电网故障下双馈风力发电系统功率变换器运行控制
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
双馈风力发电系统中发电机定子直接与电网相连,对电网电压不平衡和电网电压跌落故障比较敏感。在故障期间双馈风力发电系统通常会脱离电网,影响电网的稳定。新的电网规范要求风力发电系统必须具备低电压穿越运行、电压不平衡补偿和在电网故障时保持并网运行的能力。双馈风力发电系统中双向变换器的控制策略决定了风力发电机组的运行特性,因此,探讨电网故障期间双馈风力发电系统功率变换器的控制策略,对增强风力发电系统的低电压穿越能力和电网电压不平衡补偿能力具有重要意义。本文结合电网故障期间双馈风力发电系统控制技术的研究现状以及风力发电产业的大规模并网需求,立题对电网故障下双馈风力发电系统运行特性与控制策略开展深入研究。
     本文提出了一种双馈风力发电系统网侧变换器定频式模型预测控制(MPC),基于网侧变换器的电流预测模型,在固定时间间隔内以满足电流误差最小为原则计算电压矢量作用时间,实现对参考电流的准确跟踪;针对电网电压不平衡造成的三相电流不平衡问题,分析了电压不平衡时的系统运行特性,提出改进的参考电流计算方法以消除三相电流不平衡;围绕模型预测控制方法中模型参数与实际系统参数不匹配和外界干扰造成控制性能下降,导致功率变换器运行不稳定的问题,提出了网侧变换器的定频式鲁棒模型预测控制。根据双馈风力发电系统网侧变换器数学模型,剖析了模型不匹配时MPC算法的运行过程和误差产生的机理,分析了六扇区内网侧变换器电压矢量对d、q轴电流瞬时变化的影响;将模型参数不匹配对系统造成的影响作为扰动量,采用Luenberger观测器通过前馈补偿消除系统扰动,利用根轨迹法确定了观测器的增益参数,并分析预测模型中电感参数变化对观测器稳定性的影响;仿真与实验结果验证了所提扰动观测预测控制算法在模型准确和模型参数不匹配条件下的控制性能。
     同时,本文开展了电网电压不平衡时双馈风力发电系统网侧变换器运行控制的研究。针对电网电压不平衡引起的网侧变换器交流侧谐波增加、交流侧有功功率和无功功率波动等问题,采用对称分量法分析了不平衡电网电压下双馈风力发电系统网侧变换器输入电流和交流侧功率的稳态特性;将电压不平衡问题转化到同步旋转坐标系中,提出了同步旋转坐标系中不平衡电网电压下网侧变换器的数学模型;在此基础上,针对传统不平衡控制方案结构较复杂、运算量大、有功功率和无功功率波动不能同时抑制等问题,提出了功率谐振补偿控制策略。该策略在电网电压定向矢量控制方法中增加功率脉动补偿环节对瞬时有功、无功功率波动进行电压补偿,仿真与实验结果证明了控制策略的有效性。
     分析了双馈风力发电系统在不平衡电网电压下定、转子电流和定子有功、无功功率脉动以及转矩脉动的特性,提出了定、转子电流,有功、无功功率和电磁转矩的二倍频分量控制表达式;以此为基础,进一步提出了电网电压不平衡条件下双馈风力发电系统多目标补偿控制策略,通过在传统有功、无功功率解耦矢量控制的两个电流内环后分别加入电压补偿控制环节,对不同的控制目标进行补偿控制;提出了双馈风力发电系统多目标切换补偿控制策略,推导了双馈风力发电系统各个变量二倍频分量的关系,将控制量归化到统一等级,采用同一补偿环对不同的控制目标进行切换补偿控制;仿真结果验证了所提控制策略在增强转子侧变换器对转子电流的控制能力和提高风电系统在电网电压不平衡时不脱网运行能力的有效性。
     此外,本文探讨了电网电压对称和不对称跌落瞬间双馈风力发电系统转子电流暂态特性,分析了转子电压等级与双馈风力发电系统的低电压穿越运行区间的关系并讨论控制系统的鲁棒性及控制参数对系统的影响;为增强电网故障情况下双馈风力发电系统的低电压穿越运行能力,提出了双馈风力发电系统转子侧变换器比例谐振控制(PR)策略,增加了辅助电流控制器,该控制器在电网故障发生时可对转子侧变换器输出电压进行补偿,抑制故障瞬间产生的转子故障电流二倍频分量与直流分量,实现双馈风力发电系统的低电压穿越运行;对1.5MW风力发电机组进行仿真研究,验证了理论分析的正确性和所提控制策略的可行性。
The stator of doubly fed induction generations (DFIG) is connected to the powergrid, it’s sensitive to the unbalanced voltage and grid voltage sags. Wind turbinesmight have to be disconnected with the network in the condition of grid faults, and thestability will be reduced. The newly proposed grid standard requires that windturbines must have the ability of compensation to unbalanced voltage and low-voltageride-through during grid faults. The control strategy of power converter is the key tothe wind turbines’ normal operation, and it has important significance to research thecontrol strategy to solve the problems. With the research for fault ride-through ofDFIG and the requirement of large scale wind turbines connected to grid this papermake research on the operating characteristic and control strategies of DFIG.
