非接触感应耦合电能传输与控制技术及其应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
新型非接触感应耦合电能传输技术(Inductively coupled power transfer,简称ICPT)利用电磁感应耦合原理从静止的原边电源向一个或者多个副边用电负载提供无接触电能传输,ICPT技术消除了传统的点到点供电方式所带来的固有缺陷,如导线裸露、插头磨损、接触电火花等,具有安全、环保、免维护或少维护等优点,在厂矿、装配车间、各种易燃易爆环境、水下环境、人体内植式电子装置供电等各种特殊条件下电气设备的安全供电,及移动电气设备的安全供电,如电动汽车等方面拥有广阔的应用前景。随着各个领域对非接触感应耦合电能传输的需求越来越迫切,感应耦合电能传输技术已经成为目前的一个研究热点。本文对非接触感应耦合电能传输技术作出了系统的研究,主要包括以下方面。
     论文首先介绍了非接触感应耦合电能传输技术起源,系统基本构成及工作原理,对ICPT技术系统的应用领域作出了详细的介绍,阐述了ICPT技术在国内外的研究现状,对ICPT系统的关键技术问题进行了归纳,介绍了论文的主要研究内容。
     对典型ICPT系统的磁路模型及等效电路模型作出了分析,获得了基于磁通交链的T型电路及基于互感原理的互感电路模型;基于互感等效电路模型,建立了原副边相互分离的等效电路;以互感理论为基础,深入分析了多负载ICPT系统的等效电路模型,分别对单一原边线圈多负载拾取线圈及多原边线圈多负载拾取线圈两种不同的系统结构进行了研究,分析了两种不同结构的多负载ICPT系统之间的参数关系。分析了ICPT系统的电功率参数传输模型,对系统的传输功率及电压电流增益系数等参数进行了分析,研究了系统中各电路参数的变化对系统传输功率的影响。
     以增强系统的传输功率性能为目的,对ICPT系统的谐振补偿理论作出了研究。结合ICPT系统的电路模型,对静态补偿的基本拓扑及系统输出电能特性进行了研究,完成了静态电路谐振补偿的补偿参数设计,通过仿真实验验证了静态补偿对传输功率性能的提升;提出了一种基于动态可控电抗器的谐振补偿方法,通过动态调节可控电抗器的导通角来改变组合式补偿支路的容抗数值,从而保证了原边电源侧输出电压与输出电流之间的零相角条件,减小对系统电源的VA值容量需求,对动态补偿支路的参数进行了优化,通过Orcad/Pspice所构建的电路仿真模型对动态谐振补偿的有效性作出了验证。对ICPT系统在不同的原边电源类型及不同的补偿拓扑方式下系统的功率传输特性计算分析与仿真验证。
     在ICPT系统中,为增加系统的功率密度,减小装置体积与重量,需要向原边线圈注入高频交变电流。系统负载所能接收的传输功率与原边线圈电流大小呈正比,对原边逆变电路的研究属于感应耦合电能传输技术领域中的重要内容。论文对适用于大中功率电能变换的一次侧换流拓扑进行了系统的研究,研究了推挽谐振式电能变换器在变负载条件下的原边电流恒流性能,提出了一种具有原边恒流特性的一次侧电能变换电路拓扑,设计了电路参数,能在ICPT系统负载变化时保持原边线圈电流的稳定,以一次侧谐振槽的体积与重量为优化目标,对电路参数进行优化;电路仿真结果显示,本文所提出的一次侧原边恒流型电路变换拓扑在全负载范围内具有优良的原边恒流特性。
     论文研究了ICPT系统的传输功率模型,针对ICPT系统中一次侧与二次侧不存在常规的信息反馈通道的特点,重点研究了在系统负载侧进行传输功率控制的方法。结合本文所提出的原边恒流型一次侧电能变换拓扑,提出了一种采用动态切换电抗器对ICPT系统二次侧电路进行动态解谐来控制系统向负载传输功率的方法,该方法能在ICPT系统二次侧实现对传输功率的控制,同时保证了ICPT系统最大传输功率性能,采用基于模糊逻辑的控制器来对动态电抗器的导通角进行控制,基于Matlab/Simulink的系统仿真结果显示动态解谐传输功率控制方法的有效性。为了抑制参数摄动对系统输出的影响,采用广义状态空间平均法,推导出ICPT系统的参数不确定性模型,构建了μ综合控制器对系统输出进行鲁棒控制,取得了较好的效果。针对多负载ICPT系统,研究了采用功率开关管电路的传输功率控制方法,消除了系统负载之间的相互干扰,能实现对负载输出侧电能参数的精确控制,电路仿真实验验证了开关管传输功率控制电路的有效性。
     考虑到电动汽车的广阔应用前景,对电动汽车非接触充电系统及充电控制模式作出了研究,对比分析了相对静止式非接触充电模式及相对运动式非接触输电模式。对适合电动汽车非接触感应耦合充电系统的线圈结构与耦合特性作出了研究,提出了电动汽车非接触式感应耦合充电系统的关键参数设计流程。提出了电动汽车非接触充电控制系统结构,针对锂电池组充电特性,研究了PWM恒压恒流充电模式,对电动汽车非接触式充电的分段充电控制算法作出了详细分析。设计了多负载非接触感应耦合充电系统,对PWM恒流与恒压两种充电模式进行了仿真实验,仿真结果显示所设计系统具有较好的电能传输性能。
     论文最后总结了全文的主要工作和创新性点,并指明了下一步研究工作方向。
Recently, inductively coupled power transfer (ICPT) systems are designed to deliver power efficiently from a stationary primary source to one or more secondary pick-ups across relatively large air gaps via electromagnetic coupling. ICPT systems have better performance than traditional power transmission method, such as no sparking, maintenance free or less maintenance, dustproof and waterproof. They can be widely used in contactless battery charge for electric vehicles, material handing systems, robot manipulator, compact electronic devices, transport and traffic, in-body medicine electric equipment, under water, mining wells and so on. As there are more and more demands of in kinds of fields, ICPT technology has been a popular research project.
