半周期对称SHEPWM技术的开关角求解方法
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
作为现代电力电子技术中的核心之一,PWM(Pulse Width Modulation)技术在近几十年获得了深入的研究和广泛的应用,涉及静止无功补偿、有源电力滤波、统一潮流控制、超导储能、高压直流输电、电气传动、新型UPS以及可再生能源的并网发电等各个电力领域。
     本论文以半周期对称SHEPWM技术为研究对象,较为系统及深入的研究了该技术的开关角特性、初值获取方法、直流电压波动时开关角的迭代解法及基于神经网络方法的开关角解法。
     本文第二章通过与1/4周期对称SHEPWM方法对比,研究了半周期对称SHEPWM方法的开关角特性,并通过仿真证明,半周期对称SHEPWM波形既具有1/4周期对称SHEPWM波形质量最优的特点,又能同时控制特定谐波的幅值和相位,并扩大了开关角的解的范围,为进一步优化输出波形提供更多的选择。在此基础上,提出一种结合移相角控制原理和半周期对称SHEPWM方法的复合控制方法,使D-STATCOM在补偿无功功率的同时,能够补偿负载电流的部分谐波分量。验证了半周期对称SHEPWM方法同时控制谐波幅值和相位的理论有效性。
     在迭代求解半周期对称SHEPWM方法开关角的过程中,合适的开关角初值能加快迭代收敛的速度。但是,相同开关频率下,半周期对称SHEPWM方法的独立开关角比1/4周期对称SHEPWM方法多一倍,不容易获得能够收敛的开关角初值。本文第三章提出以1/4周期对称SHEPWM方法的最优解作为半周期对称SHEPWM方法的开关角迭代初值,不仅能保证足够快的迭代速度,也能使开关角的解的总谐波畸变率和谐波失真度尽可能小。通过比较在收敛精度相同的条件下,经验性初值、基于三角载波比较法的开关角初值、基于重心重合理论的开关角初值和基于1/4周期对称SHEPWM方法的初值在不同调制目标时的迭代收敛速度,证明了基于1/4周期对称SHEPWM方法的初值最适用于半周期对称SHEPWM方法的开关角求解。
     绝大多数对SHEPWM方法的研究都以电压源换流器(VSC)直流侧电压恒定为前提,然而实际上,交流电网的三相不平衡可引起VSC直流侧电压的波动,直流电压波动又会导致VSC输出电压中含有寄生谐波。本文第四章提出结合改进开关函数法和半周期对称SHEPWM方法的改进半周期对称SHEPWM方法。该方法消除VSC直流电压波动时输出电压中的寄生谐波,改善了VSC的输出性能。同时给出了采用改进半周期对称SHEPWM方法求取开关角的方法。仿真试验证明了此方法的有效性,并表明基于1/4周期对称SHEPWM方法的不同的开关角初值虽然都能达到调制目标,但影响输出相电压的不平衡度,选择不平衡度较小的初值得到的波形的总谐波畸变率较小,波形质量更好。
     采用传统的迭代算法获取改进半周期对称SHEPWM方法的开关角是一个复杂的迭代计算过程,每个开关角需要单独求解,计算量大。同时,与1/4周期对称SHEPWM方法中的开关角不同,半周期对称SHEPWM方法的每个开关角受多个参数影响,简单的函数拟合不能满足精度要求。本文第五章采用BP神经网络方法实现对半周期对称SHEPWM方程组的拟合,达到了较好的拟合效果。由于无需考虑迭代次数的影响,选取1/4周期对称SHEPWM方法中THD较小的那组解作为初值以获得足够多的训练样本。在设计神经网络的过程中,采用粒子群算法获得BP网络初始权值和阈值,采用BP子网系统提高拟合精度,然后设计12因素、11水平的正交表,通过正交试验表设计BP网络的测试样本,检验所设计网络的泛化能力。通过仿真验证了子网系统具有比原型网络更高的训练精度。
     最后,利用实时数字仿真系统验证了本文提出的半周期对称SHEPWM技术的开关角求解方法的正确性和有效性。
As one of the most basic core contents in modern Power Electronic techniques, Pulse Width Modulation (PWM) technique is studied deeply and used widely in the last decades, it can be applied in the area of united power flow controller, superconducting magnetic energy storage, static var compensation, electric drive, high voltage direct current transmission, grid-connected of renewable source, active power filter, novel uninterrupted power supply, and so on.
     By taking half-wave symmetry SHEPWM as the research object, this paper discusses the characteristics of switching angles, how to obtain initial values, iterative algorithm of switching angles under DC ripple of VSC and Neural Network algorithm of switching angles.
