振零电压过渡三相PWM电压源逆变器[J],电工技术学报,2001,16(6):31-35.
    74.明正峰,倪光正,周文云,等.直流母线零电压过渡软开关逆变器中点电压不平衡问题研究[J],电工技术学报,2004,19(5):81-86.
    75. Pan Zhiyang, Luo Fanglin. Transformer based resonant DC link inverter for brushless DC motor drive system [J], IEEE Trans. on Power Electronics,2005,20(4):939-947.
    76.潘三博,陈宗祥,潘俊民.一种新型直流环节谐振逆变器的空间矢量脉宽调制方法[J],中国电机工程学报,2007,27(1):65-69.
    77.许春雨,陈国呈,张瑞斌,等.三相软开关逆变器的PWM实现方法[J],中国电机工程学报,2003,23(8):23-27.
    78.许春雨.软开关三相PWM逆变技术研究[D],上海:上海大学,2004.
    79. Mandrek S, Chrzan P J. Quasi-resonant DC-link inverter with a reduced number of active elements [J], IEEE Trans. on Industrial Electronics,2007,54(4):2088-2094.
    80. Chen Yietone. A new quasi-parallel resonant DC link for soft-switching PWM inverter [J], IEEE Trans. on Power Electronics,1998,13(3):427-435.
    81. Gurunathan R, Ashoka K S B. Zero-voltage switching DC link single-phase pulsewidth-modulated voltage source inverter [J], IEEE Trans. on Power Electronics,2007,22(5):1610-1618.
    82. Wang Chienming. A novel soft-switching single-phase AC-DC-AC converter using new ZVS-PWM strategy [J], IEEE Trans. on Power Electronics,2007,22(5):1941-1948.
    83.陈国呈,孙承波,张凌岚.一种新颖的零电压开关谐振直流环节逆变器的电路分析[J],电工技术学报,2001,16(4):50-55.
    84. Yie-Tone Chen. A new quasi-parallel resonant DC link for soft-switching PWM inverter [J], IEEE Trans. Power Electron.,1998,13(3):427-435.
    85. M. C. Cavalcanti, E. R. C. da Silva, A. M. N. Lima, C. B. Jacobina, R. N. C. Alves. Reducing losses in three-phase PWM pulsed DC-link voltage-type inverter systems [J], IEEE Trans. Ind. Appl.,2002, 38(4):1114-1122.
    86. J.Shukla, B.G.Fernandes. Three-phase soft-switched PWM Inverter for motor drive application [J], IET Electr.Power Appl.,2007,1(1):93-104.
    87. Falcondes Jos'e Mendes de Seixas, Denizar Cruz Martins. The ZVS-PWM commutation cell applied to the DC-AC converter [J], IEEE Trans. Power Electron.,1997,12(4):726-733.
    88. Kunrung Wang, Yimin Jiang, Stephen Dubovsky, Fred C.Lee. Novel DC-rail soft-switched three-phase voltage source inverters [J], IEEE Trans. on Industry Applications,1997,33(2): 509-517.
    89. In-Hwan Oh, Myung-Joong Youn. A simple soft-switched PWM inverter using source voltage clamped resonant circuit [J], IEEE Trans. on Industrial Electronics,1999,46(2):468-471.
    90. S.Y.R.Hui, Ebrahim S.Gogani, Jian Zhang. Analysis of a quasi-resonant circuit for softed-switched inverters [J], IEEE Trans. on Power Electronics,1996,11(1):106-114.
    91. Deepakaraj M.Divan, Giri Venkataramanan, Rik W.A.A.DeDoncker. Design methodologies for soft switched inverters [J], IEEE Trans. on Industry Applications,1993,29(1):126-135.
    92. Luigi Malesani, Paolo Tenti, Paolo Tomasin, Vanni Toigo. High efficiency quasi-resonant DC link three-phase power inverter for full-range PWM [J], IEEE Trans. on Industry Applications,1995, 31(1):141-148.
    93. Thomas Bruckner, Steffen Bernet. Investigation of a high-power three-level quasi-resonant DC-link voltage-source inverter [J], IEEE Trans. on Industry Applications,2001,37(2):619-627.
    94. Piergiacomo Cancelliere, Vincenzo Delli Colli, Roberto Di Stefano, Fabrizio Marignetti. Modeling and control of a zero-current-switching DC/AC current-source inverter [J], IEEE Trans. on Industrial Electronics,2007,54(4):2106-2119.
    95. Jie (Jay) Chang, Jun Hu. Modular design of soft-switching circuits for two-level and three-level inverters [J], IEEE Trans. Power Electron.,2006,21(1):131-139.