     At first, the dissertation introduced the background, basic configuration and working principle of ICPT technology, the application fields of ICPT systems are presented detailed, and key technologies of ICPT system are analyzed. Lastly, contents of the thesis are presented.
     The magnetic model and equivalent electric circuit model are analyzed for typical ICPT system, the T type model and the mutual-inductance model based on magnetism flux chains are derived out. Then, the separated independent equivalent circuits for the primary side and the secondary side are set up with mutual-inductance model. The ICPT system with multi-loads is deeply investigated, including one primary coil structure and multi primary coils structure, the difference of coupling coefficient between the primary winding and the secondary winding for those two ICPT systems is analyzed. The power parameters transfer model is upbuilded by analyzing current and voltage gains of ICPT system.
     The resonant and compensation design method is investigated to strengthen the power transfer capability. With equivalent circuit model of ICPT system, compensation topologies with static capacitance are analyzed, parameters of compensate capacitor are deduce out. The computer simulations are carried out, and the simulate results verified the validate of static capacitor compensation in increasing power transfer capability. A dynamic compensation method is proposed to enhance power transfer performance and minimize VA requirement of primary source, a resonant reactor is switched on and off dynamically to satisfy zero phase difference between output current and voltage of primary source. The parameters of dynamic resonant circuit are optimized for minimum volume. The system has been simulated with Orcad/Pspice software and simulate results validate the validity of dynamic compensation method. The power transfer characteristic of ICPT systems with different type of primary source and different compensation topologies are analyzed and validated with simulation results.
     VLF alternating current is demand to inject the primary winding of ICPT system for higher power density and less volume, and the power transferred to load is proportional to the primary winding current, therefore, the primary converter topology is a key component for ICPT system. The inversion topologies of ICPT system are analyzed, and those topologies with constant current characteristic are stressed on. Compared to the push-pull resonant topology inverter, a superiority resonant topology composed of LCC resonant tank, is proposed and optimized for less volume, the proposed topology has very well constant current performance and the primary current of ICPT system is keeping constant in all load scale, which is verified with simulation results.
     Transferred power model is derived out for ICPT system, as there is no general feedback channels for control information, transferred power regulating methods within the secondary side are stressed. A method for regulating the transferred power to ICPT pickups is investigated, a phase-controlled variable inductor is dynamically switched to detune the resonant circuit according to the actual power requirements of the power pickup, therefore, power transfer capability of the ICPT system is ensured. A fuzzy-logic based controller is built to contol switch-on delay angle for the dynamic-detuned reactor, Simulation results show that with the proposed method, a significant improvement is achieved in regulating transferred power under variable load ratings.
     To effectively restrain the effect of parametric perturbations on operating performance for inductively coupled power transfer system, a generalized state-space averaging method is applied. Parametric uncertainties is discussed to generate a linear dynamic system with the perturbed feedback. A μ-synthesis controller is designed to control output voltage, The simulation results show that μ-synthesis control system has a certain dynamic performance and robustness.The switch-mode power controller is used to regulate transfer power for multi-load ICPT systems, simulation results show that the switch-mode controller has virtues of higher precision, and all load can be controlled independently.
     As the electric vehicles (EV) would be widely used in the future, research of inductively power transfer technology for EV is carried out; contactless power transfer to static and locomotory EVs are analyzed. Non-contact charging system for EVs, including the coil structures and coupling characteristic of loosely coupled transformer, are investigated, and a design method for key parameters of inductively coupled charging system is brought out. Control system structure for Evs'contactless charging is figured out. Aimed at charge characteristic of lithium batteries, the constant-current and constant-voltage PWM charge for Evs is studied, then step charge control arithmetics are detailed presented. A practical non-contact charging system with multi-load for Evs is designed, the constant-current and constant-voltage PWM charge for EVs are simulated with OrCAD/Pspice package, the simulation results show that the system has better power transfer performance.
     Finally, the main innovations of the dissertation are summarized, and the fields for further research are prospected at the end of the dissertation.