     This paper compared half-wave symmetry SHEPWM with non-symmetrical SHEPWM and quarter-wave symmetry SHEPWM, then concluded that half-wave symmetry SHEPWM had best waveform characteristics of all. The half-wave symmetry waveform did not contain even-order harmonic and DC component naturally compared to non-symmetrical waveform, and could control harmonic phasing and amplitude at the same time compared to quarter-wave symmetry waveform at the same frequency. Then this paper presented D-STATCOM controller based on half-wave symmetry SHEPWM and phase-shift strategy and tested this controller by simulation. D-STATCOM could compensate both harmonic current and reactive power under this controller. The results improved validity of half-wave symmetry SHEPWM method.
     Half-wave symmetry waveform has more freedom than quarter-wave symmetry at same switching frequency, so it is more difficult to seek initial value of switching angle. This paper provide that initial values based on quarter-wave symmetry SHEPWM has the best iterative effect. This paper discusses different iteration result of different initial values under different conditions of modulation waveform. These initial values are obtained by experience, by triangular carrier waveform comparing with modulation waveform, by the theory of center of gravity coincidence and by quarter-wave symmetry SHEPWM formulations. Simulation results reported that it is useful for rapid convergence to keep phase of fundamental component zero. In addition, initial value based on triangular carrier waveform with injecting zero sequence harmonics technique and based on quarter-wave symmetry SHEPWM had least number of iteration. Comprehensive consideration, it is best to use initial value based on quarter-wave symmetry SHEPWM.
     Usually, DC voltage of VSC is assumed to be constant and the ac network is assumed to be balance. However, voltage punctuations often occur on the DC side due to the unbalanced voltage of power system. This paper presented a half-wave symmetry SHEPWM based on improved switching function modulation used to eliminate these parasitic harmonic. The simulation results presented three conclusions. First, improved half-wave symmetry SHEPWM can effectively cut out all parasitic harmonics in line voltage even though notable double line-frequency ripples on DC side voltage existed. The second result was that different switch angles caused different unbalance of phase voltage. It was best to chose angles causing the smallest unbalance. At last, the improved half-wave symmetry SHEPWM was also effective for a DC bus with a ripple of4th harmonics. Simulation results proved the validity and practicability of the proposed method.
     It is a very complex process that using the traditional iterative algorithm for obtaining the switching angle of improved half-wave symmetry SHEPWM method. Because, each switching angle of each phase must be calculated separately. In order to obtain angles as fast as possible, this paper established BP neural network to fit SHEPWM formulations. First, introducing variation factor into PSO algorithm to avoid early maturity phenomenon and overcome a local optimal solution. Then, searching initial weight values and threshold values with PSO algorithm for propose of accelerating training. Because a multiple outputs BP neural network didn't has enough fit precision, this paper used a array of single output BP network to replace of the multiple outputs BP network. Also, the orthogonal test was used to confirm the array BP networks performance during the whole independent variables space with a12factors,11levels orthogonal table. Simulation result provided this method outperforms the traditional multiple outputs network.
     At last, this paper validated the methods and solution algorithms on the real time digital simulation experimental platform.
引文
[1]F.J.Wu, B.Sun, H.R.Peng. Single-phase three-level SPWM scheme suitable for implementation with DSP[J]. Electronics Letters,2011,47(17):994-996.
    [2]Keng-Yuan Chen, wu-Sheng Hu. A Filtered SVPWM for Multiphase Voltage Source Inverters Considering Finite Pulse-Width Resolution[J]. IEEE Transactions on Power Electronics,2012,27(7): 3107-3118.
    [3]Xin Jin, A. Ray, R.M.Edwards. Integrated Robust and Resilient Control of Nuclear Power Plants for Operational Safety and High Performance [J]. IEEE Transactions on Nuclear Science,2010,57(2): 807-817.
    [4]Chao-Shun Chen, Cheng-Ta Tsai, Chia-Hung Lin, et al. Loading Balance of Distribution Feeders With Loop Power Controllers Considering Photovoltaic Generation [J]. IEEE Transactions on Power Electronics,2011,26(3):1762-1768.
    [5]D.Villanueva, J.L.Pazos, A. Feijoo. Probabilistic Load Flow Including Wind Power Generation[J]. IEEE Transactions on Power Electronics,2011,26(3):1659-1667.
    [6]徐政,卢强;电力电子技术在电力系统中的应用[J],电:工技术学报,2004,8(19):23-27.
    [7]朱旭凯,周孝信,田芳等.基于电力系统全数字实时仿真装置的大电网机电暂态-电磁暂态混合仿真[J].电网技术,2011,.35(3):26-31.
    [8]傅晓帆,周克亮,程明.近海风电场并网用多端口VSC-HVDC系统的无差拍协同控制策略[J].电工技术学报,2011,26(7):51-59+67.