     The unmatched model established by traditional model predictive control (MPC)usually deteriorates the control performance and stability of control systems. In thispaper, the mathematical models of the grid-side converter for DFIG are derived.Besides, the operating mode and an error analysis have been given. The instantaneousvariation rates of d-and q-axis currents by applying each converter voltage vector insix different sectors are deduced. Based on the current prediction model, voltagevectors were selected according to minimizing current errors in a fixed time interval,which results in a MPC. The various components which deteriorate the performanceof a conventional model predictive current controller are regarded as disturbances.The relevant gains of the disturbance estimator are determined by root-locus analysis.Moreover, the stability of the disturbance estimator when the inductor filter parameterexist errors is analyzed. The proposed method has an inherent rapid dynamic responsedue to the conventional MPC current controller, as well as robust control performancewith respect to the disturbance and noise interference due to use of the combinedestimation algorithm. Simulation and experimental results are presented to validatethe effectiveness of the model predictive controller with disturbance estimator. Theproposed solution provides good control performance under the accurate model andthe unmatched model.
     Moreover, this paper concentrates on grid-side converter of the DFIG systemunder unbalanced grid voltage. Unbalanced grid voltage leads to the increase ofcurrent harmonic and violent fluctuation of active/reactive power. Method of symmetrical components is used to analysis the characteristic of grid-side converterinput current and output power under the unbalanced grid voltage. In order to avoidinvolving any sequential decomposition process, the mathematical model of doublyfed induction generations is established under the unbalancing power grid, and theproblem is transformed to the synchronous rotating coordinate system. As thetraditional solutions based on positive and negative phase sequence decompositionhave relatively complex structure, large calculation load and active/reactive powerfluctuations that can not be suppressed at the same time, a power resonancecompensation control strategy is proposed and unbalance control system for PWMrectifier is designed accordingly. The strategy added a compensation part in traditionalvoltage-oriented vector control strategy to solve the problem of power fluctuation. Aproportional resonant (PR) power control scheme implemented in the two-phasesynchronously rotating reference frame was proposed for the compensation. ThePower pulse compensating controller is designed, and influence of the parameters onthe controller is analyzed. The proposed strategy was finally verified by simulationand experimental results.
     In weak grid, the stator of doubly fed induction generations is connected tounbalance voltage, which causes a number of problems, such as unbalance currents,pulsations of active/reactive power and torque. Therefore, beyond a certain amount ofunbalance, wind turbines might have to be disconnected with the network. Accordingto system model of DFIG in the positive and negative synchronous reference framesunder unbalance grid voltage condition, this paper analyses the pulsation features ofstator active/reactive power and torque under this condition. Also, thedouble-frequency expressions of the stator/rotor current, active/reactive power andtorque are inferred. A new multi-target compensation control strategy withoutinvolving positive and negative sequence decomposition is proposed. The controllercan compensate for the problems caused by an unbalanced grid based on differenttargets. Compared with the dual current control design based on separate loops for thepositive and negative sequence components, the proposed control scheme is simplerand need not positive and negative sequence decomposition. It can not only limit thepulsation of the torque or active or reactive power with more flexibility according todifferent targets, but also eliminate active and reactive powers simultaneously whichcan not be realized in the dual current control scheme. The theoretical analysis andfeasibility of the proposed control scheme are validated by simulation study on a1.5 MW wind-turbine driven DFIG system.