引文
[1]李润之,司荣军,张延松,等.煤矿瓦斯爆炸特性研究现状及发展方向.煤炭技术,2010,29(4):4-6
    [2]N Tesla.APParatus for transmitting electrieal Power. US Patent
    [3]C F Andren, M. A. Fadali, V. L. Gott,et al. The skin tunnel transformer. A new system that permits both high efficiency transfer of power and telemetry of data through the intact skin. IEEE Transactions on Biomedical Engineering, 1968,BME-15:278-280
    [4]L C Ran, E Ng, CH Farrag, Holden J. An inductive charger with a large air-gap. In:The Fifth International Conference on Power Electronics and Drive Systems, vol.2,868-871
    [5]H, Jiang.Steady state analysis of the series resonant converter based on loosely coupled inductive couplers:[PhD Thesis]. Brussel:Vrije Universiteit Brussel, 1996:43-56
    [6]A. Kurs, A. Karalis, R. Moffatt,et al. Wireless Power Transfer via Strongly Coupled Magnetic Resonances. Science,2007,317 (5834):83-86
    [7]B Heeres, D Novotny, D Divan, et al. Contactless underwater power delivery. In:Power Electronics Specialists Conference, PESC'94 1994, vol.1:418-423
    [8]Y Hiraga, J Hirai, Y Kaku,et al. Decentralized control of machines with the use of inductive transmission of power and signal. In:Industry Applications Society Annual Meeting,1994, vol.2:875-881
    [9]E Abel, S Third, A Harwell, et al. Contactless power transfer--An exercise in topology. IEEE Transactions on Magnetics,1984,20 (5):1813-1815
    [10]K Lashkari, S Schladover, E. Lechner. Inductive Power Transfer to an Electric Vehicle.In:8th Int. Electric Vehicle Symp Proc.,1986:258-267
    [11]A W Green,J T Boys.10 kHz inductively coupled power transfer-concept and control. In:the IEE Power Electronics and Variable-Speed Drives conference, London, UK,1994:694-699
    [12]J Boys, A Green. Inductively coupled power transmission—concept, design and application. IPENZ Trans,1995,22 (1):1-9
    [13]H Abe, H Sakamoto, K Harada. A noncontact charger using a resonant converter with parallel capacitor of the secondary coil. IEEE Transactions on Industry Applications,2000,36 (2):444-451
    [14]J Barnard, J Ferreira, J. van Wyk. Sliding transformers for linear contactless power delivery. IEEE Transactions on Industrial Electronics,1997,44 (6): 774-779
    [15]Y X Xu, J T Boys, G A Covic. Modeling and controller design of ICPT pick-ups. In:International Conference on Power System Technology, 2002:1602-1606
    [16]G Covic, G Elliott, O Stielau,et al. The design of a contact-less energy transfer system for a people mover system. In:the Power System Technology Proceeding, Perth, WA, Australia,2000, vol.1:79-84
    [17]J T Boys, A P Hu, G Covic. Critical Q analysis of a current-fed resonant converter for ICPT applications. Electronics Letters,2000,36 (17):1440-1442
    [18]B Song, R Kratz, S Gurol. Contactless inductive power pickup system for Maglev applications. In:37th IAS Annual Meeting of Industry Applications Conference,2002:1586-1591
    [19]B Choi, J Nho, H Cha,et al. Design and implementation of low-profile contactless battery charger using planar printed circuit board windings as energy transfer device. IEEE Transactions on Industrial Electronics,2004,51 (1):140-147
    [20]J T Boys, G A Covic, A W Green. Stability and control of inductively coupled power transfer systems. IEE Proceedings-Electric Power Applications, 2000,147 (1):37-43
    [21]C S Wang, O H Stielau, G A Covic. Design considerations for a contactless electric vehicle battery charger. IEEE Transactions on Industrial Electronics, 2005,52 (5):1308-1314
    [22]G Joun, B Cho. An energy transmission system for an artificial heart using leakageinductance compensation of transcutaneous transformer. IEEE Transactions on Power Electronics,1998,13 (6):1013-1022
    [23]U Madawala, J Stichbury, S Walker. Contactless power transfer with two-way communication. In:30th Annual Conference of IEEE Industrial Electronics Society.2004, vol.3,3071-3075
    [24]W Brown. The history of power transmission by radio waves. IEEE Transactions on Microwave Theory and Techniques,1984,32 (9):1230-1242
    [25]J C Schuder, H E Stephenson, Jr, et al. High-level electromagnetic energy transfer through a closed chest wall. In:IRE Internat. Conv.,1961, vol.9: 119-126
    [26]A M. Dolan, H E Stephenson, S H M Jr,et al. Heat and electromagnetic energy transport through biological material at levels relevant to the intrathoracic artificial heart. Trans. Amer. Soc. Artif. Inter. Organs,1966,vol.12:275-281
    [27]J Schuder, J Gold, H Stephenson. An Inductively Coupled RF System for the Transmission of 1 kW of Power Through the Skin. IEEE Transactions on Biomedical Engineering,1971,18 (4):265-273