    [9]Bimal K. Bose. Modern Power Electronics and AC Drives [M]. Prentice Hall PTR,2001.
    [10]蒋玮,胡仁杰,黄慧春.单级隔离升压半桥DC/DC变换器软开关条件研究[J].电力自动化设备,2011,31(2):36-39.
    [11]郑昕听,肖岚,王勤.基于航空交流电网的Boost/半桥组合式软开关谐振PFC变换器[J].中国电机工程学报,2011,31(9):50-57.
    [12]李艳.软开关双输入全桥变换器的参数设计[J].电工技术学报,2011,26(9):167-174+189.
    [13]李睿,马智远,徐德鸿.一种新型有源箝位软开关三相并网逆变器[J].中国电机工程学报,2011,31(30):30-38.
    [14]胡亮,朱忠尼,林洁等.一种带有软开关的交错并联变换器[J].电力电子技术,2011,45(4):25-27.
    [15]J.M.Blanes, A.Garrigos, J.A.Carrasco, et al. High-Efficiency Regulation Method for a Zero-Current and Zero-Voltage Current-Fed Push-Pull Converter[J]. IEEE Transactions on Power Electronics, 2011,26(2):444-452.
    [16]Chien-Ming Wang, Chang-Hua Lin, Yu-Hao Lai, et al. Zero-current-transition current-fed full-bridge PWM converter[J]. Tencon 2011 IEEE Region 10 Conference, Bali, Indonesia,2011.
    [17]E.Adib, H.Farzanehfard. Analysis and Design of a Zero-Current Switching Forward Converter With Simple Auxiliary Circuit[J]. IEEE Transactions on Power Electronics,2012,27(1):144-150.
    [18]王强.新型零电压开关谐振直流环节逆变器[J].中国电机工程学报,2011,31(27):74-80.
    [19]R.C.Beltrame, J.R.R.Zientarski, M.L.da Silva Martins, et al. Simplified Zero-Voltage-Transition Circuits Applied to Bidirectional Poles:Concept and Synthesis Methodology[J]. IEEE Transactions on Power Electronics,2011,26(6):1765-1176.
    [20]Ho, C.Y.-F, Ling, B.W.-K, Yan-Qun Liu, et al. Optimal PWM Control of Switched-Capacitor DC-DC Power Converters via Model Transformation and Enhancing Control Techniques[J]. IEEE Transactions on Circuits and Systems I,2008,55(5):1382-1391.
    [21]Vafakhah, B, Salmon, J., Knight, A.M., A New Space-Vector PWM With Optimal Switching Selection for Multilevel Coupled Inductor Inverters[J]. IEEE Transactions on Industrial Electronics, 2010,57(7):2354-2364.
    [22]Zhong Du, Tolbert, L.M., Chiasson, J.N., et al. Reduced Switching-Frequency Active Harmonic Elimination for Multilevel Converters [J]. IEEE Transactions on Industrial Electronics,2008,55(4): 1761-1770.
    [23]Liu, Y.H., Arrillaga, J., Watson, N.R. Addition of four-quadrant power control-ability to multi-level VSC HVDC transmission[J]. IET Generation, Transmission & Distribution,2007,1(6):872-878.
    [24]Barker, C.D., Kirby, N.M., Reactive power loading of components within a modular multi-level HVDC VSC converter[J]. IEEE Electrical Power and Energy Conference (EPEC), Winnipeg, Canada,2011.
    [25]Liu, J.H., Arrillaga, J., Watson, N.R., et al. Multi-level voltage reinjection VSC HVDC transmission[J].The 8th IEE International Conference on AC and DC Power Transmission, London, UK,2006:130-134.
    [26]Senturk, O.S., Helle, L., Munk-Nielsen, S., et al. Converter Structure-Based Power Loss and Static Thermal Modeling of The Press-Pack IGBT Three-Level ANPC VSC Applied to Multi-MW Wind Turbines[J]. IEEE Transactions on Industry Applications,2011,47(6):2505-2515.
    [27]Kavousi, A., Vahidi, B., Salehi, R., et al. Application of the Bee Algorithm for Selective Harmonic Elimination Strategy in Multilevel Inverters[J]. IEEE Transactions on Power Electronics,2012, 27(4):1689-1696.
    [28]Ahmadi, D., Ke Zou, Cong Li, et al. A Universal Selective Harmonic Elimination Method for High-Power Inverters[J]. IEEE Transactions on Power Electronics,2011,26(10):2743-2752.
    [29]Fanghua Zhang, Yangguang Yan. Selective Harmonic Elimination PWM Control Scheme on a Three-Phase Four-Leg Voltage Source Inverter[J]. IEEE Transactions on Power Electronics,2009, 24(7):1682-1689.