     Additionally, the transient characteristics of the rotor of DFIG current duringsymmetry and asymmetry grid voltage dips are discussed in the paper. Withoutchanging the structure of hardware, a novel control strategy is also proposed for therotor side converter of doubly fed induction generators-based wind power generationsystem. The strategy consists of a traditional proportional-resonant controller andauxiliary controllers. They can limit direct inrush current and second harmonic whenfalse happens. The auxiliary controllers can compensate output voltage of RSC in thecondition of grid faults, limiting rotor inrush current of DFIG and meeting therequirements of low voltage ride through (LVRT).To improve the response of thesystem, sequential-component decompositions of current are not required in thecontrol system. Since the resonant compensator is a double-side integrator, theauxiliary controllers can be simplified by the coordinate transformation.Therelationship between rotor voltage grade and the LVRT operation area of DFIG isdiscussed and the robustness of the control system and the influence of controlparameters are also discussed. The theoretical analysis and feasibility of the proposedcontrol scheme are validated by simulation study on a1.5MW wind-turbine drivenDFIG system.
引文
[1]叶杭冶.风力发电机组的控制技术[M].北京:机械工业出版社,2002.
    [2]江泽民.对中国能源问题的思考[J].中国能源,2008(4):5-19.
    [3]李俊峰.风力12在中国[M].北京:化学工业出版社,2005.
    [4]王承煦,张源.风力发电[M].北京:中国电力出版社,2003.
    [5] World Wind Energy Assiciation.World Wind Energy Report2010[R].Egypt:Cairo,2011.
    [6] Xia C L,Song Z F.Wind energy in China:current scenario and futureperspectives[J].Renawable&Sustainable Energy Reviews,2009,13(8):1974-1996.
    [7] Datta R, Ranganathan V. Variable-speed wind power generation usingdoubly-fed wound rotor induction machine-A comparison with alternativeschemes[J].IEEE Transactions on Energy Conversion,2002,17(3):414-421.
    [8]卞松江.变速恒频风力发电系统关键技术研究[D].[博士学位论文],杭州:浙江大学,2003.
    [9]贺益康,郑康,潘再平,等.交流励磁变速恒频风电系统运行研究[J].电力系统自动化,2004,18(13):55-59.
    [10]龙泽强,肖劲松.风力发电研究和开发的现状与展望[J].世界科技研究与发展,2003(4):26-30.
    [11]陈学顺,许洪华.双馈电机变速恒频风力发电运行方式研究[J].太阳能学报,2004,25(5):582-586.
    [12] Muller S, Deicke M, Rik W,et al.Doubly-fed induction generator systemsfor wind turbinesp[J].IEEE Industrial Application Magazine,2002,8(3):26-33.
    [13] Ekanayake J,Holdsworth L,Jenkins N.Control of doubly-fed induction windgenerators[J].Power Engineering,2003,17(1):28-32.
    [14] Bhowmik S,Spee R,Enslin J H.Performance optimization for doubly fed windpower generation systems[J].IEEE Transactions on Industry Applications,1999,35(4):949-958.
    [15] Yuan G,Chai J,Li Y.Vector control and synchronization of doubly fedinduction wind generator system[C].The4th International Power Electronicsand Motion Control Conference,2004:886-890.
    [16] Iqbal M T,Coonick A H,Freris L L.Dynamic control options for variable speedwind turbines[J].Wind Engineering,1994,18(1):1-12.
    [17]林成武,王凤翔,姚兴佳.变速恒频双馈风力发电系统励磁控制技术研究[J].中国电机工程学报,2003,23(11):122-125.
    [18] Pena R,Clare J C,Asher G M.Doubly fed induction generator usingback-to-back PWM converters and its application to variable-speed wind-energygeneration[J].IEE proceedings of Electric Power Applications,1996,143(3):231-241.