    [28]G Wang, W Liu, M Sivaprakasam,et al. Design and Analysis of an Adaptive Transcutaneous Power Telemetry for Biomedical Implants. IEEE Transactions on Circuits and Systems I,2005,52 (10):2109-2117
    [29]A. EsserH. Skudelny. A new approach to power supplies for robots. IEEE Transactions on Industry Applications,1991,27 (5):872-875
    [30]A. W. Green,J. T. Boys. An inductively coupled high frequency power system for material handling applications. In:Proc. Int. Power Electronics Conf., Singapore,1993, vol.2:821-826
    [31]G. Elliott, J. Boys, A. Green. Magnetically coupled systems for power transfer to electric vehicles. In:International Conference on Power Electronics and Drive Systems, Singapore,1995:797-801
    [32]J. Boys, G. Covic, G. Elliott. Pick-up transformer for ICPT applications. Electronics Letters,2002,38 (21):1276-1278
    [33]J. T. Boys, G. A. Covic, Y. Xu. DC Analysis Technique for Inductive Power Transfer Pick-Ups. Power Electronics Letters,2003,1 (2):51-53
    [34]J. Boys. Inductive power distribution system. Google Patents,2001
    [35]J. Boys,A. Green. Inductive power pick-up coils. US Patent:5528113,1996
    [36]O. Stielau, J. Boys, G. Covic,et al. Battery charging using loosely coupled inductive power transfer. In:8th European Conference on Power Electronics and Applications, EPE'99,1999
    [37]A. Hu, J. Boys, G. Covic. Frequency analysis and computation of a current-fed resonant converter for ICPT power supplies. In:International Conference on Power System Technology,2000,vol.1:27-332
    [38]A. Hu, J. Boys, G. Covic. Dynamic ZVS direct on-line start up of current fed resonantconverter using initially forced DC current. In:International conference on IS IE,2000, vol.1:12-317
    [39]A. Hu, Z. Chen, S. Hussmann,et al. A dynamically on-off controlled resonant converter designed for coalmining battery charging applications. In: International Conference on PowerCon 2002, vol.2:1039-1044
    [40]Y. Xu, J. Boys, G. Covic. Modeling and controller design of ICPT pick-ups. In: International Conference on Power System Technology,2002,vol.1:1602-1606
    [41]J. Boys, C. Chen, G. Covic. Controlling Inrush Currents in Inductively Coupled Power Systems. In:The 7th International Power Engineering Conference,2005,vol.2:1046-1051
    [42]J. James, J. T. Boys, G. Covic. A Variable Inductor Based Tuning Method for ICPT Pickups. In:The 7th International Power Engineering Conference, Singapore,2005, vol.2:1142-1146
    [43]D. Kacprzak, G. Covic, J.T Boys. An Improved Magnetic Design for Inductively Coupled Power Transfer System Pickups. In:The 7th International Power Engineering Conference,2005, vol.2:1133-1136
    [44]G. Covic, J. Boys, H. Lu. A Three-Phase Inductively Coupled Power Transfer System. In:2006 1st IEEE Conference on Industrial Electronics and Applications, Singapore,2006,1-6
    [45]G. Elliott, J. Boys, G. Covic. A Design Methodology for Flat Pick-up ICPT Systems. In:2006 1ST IEEE Conference on Industrial Electronics and Applications, Singapore,2006:1-7
    [46]J. Boys, G. Elliott, G. Covic. An Appropriate Magnetic Coupling Co-Efficient for the Design and Comparison of ICPT Pickups. IEEE Transactions on Power Electronics,2007,22 (1):333-335
    [47]G. A. Covic, J. T. Boys, M. L. G. Kissin,et al. A Three-Phase Inductive Power Transfer System for Roadway-Powered Vehicles. IEEE Transactions on Industrial Electronics,2007,54 (6):3370-3378
    [48]S. Raabe, G. Elliott, G. Covic,et al. A Quadrature Pickup for Inductive Power Transfer Systems. In:The 2nd IEEE Conference on Industrial Electronics and Applications, China,Harbin,2007:68-73
    [49]J. Boys, C. Huang, G. Covic. Single-phase unity power-factor inductive power transfer system. In:IEEE Power Electronics Specialists Conference,2008: 3701-3706
    [50]A. Hu, G. Covic, J. Boys. Direct ZVS start-up of a current-fed resonant inverter. IEEE Transactions on Power Electronics,2006,21 (3):809-812
    [51]Madawala, U., D. Thrimawithana, N. Kularatna. An ICPT-Supercapacitor Hybrid System for Surge-Free Power Transfer. IEEE Transactions on Industrial Electronics,2007.54(6):3287-3297
    [52]G. Elliott, G. Covic, D. Kacprzak,et al. A New Concept:Asymmetrical Pick-Ups for Inductively Coupled Power Transfer Monorail Systems. IEEE Transactions on Magnetics,2006,42 (10):3389-3391
    [53]D. Kacprzak, G. Covic, J. Boys. Optimization of inductively coupled power transfer system with flat pickups. In:IEEE International Magnetics Conference, 2003,19-19
    [54]E. van Boheemen, J. Boys, G. Covic. Dual-tuning IPT Systems for Low Bandwidth Communications. In:2nd IEEE Conference on Industrial Electronics and Applications,2007:586-591.