    [30]Wells, J.R., Nee, B.M., Chapman, P.L., et al. Selective harmonic control:a general problem formulation and selected solutions[J]. IEEE Transactions on Power Electronics,2005,20(6):1337-1345.
    [31]Wells, J.R., Chapman, P.L., Krein, P.T. Generalization of Selective Harmonic Control/Elimination[C]. IEEE Power Electronics Specialists Conference, Recife, Brazil,2005,1358-1363.
    [32]张艳莉,费万民,吕征宇等.三电平逆变器SHEPWM方法及其应用研究[J].电工技术学报,2004,19(1):16-20.
    [33]Li Li, Dariusz Czarkowski, Yaguang Liu, et al. Multilevel selective harmonic elimination PWM technique in series-connected voltage inverters[J]. IEEE Transactions on Industry Applications, 2000,36(1):160-170.
    [34]Lai Yen-Shin, Shyu Fu-San. Investigations into the performance of multilevel PWM methods at low modulation indices[C]. IEEE Industry Applications Conference, Chicago, USA,2001.
    [35]Huang Zhengyu, Ni Yixin, Shen C M, et al. Application of unified power flow controller in interconnected power systems-Modeling, interface, control strategy and case study[J]. IEEE Trans. on Power Systems,2000,15(2):817-824.
    [36]Gyugyi L, Schauder C D, et al. The unified power flow controller: A new approach to power transmission control[J]. IEEE Trans, on Power Delivery,1995,10(2):1085-1093.
    [37]费万民,吕征宇,姚文熙.多电平逆变器特定谐波消除脉宽调制方法的仿真研究[J].中国电机工程学报,2004,24(1):102-106.
    [38]Jose R. Espinoza, Geza Joos, Johan I. Guzman, Luis A. Moran, et al. Selective Harmonic Elimination and Current/Voltage Control in Current/Voltage-Source Topologies:A Unified Approach [J]. IEEE Transactions on Industry Electronics,2001,48(1):71-81.
    [39]Vladimir Blasko. A Novel Method for Selective Harmonic Elimination in Power Electronic Equipment [J]. IEEE Transactions on Power Electronics,2007,22(1):223-228.
    [40]Kemal Aygun, Balasubramaniam Shanker, A. Arif Ergin,et al. A two-level plane wave time-domain algorithm for fast analysis of EMC/EMI problems [J]. IEEE Transactions on Electromagnetic Compatibility,2002,44(1):152-164.
    [41]Paolo S. Crovetti, Franco L. Fiori. A Linear Voltage Regulator Model for EMC Analysis[J]. IEEE Transactions on Power Electronics,2007,22(6):2282-2292.
    [42]钱照明,陈恒林.电力电子装置电磁兼容研究最新进展[J].电工技术学报,2007,22(7):1-11.
    [43]Bimal K.Bose. Power Electronics and Variable Frequency Drives [M], IEEE, New York,1997.
    [44]Ueta G., Tsuboi T., Takami J., et al. Evaluation of Overshoot Rate of Lightning Impluse Withstand Voltage Test Waveform Based on New Base Curve Fitting Mothods[J]. IEEE Transactions on Dielectrics and Electrical Insulation,2010,17(4):1336-1345.
    [45]王琛琛,李瑞夫,周明磊.基于TMS320F28335的SHEPWM数字实现[J].北京交通大学学报,2011,35(5):89-93+105.
    [46]Paolo S. Crovetti, Franco L. Fiori. A Linear Voltage Regulator Model for EMC Analysis[J]. IEEE Transactions on Power Electronics,2007,22(6):2282-2292.
    [47]钮群.解非线性的最小二乘法拟合曲线的数值延拓法[J].河海大学学报(自然科学版),2003,31(5):597-600.
    [48]朱思国,欧阳红林,朱英浩.H桥级联型逆变器的迭代谐波消除方法[J].高电压技术,2011,37(2):318-324.
    [49]宋平岗,官二勇.级联多电平逆变器全调制比的特定谐波消除(英文)[J].电工技术学报,2006,9:81-87.
    [50]Enjeti P.N., Ziogas P.D., Lindsay J.F, et al. A New Current Control Scheme for AC Motor Drives[J]. IEEE Transactions on Industry Applications,1992,28 (4):842-849.
    [51]Chiasson, J.N., Tolbert, L.M., McKenzie, K.J., et al. Elimination of harmonics in a multilevel converter using the theory of symmetric polynomials and resultants[J]. IEEE Transactions on Control Systems Technology,2005,13(2):216-223.
    [52]丁冠军,汤广福,丁明等.新型多电平电压源换流器模块的拓扑机制与调制策略[J].中国电机工程学报,2009,29(36):1-8.
    [53]王群京,陈权,姜卫东等.多元多项式理论在NPC逆变器消谐中的应用研究[J].中国电机工程学报,2007,234(7):88-93.