    [19]张新房,徐大平,柳亦兵,等.风力发电技术的发展及相关控制问题综述[J].华北电力技术,2005,5:42-45.
    [20]赵仁德.变速恒频双馈风力发电机交流励磁电源研究[D].[博士学位论文],杭州:浙江大学,2005.
    [21]魏静微,谭勇,张宏宇.大型交流励磁双馈风力发电系统的设计[J].电机与控制学报,2010,14(5):44-48.
    [22] Chad A,Geza J.A systematic approach to design and operation of a doubly fedinduction generator[J].Electric Power Systems Research,2008,78:399-408.
    [23] Yuan G F,Chai J Y,Li Y D.Vector control and synchronization of doubly-fedinduction wind generator system[C].Proceedings of the4th International PowerElectronics and Motion Control Conference,2004,875-888.
    [24] Iqbal M,Coonick A,Ereris L.Dynamic control options for variable speed windturbines[J].Wind Engineering,1994,18(1):1-12.
    [25]刘其辉,贺益康,张建华.交流励磁变速恒频风力发电机的运行控制及建模仿真[J].中国电机工程学报,2006,26(5):43-49.
    [26] Ekanayake J,Holdsworth L,Jenkins N.Control of doubly-fed induction windgenerators[J].Power Engineering,2003,17(1):28-32.
    [27] Bossanyi E A,Hassan G,Partners L.The design of closed loop controllers forwind turbines[J].Wind Energy,2000,3:149-163.
    [28] Carrasco J,Galvan E.Improving transition between power optimization andpower limitation of variable speed,variable pitch wind turbines using fuzzycontrol techniques[C].Proceedings of the26th Annual Conference of the IEEE,2000,1497-1502.
    [29] Petersson A,Thiringer T,Harnefors L,et al.Modeling and experimentalverification of grid interaction of a DFIG wind turbine[J].IEEE Transactions onEnergy Conversion,2005,20(4):878-886.
    [30] Slootweg J G,Haan S,Polinder H,et al.Aggregated modeling of wind parkswith variable speed wind turbines in power system dynamicsimulations[C].Proceedings of the14th PSCC,2002,82-87.
    [31] Hansen A D,Iov F,Sorensen P,et al.Overall control strategy of variable speeddoubly-fed induction generator wind turbine[C]. Nordic Wind PowerConference,2004,2:451-467.
    [32] Dobson R C,Asher G M.Power limitation in variable speed wind turbines usingpitch control and mechanical torque observer[J].Wind Engineering,1996,20(6):363-386.
    [33]郭庆鼎,赵麟,郭洪澈.1MW变速变距风力发电机的滑模变结构鲁棒控制[J].沈阳工业大学学报,2005,27(2):171-174.
    [34]孔屹刚,王志新.大型风电机组模糊滑模鲁棒控制器设计与仿真[J].中国电机工程学报,2008,28(14):136-141.
    [35] Valenciaga F,Puleston P F.Variable structure control of a wind energyconversion system based on a brushless doubly fed reluctancegenerator[J].IEEE Transaction on Energy Conversion,2007,22(2):499-506.
    [36]夏长亮,宋战锋.变速恒频风力发电系统变桨距自抗扰控制[J].中国电机工程学报,2007,27(14):91-95.
    [37] Hopfensperger B,Atkinson D J,Lakin R A.Stator-flux-oriented control of adoubly-fed induction machine with and without position encoder[J]. IEEproceedings of Electric Power Application,2000,147(4):241-250.
    [38] Tapia A,Tapia G,Ostolaza J X,et al.Modeling and control of a wind turbinedriven doubly fed induction generator[J]. IEEE Transactions on energyconversion,2003,18(2):194-204.
    [39]廖勇,杨顺昌.交流励磁发电机参数变化时的解耦励磁控制[J].中国电机工程学报,1998,19(2):37-46.
    [40] Muller S,Deicke M,De Doncker R W.Doubly fed induction generator systemsfor wind turbines[J].IEEE Industry Applications Magazine,2002,8(3):26-33.