    [55]R. Severns, E. Yeow, G. Woody,et al. An ultra-compact transformer for a 100 W to 120 kW inductivecoupler for electric vehicle battery charging. In:Eleventh Annual of Applied Power Electronics Conference and Exposition 1996:32-38
    [56]D. Jackson, A. Schultz, S. Leeb,et al. A multirate digital controller for a 1.5-kW electric vehicle battery charger. IEEE Transactions on Power Electronics,1997,12 (6):1000-1006
    [57]J. Hayes, J. Hall, M. Egan,et al. Full-bridge, series-resonant converter supplying the SAE J-1773electric vehicle inductive charging interface. In:27th Annual IEEE Power Electronics Specialists Conference, Baveno, Italy,1996: 1913-1918
    [58]J. G. Hayes, M. G. Egan, J. M. D. Murphy,et al. Wide-load-range resonant converter supplying the SAE J-1773electric vehicle inductive charging interface. IEEE Transactions on Industry Applications,1999,35 (4):884-895
    [59]J. Hayes, M. Egan, G. Vehicles,et al. A comparative study of phase-shift, frequency, and hybrid control of the series resonant converter supplying the electric vehicle inductive charging interface. In:Fourteenth Annual of Applied Power Electronics Conference and Exposition,1999, vol.1:450-457
    [60]D. Jackson, S. Leeb, S. Shaw,et al. Adaptive control of power electronic drives for servomechanicalsystems. IEEE transactions on power electronics,2000,15 (6):1045-1055
    [61]K. PapastergiouD. Macpherson. An Airborne Radar Power Supply With Contactless Transfer of Energy—Part Ⅰ:Rotating Transformer. IEEE Transactions on Industrial Electronics,2007,54 (5):2874-2884
    [62]Papastergiou KD, Macpherson DE. An Airborne Radar Power Supply With Contactless Transfer of Energy—Part Ⅱ:Converter Design. IEEE Transactions on Industrial elctronics,2007,54 (5):2885-2893
    [63]S. Tang, S. Hui, H. Chung. Characterization of coreless printed circuit board (PCB) transformers. IEEE transactions on power electronics,2000,15 (6): 1275-1282
    [64]A. Esser. Contactless Charging and Communication System for Electric Vehicles. In:the Industry Applications Society Annual Meeting, Toronto, Ont., Canada,1993, vol.1:1021-1028
    [65]K. Klontz, D. Divan, D. Novotny,et al. Contactless power delivery system for mining applications. IEEE Transactions on Industry Applications,1995,31 (1): 27-35
    [66]Y. Erol,H. Balik. Contactless Power Transfer For Microcontroller Based Led Sign Board. IJCSNS International Journal of Computer Science and Network Security,2007,7 (5):106-109
    [67]L. Solero. Nonconventional on-board charger for electric vehicle propulsionbatteries. IEEE Transactions on Vehicular Technology,2001,50 (1): 144-149
    [68]X. Jian,H. Yu. A novel wireless charging system for movable telephone with printed-circuit-board windings of different structure and shape respectively. In: International Conference on Electrical Machines and Systems,2007: 1283-1285
    [69]J. Villa, A. Llombart, J. Sanz,et al. Practical Development of a 5 kW ICPT System SS Compensated with a Large Air gap. In:IEEE International Symposium on Industrial Electronics,2007:1219-1223
    [70]G. Roberts, P. Hadfield, M. Humphries,et al. Rotary Mechanism for Contactless Data and Power Transfer in Spacecraft. In:The 31st Aerospace Mechanisms Symposium,1997:377-388
    [71]M. Sawan, Y. Hu, J. Coulombe. Wireless smart implants dedicated to multichannel monitoring and microstimulation. IEEE Circuits and systems magazine,2005,5 (1):21-39
    [72]F. M. Nakao, Y Kitaoka, M Sakamoto.Ferrite core couplers for inductive chargers. In:Proceedings of Power Conversion Conference,2002, vol.2: 850-854
    [73]H. SakamotoK. Harada. A novel high power converter for non-contact charging with magnetic coupling. IEEE Transactions on Magnetics,1994,30 (6): 4755-4757
    [74]H. Sakamoto, K. Harada, S. Washimiya, et al. Large air-gap coupler for inductive charger for electric vehicles. IEEE Transactions on Magnetics, 1999,35 (5):3526-3528
    [75]S. Adachi, F. Sato, S. Kikuchi,et al. Consideration of contactless power station with selective excitation to moving robot. IEEE Transactions on Magnetics, 1999,35 (5):3583-3585
    [76]H. Miura, S. Arai, F. Sato,et al. A synchronous rectification using a digital PLL technique for contactless power supplies. IEEE Transactions on Magnetics, 2005,41 (10):3997-3999
    [77]F. Sato, H. Matsuki, S. Kikuchi,et al. A new meander type contactless power transmission system-activeexcitation with a characteristics of coil shape. IEEE Transactions on Magnetics,1998,34 (4):2069-2071
    [78]F. Sato, T. Nomoto, G. Kano,et al. A new contactless power-signal transmission device for implanted functional electrical stimulation (FES). IEEE Transactions on Magnetics,2004,40 (4):2964-2966
    [79]T. Sekitani, M. Takamiya, Y. Noguchi,et al. A large-area wireless power-transmission sheet using printed organic transistors and plastic MEMS switches. Nature Materials,2007,6 (6):413-417
    [80]B. Choi,J. Nho. Contactless energy transfer using planar printed circuit boardwindings. Electronics Letters,2001,37 (16):1007-1009
    [81]李宏.感应电能传输——电力电子及电气自动化的新领域.电气传动,2001(02):62-64
    [82]武瑛.新型无接触供电系统的研究:[博士学位论文].北京:中国科学院电工研究所,2004,32-58
    [83]武瑛,严陆光,徐善纲.新型无接触电能传输系统的稳定性分析.中国电机工程学报,2004,24(05):63-66
    [84]武瑛,严陆光,黄常纲,等.新型无接触电能传输系统的性能分析.电工电能新技术,2003,22(04):10-14
    [85]武瑛,严陆光,徐纲善.新型无接触能量传输系统.变压器,2003,40(6):1-6
    [86]毛赛君.非接触感应电能传输系统关键技术研究:[硕士学位论文].南京:南京航空航天大学,2006,40-49
    [87]孙跃,卓勇,苏玉刚,等.非接触电能传输系统拾取机构方向性分析.重庆大学学报(自然科学版),2007(04):87-90
    [88]孙跃,陈国东,戴欣,等.非接触电能传输系统恒流控制策略.重庆大学学报,2008(07):766-769
    [89]孙跃,王智慧,戴欣,等.非接触电能传输系统的频率稳定性研究.电工技 术学报,2005,20(11):56-59.