    96. Yong C. Jung, Hyo L. Liu, Guk C. Cho, Gyu H. Cho. Soft switching space vector PWM inverter using a new quasi-parallel resonant DC link [J], IEEE Trans. Power Electron.,1996,11(3):503-511.
    97. Ranganathan Gurunathan, Ashoka K. S. Bhat. Zero-voltage switching DC link single-phase pulsewidth-modulated voltage source inverter [J], IEEE Trans. Power Electron.,2007,22(5): 1610-1618.
    98. Jin He, Ned Mohan. Parallel resonant DC link circuit-a novel zero switching loss topology with minimum voltage stresses [J], IEEE Trans. Power Electron.,1991,6(4):687-694.
    99. Jin He, Ned Mohan, Bill Wold. Zero-voltage-switching PWM inverter for high frequency DC-AC power conversion [J], IEEE Trans. on Industry Applications,1993,29(5):959-968.
    100.王军,徐龙祥.软开关技术在磁悬浮轴承功率放大器中的应用[J],电工技术学报,2009,24(6):85-90.
    101.王军,徐龙祥.磁悬浮轴承并联谐振直流环节开关功率放大器[J],中国电机工程学报,2009,29(12):87-92.
    102.吴卫民,钱照明,彭方正.可升压自然软开关DC/AC逆变器电压控制特性分析[J].电工技术学报,2006,21(2):57-62.
    103.吴卫民,汤天浩,彭青松,等.两电平自然软开关AC/DC/AC变流器[J].电工技术学报,2008,23(3):47-51.
    104. Shukla J, Fernandes B G. Quasi-resonant DC-link soft-switching PWM inverter with active feedback clamp circuit for motor drive application [J]. IEEE Proceedings of Electric Power Applications,2006,153(1):75-82.
    105.赵徐森,张卫平,吴兆麟,李洁.灵活直流环节型全软开关逆变器[J],电子学报,2002,30(2):210-212.
    106.贺昱曜,王伟根,徐德民.串并联谐振DC-AC变换器原理分析、建模及仿真[J],中国电机工程学报,1999,19(12):14-17,80.
    107.许春雨,陈国呈,孙承波,屈克庆.软开关三相逆变器磁链轨迹的研究[J],中国电机工程学报,2004,24(8):29-33.
    108. Rongjun Huang, Sudip K. Mazumder. A soft-switching scheme for an isolated DC/DC converter with pulsating DC output for a three-phase high-frequency-link PWM converter [J], IEEE Trans. Power Electron.,2009,24(10):2276-2288.
    109. Mark K, Smith J, Smedley K M. Properties and synthesis of passive lossless soft-switching PWM converters [J]. IEEE Trans. on Power Electronics,1999,14(5):890-899.
    110.邓焰,吴燮华,何湘宁,等.一种新型高功率逆变桥臂无源无损耗吸收电路[J].中国电机工程学报,2000,20(3):5-9.
    111. He Xiangning, Chen Alian, Wu Hongyang, et al. Simple passive lossless snubber for high-power multilevel inverters [J]. IEEE Trans. on Ind. Electronics,2006,53(5):890-899.
    112. Peng Fang Z, Su Guijia, Tolbert L M. A passive soft-switching snubber for PWM inverters [J]. IEEE Trans. on Power Electronics,2004,19(2):363-370.
    113. Matsushita, A, Tai, H, Yasuoka, I, Matsumoto, T. Inverter circuit with the regenerative passive snubber [C], in Proc. IEEE PCC Conf.,2007:pp.167-171.
    114. Lihua Chen, Alan Joseph, Qingsong Tang, Fang Z. Peng. Development and test of a 260kVA inverter with a passive soft-switching snubber [C], in Proc. IEEE APEC Conf.,2007:1721-1726.
    115. Fang Z. Peng, Gui-Jia Su, Leon M.Tolbert. A passive soft-switching snubber for PWM inverters [C], in Proc. IEEE PESC Conf.,2002:129-134.
    116. X. He, S.J.Finney, B.W.Williams, Z.Qian. Novel passive lossless softed-clamped snubber for voltage source inverters [C], in Proc. IEEE APEC Conf.,1996:200-206.
    117. Xiangning He, Stephen J.Finney, Barry W.Williams, Zhao-Ming Qian. Novel passive lossless turn-on snubber for voltage source inverters [J], IEEE Trans. Power Electron.,1997,12(1):173-179
    118. Xiangning He, Yan Deng, Barry W.Williams, Stephen J.Finney, Zhaoming Qian. A simple energy recovery circuit for high-power inverters with complete turn-on and turn-off snubbers [J], IEEE Trans. Ind. Electron.,2004,51(1):81-88.