    [54]Chunfang Zheng, Bo Zhang, Dongyuan Qiu. Solving switching angles for the inverter's selected harmonic elimination technique with Walsh function[C]. Proceedings of the Eighth International Conference on Electrical Machines and Systems, Nanjing, China,2005.
    [55]Rosu, S.G., Radoi, C., Florescu, A., et al. Microcontroller-based Walsh function PWM modulation with harmonic injection technique[C]. IEEE International Conference on Automation Quality and Testing Robotics, Cluj-Napoca, Romania,2010,3:1-6.
    [56]秦亮,刘开培,张慧.基于Walsh变换的PWM优化脉冲调制方法[J].电工技术学报,2007,22(4):118-124.
    [57]Agelidis V.G., Balouktsis A., Balouktsis I., et al. Multiple sets of solutions for harmonic elimination PWM bipolar waveforms:analysis and experimental verification[J]. IEEE Transactions on Power Electronics,2006,21:415-421.
    [58]SUNDARESWARAN K., JAYANT K., SHANAVAS T.N. Inverter harmonic elimination through a colony of continuously exploring ants[J]. IEEE Transactions on Industry Applications,2007,54(5): 2558-2565.
    [59]Agelidis V.G., Balouktsis A., Balouktsis I., On applying a minimization technique to the harmonic elimination PWM control:the bipolar waveform[J]. IEEE Power Electron. Letters,2004,2 (2): 41-44.
    [60]Dahidah M.S.A., Rao M.V.C. A hybrid genetic algorithm for selective harmonic elimination PWM AC/AC converter control[J]. Electrical Engineering,2007,89 (4):285-291.
    [61]Dahidah M.S.A., Agelidis V.G., Rao M.V.C. Hybrid genetic algorithm approach for selective harmonic control[J]. Energy Conversion and Management,2008,49 (2):131-142.
    [62]王群京,胡存刚,李国丽.基于遗传算法的三电平逆变器SHEPWM方法的研究[J].中国科学技术大学学报,2009,39(8):848-852.
    [63]胡文斌,张胜洲,吴军基等.基于神经网络的高低频组合式逆变器设计[J].装备制造,2009,27(12):204-205.
    [64]Singh, B., Jayaprakash, P., Kumar, S., et al. Implementation of Neural-Network- Controlled Three-Leg VSC and a Transformer as Three-Phase Four-Wire DSTATCOM[J]. IEEE Transactions on Industry Applications,2011,47(4):1892-1901.
    [65]丁小松.SHEPWM控制技术研究及其应用设计[D].西安,西北工业大学,2002.
    [66]谢运祥.逆变电源的谐波处理方法分析[J].电力电子技术,2000,34(1):4-6.
    [67]Bo Yu, Qing Xu, Guochen Feng. On the complexity of a combined homotopy interior method for convex programming[J]. Computational and Applied Mathematics,2007,200(1):32-46.
    [68]Jaewook Lee, Hsiao-Dong Chiang. A singular fixed-point homotopy method to locate the closest unstable equilibrium point for transient stability region estimate[J]. IEEE Transactions on Circuits and Systems II:Express Briefs,2004,51(4):185-189.
    [69]Hubertus Th. Jongen, Klaus Meer, Eberhard Triesch. Optimization Theory(lst Edition) [M]. Springer, New York, USA, Jul.2004.
    [70]T.Kato. Sequential Homotopy-based computation of multiple solutions for selected harmonic elimination in PWM inverters[J].IEEE Trans.On Circuits Syst.I,1999,46(5):586-593.
    [71]李治典,周秦英,李宏等.实时求解特定消谐方程组的新算法[J].西北工业大学学报,2004,22(1):37-40.
    [72]马正飞,殷翔.数学计算方法与软件的工程应用[M].北京:化学工业出版社,2002.
    [73]同济大学计算数学教研组.现代数值数学和计算[M].上海:同济大学出版社,2004.
    [74]李霞,刘建平,杨爱民.同伦新算法在逆变器消谐模型中的研究及应用[J].佳木斯大学学报,2007,25(3):381-384.
    [75]谢运祥.逆变器消谐控制的同伦模型建立及算法分析[J].中国工程电机学报,2002,22(5):27-31.
    [76]朱梅阶,赵平,彭宏等.逆变器消谐PWM模型的快速同伦算法[J].华南理工大学学报(自然科学版),2004,32(2):28-30.
    [77]李治典,周秦英等.实时求解特定消谐方程组的新算法[J].西北工业大学学报,2004,22(1):37-40.
    [78]Song Pinggang, Guan Eryong. Selective harmonic elimination for all modulation indices of multilevel cascaded converter[J]. Transactions of China Electrotechnical Society,2006,21(9): 81-87.