    [90]戴欣孙跃.单轨行车新型供电方式及相关技术分析.重庆大学学报(自然科学版),2003,26(01):50-53
    [91]S. Hui, W. Ho. A new generation of universal contactless battery charging platform for portable consumer electronic equipment. IEEE transactions on power electronics,2005,20 (3):620-627
    [92]S. Y. R. Hui,W. W. C. Ho. A New Generation of Universal Contactless Battery Charging Platform for Portable Consumer Electronic Equipment. IEEE transactions on power electronics,2005,20 (3),620-627
    [93]X. Liu, S. Hui. Equivalent Circuit Modeling of a Multilayer Planar Winding Array Structure for Use in a Universal Contactless Battery Charging Platform. IEEE transactions on power electronics,2007,22(1):21-29
    [94]Liu X, Hui SYR. Simulation Study and Experimental Verification of a Universal Contactless Battery Charging Platform With Localized Charging Features. IEEE Transactions on Power Electronics,2007,22 (6):2202-2210
    [95]Liu X, Hui SYR.Optimal Design of a Hybrid Winding Structure for Planar Contactless Battery Charging Platform. IEEE Transactions on Power Electronics,2008,23 (1):455-463
    [96]X. Lius, Ron Hui. Equivalent circuit modeling of a multilayer planar winding array structure for use in a universal contactless battery charging platform. IEEE transactions on power electronics,2007,22 (1):21-30
    [97]X. Liu, W. Ng, C. Lee,et al. Optimal operation of contactless transformers with resonance in secondary circuits. In:Twenty-Third Annual IEEE Applied Power Electronics Conference and Exposition,2008,645-650
    [98]C. Lai, C. Wang, H. Yang,et al. Design and Implement of Contactless Charger with Battery Management. In:IEEE Conference on Electron Devices and Solid-State Circuits,2007,1043-1046
    [99]C. Wang, O. Stielau, G. Covic. Load models and their application in the design of loosely coupled inductive power transfer systems. In:The Power System Technology, Perth, WA, Australia,2000,1053-1058
    [100]http://www.wampfler.com
    [101]Y. JangM. Jovanovic. A contactless electrical energy transmission system for portable-telephone battery chargers.IEEE Transactions on Industrial Electronics,2003,50 (3):520-527
    [102]Chang-Gyun Kim, D.-H. Seo, Jung-Sik You,et al. Design of a contactless battery charger for cellular phone. IEEE Transactions on Industrial Electronics 2001,48(6):1238-1247
    [103]http://www.as.miami.edu
    [104]Y. Liu, S. Wang, R. Leou. A novel primary-side controlled contactless battery charger. In:7th International Conference on Power Electronics and Drive Systems,2007:320-324
    [105]K. Klontz, A. Esser, R. Bacon,et al. An electric vehicle charging system with universal inductive interface. In:Proceedings of International Power Electronics Conference,1993,227-232
    [106]A. Esser. Contactless charging and communication for electric vehicles. IEEE Industry Applications Magazine,1995,1 (6):4-11
    [107]Z. Hamici, R. Itti, J. Champier. A high-efficiency power and data transmission system for biomedical implanted electronic devices. Meas. Sci. Technol, 1996,7:192-201
    [108]A. Hu.Selected resonant converters for IPT power supplies:[PhD Thesis]. Auckland:University of Auckland,2001,30-104
    [109]张占松,蔡宣三.开关电源的原理和设计(修订版).北京:电子工业出版社,2004,42-75
    [110]C. Andren, M. Fadali, V. Gott,et al. The skin tunnel transformer. A new system that permits both high efficiency transfer of power and telemetry of data through the intact skin. IEEE transactions on bio-medical engineering,1968,15 (4):278-280
    [111]E. Kim, H. Song, J. Kim,et al. Efficiency characteristics of a half-bridge series resonant converter for the contact-less power supply. In:Twenty-Third Annual IEEE Applied Power Electronics Conference and Exposition,2008,1555-1561
    [112]K. Papastergiou, D. Macpherson, F. Fisher. A 1kW Phase-Shifted Full Bridge Converter incorporating Contact-less Transfer of Energy. In:IEEE 36th Conference on Power Electronics Specialists, Recifer,2005,83-89
    [113]Y. Kong, E. Kim, I. Hwang,et al. High-efficiency series-parallel resonant converter for the non-contact power supply. In:Twentieth Annual IEEE Applied Power Electronics Conference and Exposition,2005, Vol.3,1496-1501
    [114]C. Wang, G. Covic, O. Stielau. Investigating an LCL load resonant inverter for inductive power transfer applications. IEEE Transactions on Power Electronics, 2004,19(4):995-1002
    [115]C. ZierhoferE. Hochmair. High-efficiency coupling-insensitive transcutaneous power and datatransmission via an inductive link. IEEE transactions on biomedical engineering,1990,37(7):716-722
    [116]C. Fernandez, O. Garcia, R. Prieto,et al. Overview of different alternatives for the contact-less transmission of energy. In:IEEE 28th Annual Conference of the Industrial Electronics Society,2002,1318-1323
    [117]C. Wang, G. Covic, O. Stielau. Power transfer capability and bifurcation phenomena of loosely coupled inductive power transfer systems. IEEE Transactions on Industrial Electronics,2004,51 (1):148-157
    [118]G. Joun,B. Cho. An energy transmission system for an artificial heart using leakageinductance compensation of transcutaneous transformer. IEEE transactions on power electronics,1998,13(6):1013-1022
    [119]W. Q. Zhou,H. Ma. Design considerations of compensation topologies in ICPT system. In:Apec 2007:Twenty-Second Annual Ieee Applied Power Electronics Conference and Exposition,2007,985-990
    [120]A. Kawamura, K. Ishioka, J. Hirai. Wireless transmission of power and information through onehigh-frequency resonant AC link inverter for robot manipulatorapplications. IEEE Transactions on Industry Applications,1996,32 (3):503-508
    [121]D. Pedder, A. Brown, J. Skinner. A contactless electrical energy transmission system. IEEE Transactions on Industrial Electronics,1999,46 (1):23-30
    [122]J. LastowieckiP. Staszewski. Sliding Transformer With Long Magnetic Circuit for Contactless Electrical Energy Delivery to Mobile Receivers. IEEE Transactions on Industrial Electronics,2006,53 (6):1943-1948.