    119. Deng Y, Ye H Y, He X N. Unified passive circuit for snubber energy recovery in UPS inverters [C]. Proceedings of IEEE Telecommun. Energy Conference, Hyatt Regency Phoenix, U.S.A,2000: 119-124.
    120. Xiangning He, Alian Chen, Hongyang Wu, Yan Deng, Rongxiang zhao. Simple passive lossless snubber for high-power multilevel inverters [J], IEEE Trans. Ind. Electron.,2006,53(3):727-735.
    121. Smith K M, Smedly J K M. Engineering design of lossless passive soft switching methods for PWM converters-Part I:with minimum voltage stress circuit cells [J]. IEEE Trans, on Power Electronics, 2001,16(3):336-344.
    122. Mark K, Smith J, Smedley K M. Engineering design of lossless passive soft switching methods for PWM converters-part Ⅱ. With non-minimum voltage stress circuit cells [J]. IEEE Trans. Power Electronics,2002,17(6):864-873.
    123.Xian Zhang, Yunping Zou, Jie Zhang, et al. Investigation of auxiliary diode resonant pole inverter[C], IEEE Power Electronics and Drive Systems Conference, Bali, France,2001:643-646.
    124. Kai Ding, Yunping Zou, Gong Cheng, Jin Wang, Jiangang Hu. A novel soft SPWM modulation strategy for ADRPI [C], in Proc. IEEE IPEMC Conf.2000:1411-1413.
    125.王聪,徐刚,张素兵,程卫军.辅助二极管谐振极逆变器的分析、设计与实现[J],电工技术学报,1998,13(3):41-45.
    126. Ding Luo, Yan Yangguang. Analysis of a new soft switching PWM inverter [C], in Proc. IEE Power Electronics and Variable Speed Drives Conf.1996:513-518.
    127. Ahmed Cheriti, Kamal Al-Haddad, Louis A. Dessaint, Thierry A. Meynard, Dinkar Mukhedkar. A rugged soft commutated PWM inverter for AC drives [J], IEEE Trans. Power Electron.,1992,7(2): 385-392.
    128. He X, Finney S J, Williams B W, et al. Novel passive lossless softed-clamped snubber for voltage source inverters [C]. IEEE Applied Power Electronics Conference, California, U.S.A,1996: 200-206.
    129. Klaus Rigbers, Stephan Thomas, Ulrich Bdket, Rik W. De Doncker. Behavior and loss modeling of a three-phase resonant pole inverter operating with 120° double FlatTop modulation [C], in Proc. IEEE IAS Conf,2006:1694-1701.
    130. Alexander Isurin, Alexander Cook. Passive soft-switching snubber circuit with energy recovery [C], in Proc. IEEE APEC Conf.,2008:465-468.
    131. Xiangning He, Yan Deng, Jianhong Kong, Lei Hu, Zhongqing Yang. Development of the composite soft switching technique for power converters and inverters [C], in Proc. IEEE PCC Conf.,2002: 1206-1210.
    132. Barry W.Williams, Stephen J.Finney. Passive snubber energy recovery for a GTO thyristor inverter bridge leg [J], IEEE Trans. Ind. Electron.,2000,47(1):2-8.
    133.王强,张化光,褚恩辉,刘秀翀,侯利民.一种新型三相无源软开关逆变器[J],中国电机工程学报,2009,29(18):33-40.
    134. S. Behera, S. P. Das, S. R. Doradla. Quasi-resonant soft-switching inverter for low and high power factor loads [J], IEE Proc. Electr. Power Appl,2004,151(4):451-459.
    135.朱忠尼,陈坚,王荣.三相FMSPWM软开关逆变器分析与设计[J].电工技术学报,2007,22(3):79-84.
    136.明正峰,钟彦儒,宁耀斌.一种用于电机驱动的软开关三相PWM逆变器的效率分析[J],西安理工大学学报,2001,17(1):19-24.
    137.明正峰,倪光正,钟彦儒.软开关技术三相PWM逆变器及效率的分析研究[J],电工技术学报,2003,18(4):30-34.
    138.王强,张化光,褚恩辉,刘秀翀,侯利民.软开关PWM逆变器拓扑结构及效率分析[J],电机与控制学报,2009,13(3):342-348.
    139.明正峰.新型谐振过渡软开关三相PWM逆变器[D],西安:西安理工大学,2002.
    140.洪峰,单任仲,王慧贞,严仰光.一种逆变器损耗分析与计算的新方法[J],中国电机工程学报,2008,28(15):72-78.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700