    [79]Alan V. Oppenheim, Alan S. Willsky, S. Hamid; Signals and Systems (second Edition)[M], Prentice Hall, New Jersey, USA, Aug.1996.
    [80]Liang T J, Hoft R G. Walsh function method of harmonic elimination [C], Proceedings of Applied Power Electronics Conference and Exposition,1993:847-853.
    [81]J.A.A sumadu and R.G.Hoft. Microprocessor-based sinusoidal waveform synthesis using Walsh and related orthogonal functions[J]. IEEE Transactions on Power Electron,1989,4(2):234-241.
    [82]F.Swift and A. kamberis.A new Walsh domain technique of harmonic elimination and voltage control in pulse-width modulated inverters[J]. IEEE Transactions on Power Electron.1993,8(2):170-185.
    [83]郑春芳,张波,丘东元.基于Walsh变换的多电平逆变器谐波消除技术[J].电工技术学报,2006,21(7):121-126.
    [84]郑春芳,张波.基于Walsh变换的逆变器SHEPWM技术[J].电工技术学报,2005,21(5):20-25.
    [85]Holland J. H.. Adaptation in Nature and Artifieial Systems[M]. The University of Michiganpress, 1975, MIT Press,1989.
    [86]Ovaska S. J., Bose T., Vainio O.. Genetic Algorithm-assisted Design of Adaptive Predictive Filters for 50/60 Hz Power Systems Instrumentation [J]. IEEE Transactions on Instrumentation and Measurement,2005,54(5):2041-2408.
    [87]Crevecoeur G., Sergeant P., Dupre L., et al. A Two-Level Genetic Algorithm for Electromagnetic Optimization[J]. IEEE Transactions on Magnetics,2010,46(7):2585-2595.
    [88]Gonzalez-Longatt, F.M., Wall, P.; Regulski, P., Terzija, V. Optimal Electric Network Design for a Large Offshore Wind Farm Based on a Modified Genetic Algorithm Approach[J]. IEEE Systems Journal,2012,6(1):164-172.
    [89]Lohn J.D., Kraus W.F., Haith G.L.. Comparing a Coevolutionary Genetie Algorithm for Multiobjeetive Optimization[C]. Proceedings of the 2002 Congress on Evolutionary Computation, Honolulu, USA,2002.
    [90]Yang Yu, Yu Xinjie. Cooperative Coevolutionary Genetic Algorithm for Digital IIR Filter Design [J], IEEE Transactions on Industrial Electronics,2007,54(3):1311-1318.
    [91]Yao Jie, Kharma N., Grogono P.. Bi-Objective Multipopulation Genetic Algorithm for Multimodal Function Optimization [J], IEEE Transactions on Evolutionary Computation,2010,14(1):80-102.
    [92]陈国良,王煦法,庄镇泉等.遗传算法及其应用[M].北京:人民邮电出版社,1999.
    [93]夏秋实.基于智能优化算法的三电平逆变器SHEPWM调制方法研究[D].合肥工业大学,2008.
    [94]徐志刚,陈柏超,袁佳歆.基于遗传算法的三相逆变器最优控制研究[J].现代电力,2007,87(2):35-38.
    [95]Khaled E.N., Abdelhamid T.H.. Selective Harmonic Elimination of New Family of Multilevel Inverter Using Genetic Algorithm[J]. Energy Conversion and Management.2008,49(1):89-95.
    [96]Dorigo M., Bonabeau E., Theraulaz G.. Ant Algorithms and Stigmergy[J]. Future Generation Computer Systems,2000,16(8):851-871.
    [97]段海滨,王道波,朱家强等.蚁群算法理论及应用研究的进展[J].控制与决策,2004,19(12):1321-1326,1340.
    [98]Dorigo M., Gambardella M.L.. Ant Colony System:a Cooperative Learning Approach to the Traveling Salesman Problem[J]. IEEE Transactions on Evolutionary Computation,1997, 1(1):53-66.
    [99]段海滨.蚁群算法及其在高性能电动仿真转台参数优化中的应用研究[D].南京:南京航空航天大学博士学位论文,2006.
    [100]宋雪梅,李兵.蚁群算法及其应用[J].河北理工大学学报,2006,28(1):42-45.
    [101]Hartana R.K., Richards G.G.. Harmonic Source Monitoring and Identification Using Neural Networks[J], IEEE Transactions on Power Systems,1990,5(4):25-31.
    [102]Zhang Y, Chen G.P., Malik O.R, et al. An Artificial Neural Network Based Adaptive Power System Stabilizer[J]. IEEE Transactions on Energy Conversion,1993,8(1):173-178.
    [103]周开利,康耀红.神经网络模型及其MATLAB仿真程序设计[M].北京,清华大学出版社,2005.1-54.