    [123]P. Si, A. Hu, J. Hsu,et al. Wireless Power Supply for Implantable Biomedical Device Based on Primary Input Voltage Regulation. In:International Conference of Industrial Electronics and Applications, Harbin,2007,235-239
    [124]A. P. Hu, S. Hussmann. Improved power flow control for contactless moving sensor applications. IEEE power electronics Letters,2004,2 (4):135-138
    [125]Ping Si, Aiguo Patrick Hu, Simon Malpas,et al. A Frequency Control Method for Regulating Wireless Power to Implantable Devices. IEEE Transactions On Biomedical Circuits and Systems,2008,2 (1):22-29
    [126]C. Wang, G. Covic, O. Stielau. General stability criterions for zero phase angle controlled loosely coupled inductive power transfer systems. In:The 27th Annual Conference of the IEEE Industrial Electronics Society,2001,1049- 1054
    [127]O. Stielau, G. Covic. Design of loosely coupled inductive power transfer systems. In:International Conference on Power System Technology,2000, vol.1,85-90
    [128]H. Jiang, G. Maggetto, C. Co,et al. Identification of steady-state operational modes of the seriesresonant DC-DC converter based on loosely coupled transformers inbelow-resonance operation. IEEE transactions on power electronics,1999,14 (2):359-371
    [129]汤蕴廖,史乃.电机学.北京:机械工业出版社,2005,12-37
    [130]B. PotterS. Shirsavar. Design, Implementation and Characterisation of a Contactless Power Transfer System for Rotating Applications. In:32nd Annual Conference on IEEE Industrial Electronics, Paris,2006,2168-2173
    [131]J. Hirai, T. Kim, A. Kawamura. Study on intelligent battery charging using inductive transmission of power and information. IEEE Transactions on Power Electronics,2000,15 (2):335-345
    [132]U. Madawala, D. Thrimawithana, N. Kularathna. An ICPT-supercapacitor technology for contactless power transfer with surge suppression. In: Thirty-First Annual Conference of the IEEE Industrial Electronics Society, 2005,964-969
    [133]C. Sonntag, E. Lomonova, J. Duarte,et al. Specialized receivers for three-phase contactless energy transfer desktop applications. In:European Conference on Power Electronics and Applications,2007,1-11
    [134]J. Sallan, J. L. Villa, A. Llombart, et al. Optimal Design of ICPT Systems Applied to Electric Vehicle Battery Charge. IEEE Transactions on Industrial Electronics,2009,56 (6):2140-2149
    [135]陈荣.动态功率因数补偿研究.机械制造与自动化,2002(6):66-69
    [136]H. H. Wu, J. T. Boys, G. A. Covic. An AC processing pickup for IPT systems. IEEE Transactions on Power Electronics,2010,25 (5):1275-1284
    [137]Z. Li, D. Li, L. Lin,et al. Design considerations for electromagnetic couplers in contactless power transmission systems for deep-sea applications. Journal of Zhejiang University-Science C,2010,11 (10):824-834
    [138]G. Elliott, S. Raabe, G. A. Covic,et al. Multiphase Pickups for Large Lateral Tolerance Contactless Power-Transfer Systems. IEEE Transactions on Industrial Electronics,2010,57 (5):1590-1598
    [139]C. Liu,A. Hu. Effect of series tuning inductor position on power transfer capability of CCPT system. Electronics Letters,2011,47 (2):136-137
    [140]F. Z. Peng, L. Chen, F. Zhang. Simple topologies of PWM AC-AC converters. IEEE Power Electronics Letters,2003,1 (1):10-13
    [141]A. K. S. Bhat. Analysis and design of LCL-type series resonant converter. IEEE Transactions on Industrial Electronics,1994,41 (1):118-124
    [142]R. Steigerwald. A comparison of half-bridge resonant converter topologies. IEEE Transactions on Power Electronics,1988,3 (2):174-182
    [143]M. Borage, S. Tiwari, S. Kotaiah. Analysis and design of an LCL-T resonant converter as a constant-current power supply. IEEE Transactions on Industrial Electronics,2005,52 (6):1547-1554
    [144]R. L. Steigerwald. High-frequency resonant transistor DC-DC converters. IEEE Transactions on Industrial Electronics,1984(2):181-191