    [104]陈允平.人工神经网络及其在控制与系统工:程中的应用[J].电网技术,1994,18(1):58-64.
    [105]葛菡.高低频组合式级联逆变器的研制[D].南京理工大学硕士学位论文.2007.
    [106]Filho F., Tolbert L.M., Cao Yue, et al. Real-Time Selective Harmonic Minimization for Multilevel Inverters Connected to Solar Panels Using Artificial Neural Network Angle Generation[J]. IEEE Transactions on Industry Applications,2011,47(5):2117-2124.
    [107]王水明,消元法及其应用[M].北京,科学出版社,2002.
    [108]吴文俊.几何定理机器证明的基本原理[M].北京,科学出版社,1984.
    [109]周加农.多项式方程组的组合结式方法初探[J].四川大学学报(自然科学版),1999,36(2):206-210
    [110]聂一鸣,安向京,贺汉根等.基于吴方法的非线性分类器设计[J].计算机仿真,2007,24(8):137-140.
    [111]陈陈,赵学强,曹国云.机械化数学—吴消元法在电力系统中的应用初探[J].中国电机工程学报,1998,18(1):51-56.
    [112]郑春芳,张波.吴方法在电力电子逆变器消谐技术中的应用[J].中国电机工程学报,2005,25(15):40-45.
    [113]Flourentzou N., Agelidis V.G. Multimodule HVDC System Using SHE-PWM With DC Capacitor Voltage Equalization[J]. IEEE Transactions on Power Delivery,2012,27(1):79-86.
    [114]Dahidah M.S.A., Georgios S.K., Agelidis V.G. Single-phase Nine-level SHE-PWM Inverter with Single DC Source Suitable for Renewable Energy Systems[C]. IEEE Vehicle Power and Propulsion Conference, Chicago, USA,2011.
    [115]Tolbert, L.M., Chiasson, J.N., Zhong Du, et al. Elimination of Harmonics in a Multilevel Converter with Nonequal DC Sources[J]. IEEE Transactions on Industry Applications,2005,41(1):75-82.
    [116]Dahidah M.S.A., Agelidis V.G. Selective Harmonic Elimination PWM Control for Cascaded Multilevel Voltage Source Converters: A Generalized Formula [J]. IEEE Transactions on Power Delivery,2008,23(4):1620-1630.
    [117]Pulikanti S. R., Dahidah M.S.A., Agelidis V.G.. SHE-PWM Switching Strategies for Active Neutral Point Clamped Multilevel Converters [C]. Australasian Universities Power Engineering Conference, Sydney, Australia,2008.
    [118]Pulikanti S. R., Dahidah M.S.A., Agelidis V.G.. Voltage Balancing Control of Three-Level Active NPC Converter Using SHE-PWM[J]. IEEE Transactions on Power Delivery,2011,26(1):258-267.
    [119]Dahidah M.S.A., Konstantinou G, Flourentzou N., et al. On Comparing the Symmetrical and Non-symmetrical Selective Harmonic Elimination Pulse-width Modulation Technique for Two-level Three-phase Voltage Source Converters [J]. IET Power Electronics,2010,6(3):829-842.
    [120]费万民,张艳莉,都小利.五电平逆变器特定谐波消除脉宽调制方法[J].电工技术学报,2009,24(2):85-93.
    [121]卜乐平,张慧,刘开培等.非对称优化脉宽组合调制H-桥级联多电平逆变器的选择性谐波控制[J].电工技术学报,2011,26(11):32-38.
    [122]林渭勋.现代电力电子电路[M].杭州,浙江大学出版社,2002:172.
    [123]Zach F.C., Ertl.H.. Efficiency Optimal Control for AC Drives with PWM Inverters[J]. IEEE Transactions on Industry Applications,1985,21(4):987-1000.
    [124]张慧,刘开培,秦亮等.优化非对称PWM方法在三阶大功率谐波补偿器的应用研究[J].电工技术学报,2007,22卷,增刊1:121-126.
    [125]王兆安.电力电子技术[M].北京:机械工业出版社,2003:154-155.
    [126]Enjeti P.N., Ziogas P.D., Lindsay J.F. Programmed PWM Technique to Eliminate Harmonics:a Critical Evaluation [J]. IEEE Transactions on Industry Applications,1990,26(2):302-316.
    [127]Agelidis V.G., Balouktsis A., Balouktsis I. On Applying a Minimization Technique to the Harmonic Elimination PWM Control:the Bipolar Waveform[J]. IEEE Power Electronics Letters,2004,2(2): 41-44.
    [128]Cetin A., Ermis M.. VSC-Based D-STATCOM With Selective Harmonic Elimination[J]. IEEE Transactions on Industry Applications,2009,45(3):1000-101.