    [145]M. Borage, S. Tiwari, and S. Kotaiah. Constant-current, constant-voltage half-bridge resonant power supply for capacitor charging. IEE Proceedings-Electric Power Applications,2006,153 (3):343-347
    [146]周雯琪.感应耦合电能传输系统的特性与设计研究:[浙江大学博士学位论文].浙江:杭州,2008,12-48
    [147]G. Roberts, A. Owens, P. Lane,et al. A contactless transfer device for power and data.In:IEEE Aerospace Applications Conference,1996, vol.2,333-345
    [148]P. Troyk, G. DeMichele. Inductively-coupled power and data link for neural prostheses using a class-E oscillator and FSK modulation. In:the 25th Annual International Conference of the IEEE Engineering in Medicine and Biology Society,2003, vol.4,17-21
    [149]P. Si,A. P. Hu. Analyses of DC Inductance Used in ICPT Power Pick-Ups for Maximum Power Transfer. In:Transmission and Distribution Conference and Exhibition of Asia and Pacific, Dalian,2005,1-6
    [150]王耀南.智能控制理论及应用.北京:机械工业出版社,2008,40-98
    [151]L. A. Zadeh. Fuzzy Sets. Information Control,1965(8):338-353
    [152]E. H. Mamdani. Application of Fuzzy Algorithms for Simple Dynamic Plant. Proc. IEE Control and Science, Part D,1974,121 (2):1585-1588
    [153]Y. Chao, J. Shieh, C. Pan,et al. A primary-side control strategy for series-parallel loosely coupled inductive power transfer systems. In:Industrial Electronics and Applications, Harbin,2007,2322-2327
    [154]A. P. Hu. Modeling a contactless power supply using GSSA method. In:the IEEE Int. Conf. Ind. Technol.,2009:1-6
    [155]戴欣,余奎,孙跃.CLC谐振型感应电能传输系统的H∞控制.中国电机工程学报,2010,30(30):47-54
    [156]于之训,陈辉堂,王月娟.基于H∞和u综合的闭环网络控制系统的设计.同济大学学报,2001,29(3):307~311
    [157]S. Yan-Ling Li, Xin Dai. μ-Synthesis for Frequency Uncertainty of The ICPT System. IEEE Transactions on Industrial Electronics,2011(09):1-10
    [158]J. Achterberg, E. Lomonova, J. de Boeij. Coil Array Structures Compared for Contactless Battery Charging Platform. IEEE Transactions on Magnetics, 2008,44 (5):617-622
    [159]M. Ryu, H. Cha, Y. Park,et al. Analysis of the contactless power transfer system using modelling and analysis of the contactless transformer. In:31st Annual Conference of IEEE Industrial Electronics Society,2005,1036-1042
    [160]陈清泉,孙立清.电动汽车的现状与发展趋势.科技导报,2005,23(4):24-28
    [161]陈清泉.可持续交通的挑战—谈电动汽车、混合电动汽车、燃料电池电动汽车的最近发展的挑战.深圳信息职业技术学院学报,2006,4(4):1-5
    [162]J. Villa, J. Sallan, A. Llombart,et al. Design of a high frequency Inductively Coupled Power Transfer system for electric vehicle battery charge. Applied Energy,2009,86 (3):355-363
    [163]J. de Boeij, E. Lomonova, J. Duarte, et al. Contactless power supply for moving sensors and actuators in high-precision mechatronic systems with long-stroke power transfer capability in x-y plane. Sensors & Actuators:A. Physical,2008,319-328
    [164]S. Matsushita, Y. Oikawa, T. Iwata,et al. Moving Pick-up Type Contactless Power Transfer System using Series and Parallel Resonant Capacitors. In:IEE Japan Technical Meeting on Semiconductor Power Converter,2007, SPC-07: 49-54
    [165]L. Wang, M. Chen, D. Xu. Increasing Inductive Power Transferring Efficiency for Maglev Emergency Power Supply. In:37th IEEE Power Electronics Specialists Conference,2006,1-7
    [166]K. FotopoulouB. W. Flynn. Wireless Power Transfer in Loosely Coupled Links: Coil Misalignment Model. IEEE Transactions on Magnetics,2011,47 (2): 416-430
    [167]N. KutkutK. Klontz. Design considerations for power converters supplying the SAE J-1773 electric vehicle inductive coupler. In:Twelfth Annual Applied Power Electronics Conference and Exposition, Atlanta, GA, USA,1997, 841-847
    [168]C. J. Chen, T. H. Chu, C. L. Lin, et al. A study of loosely coupled coils for wireless power transfer. IEEE Transactions on Circuits and Systems II:Express Briefs,2010,57(7):536-540
    [169]卡兰塔罗夫,采伊特林.电感计算手册.北京:机械工业出版社,1992,32-98
    [170]杨显清,王园,赵家升.电磁场与电磁波(第4版).北京:高等教育出版社,2006,47-65
    [171]李俄收,朱会田,吴文民.电动汽车蓄电池的充电方法和充电设备.电源技术,2009,33(10):910—913

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700