    [129]Tavakoli Bina M., Hamill D.C.. Average Circuit Model for Angle-controlled STATCOM[J]. IEE Proceedings-Electric Power Applications,2005,152(3):653-659.
    [130]刘磊,魏玲,翟庆志.特定消谐技术开关角计算方法的研究[J].电气应用,2007,6:56-58.
    [131]Enjeti P., Lindsay J.F. Solving Nonlinear Equations of Harmonic Elimination PWM in Power Control[J]. IEEE Power Electronics Letters,1987,23(12):656-657.
    [132]林友杰.异步电机变频调速节能控制运行研究[D].福州:福州大学,2006.
    [133]王东明,牟晨琪,李晓亮等.多项式代数[M].北京,高等教育出版社,2011.
    [134]邓勇.求多项式根的幂次和的一种新方法[J].数学的实践与认识,2007,37(22):193-196.
    [135]孙栩,孔力.新型高压直流输电系统接入三相不平衡电网分析[J].电力自动化设备,2008,28(05):47-51.
    [136]谢应璞.电机学[M].成都,四川大学出版社,2007.
    [137]陈海荣.交流系统故障时VSC-HVDC系统的控制与保护策略研究[D].杭州:浙江大学博士学位论文,2007.
    [138]周国梁,石新春,付超等VSC-HVDC离散模型及其不平衡控制策略[J].电工技术学报,2008,23(12):137-143+159.
    [139]Flourentzou, N., Agelidis, V.G. Optimized Modulation for AC-DC Harmonic Immunity in VSC HVDC Transmission[J]. IEEE Transactions on Power Delivery,2010,25(3):1713-1720.
    [140]唐杰.配电网静止同步补偿器(D-STATCOM)的理论与技术研究[D].长沙,湖南大学,2007.
    [141]王旭东,邵惠鹤.RBF神经元网络在非线性系统建模中的应用[J].控制理论与应用,1997,14(1):59-66.
    [142]徐丽娜.神经网络控制[M],哈尔滨:哈尔滨工业大学出版社,1999.
    [143]Park J., Sandberg I. W.. Universal Approximations Using RBF Networks[J]. Neural Computation, 1991,3(2):246-257.
    [144]Powell M. J.D.. The theory of radial basis function approximation in 1990[R]. Numerical Analysis Report, University of Cambrige,1990.
    [145]Derek Partridge. Network Generalization Differences Quantified[J], Neural Networks,1996, 9(2):263-271
    [146]Sarle W. S.. Neural Network FAQ[R]. ftp://ftp.sas.com/pub/neural/FAQ.html,2002.
    [147]贾丽会,张修如.BP算法分析与改进[J].计算机技术与发展,2006,16(10):101-103+107.
    [148]王存睿,段晓东,刘向东等.改进的基本粒子群优化算法[J].计算机工程,2004,30(21):35-37.
    [149]王文义,秦广军,王若雨.基于粒子群算法的遗传算法研究[J].计算机科学,2007,34(8):145-147.
    [150]Shi Y., Eberhart R.C.. A modified particle swarm optimizer[J]. Proceedings of the IEEE Congress on Evolutionary Computation, Anchorage, USA,1998.
    [151]Clerc M., Kennedy J.. The Particle Swarm-explosion, Stability and Convergence in a Multidimensional Complex space[J]. IEEE Transactions on Evolutionary Computation,2002,6(2): 58-73.
    [152]Eberhart R.C., Shi Y.. Particle Swarm Optimization:Developments, Applications and Resources[C]. Proceedings of the IEEE Congress on Evolutionary Computation, Seoul, Korea,2001.
    [153]Ratnaweera A., Halgamuge S.K., Watson H.C.. Self-organizing hierarchical particle swarm ptimizer with time-varying acceleration coefficients [J]. IEEE Transactions on Evolutionary Computation, 2004,8(3):240-255.
    [154]付国江,王少梅,刘舒燕等.含速度变异算子的粒子群算法[J].华中科技大学学报(自然科学版),2005,33(8):48-50+93.
    [155]王秀坤,张晓峰.用一组单输出的子网络代替多输出的BP网络[J].计算机科学,2001,28(10):61-63+18.
    [156]徐仲安,王天保,李常英等.正交试验设计法简介[J].科技情报开发与经济,2002,12(5):148-150.
    [157]沈邦兴.工程实验设计[M].北京,测绘出版社,1990.
    [158]刘长安.拉丁方正交完全系和常用正交表的简捷构造法[J].海洋湖沼通报,1995,(4):1-8.
    [159]马培蓓,吴进华,纪军等.dSPACE实时仿真平台软件环境及应用[J].系统仿真学报,2004,16(4):667-670.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700