    [41] Morel L,Godfroid H,Mirzaian A,et al.Doubly-fed induction machine:Converter optimization and field oriented control without positionsensor[J].IEEProceedings of Electric Power Applications,1998,145(4):360-368.
    [42] Yamamoto M,Motoyoshi O.Active and reactive power control for doubly-fedwound rotor induction generator[J].IEEE Transactions on Power Electronics,1991,6(4):624-629.
    [43] Akagi H,Sato H.Control and performance of a doubly-fed induction machineintended for a flywheel energy storage system[J].IEEE Transactions on PowerElectronics,2002,17(1):109-116.
    [44]杨文焕.双馈电机转子交流励磁矢量控制电压波形分析[J].电机与控制学报,2003,7(1):18-21.
    [45]辜承林,韦忠朝,黄声华,等.对转子交流励磁电流实行矢量控制的变速恒频发电机[J].中国电机工程学报,1996,16(2):119-124.
    [46] Tapia A,Tapia G.Modeling and control of a wind turbine driven doubly-fedinduction generator[J].IEEE Transactions on Energy Conversion,2003,18(2):194-204.
    [47]李辉,杨顺昌,廖勇.并网双馈发电机电网电压定向励磁控制的研究[J].中国电机工程学报,2003,23(8):159-162.
    [48]廖勇,杨顺昌.交流励磁发电机励磁控制[J].中国电机工程学报,1998,18(2):87-90.
    [49]廖勇,杨顺昌.交流励磁发电机运行及控制原理[J].电工技术学报,1997,12(10):21-25.
    [50] Datta R,Ranganathan V T.Direct power control of grid-connected wound rotorinduction machine without rotor position sensors[J].IEEE Transactions onPower Electronics,2001,16(3):390-399.
    [51] Zhi D,Xu L.Direct power control of DFIG with constant switching frequencyand improved transient performance[J]. IEEE Transaction on EnergyConversion,2007,22(1):110-118.
    [52]郭晓明,贺益康,何奔腾.双馈异步风力发电机开关频率恒定的直接功率控制[J].电力系统自动化,2008,32(1):61-65.
    [53]张俊峰,毛承雄等.双馈感应发电机的直接功率控制策略[J].电力系统白动化设备,2006,26(4)::31-35.
    [54] Mohammed O A,Liu Z,Liu S,et al.Stator power factor adjustable direct torquecontrol of doubly-fed induction machines[J].proceedings of IEEE ElectricMachines and Drives,2005:572-576.
    [55]宋战锋.低电压故障下双馈风力发电系统特性分析与运行控制[D].[博士学位论文],天津:天津大学,2009.
    [56] Jauch C,Matevosyan J,Ackermann T,et al.International comparison ofrequirements for connections of wind turbines to power systems[J].WindEnergy,2005,8:295-306.
    [57]向大为,杨顺昌,冉立.电网对称故障时双馈感应发电机不脱网运行的励磁控制策略[J].中国电机工程学报,2006,26(3):164-170.
    [58] National grid transco.“Appendixl,extraets from the grid code-connectionconditions”,www.nationalgrid.com,Feb.2004.
    [59] Erlieh I,Baehlnarm U.Grid code requirements concerning connection andoperation of wind turbines in Germany[C].IEEE Power Engineering SocietyGeneral Meeting,2005,2:1253-1257.
    [60] Jauch C,Matevosyan J,Aekermann T,Bolik S.International comparison ofrequirements for connection of wind turbines to power systems[J].Windenergy,2005,8(3):295-306.
    [61] Sun T,Chen Z,Blaabjerg F.Transient stability of DFIG wind turbines at anextemal short-circuit fault[J].Wind Energy,2005,8(3):345-360.
    [62] Xu L,Wang Y.Dynamie modeling and control of DFIG-based wind turbinesunder unbalanced network conditions[J].IEEE Transactions on Power Systems,2007,22(l):314-323.
    [63] Petersson A,Lundberg S,Thiringer T.A.DFIG wind turbine ride-throughsystem influence on the energy produetion[J].Wind Energy,2005,9(8):251-263.
    [64] Hansen A D,Miehalke G,Sorensen P,Lund T.Coordinated voltage control ofDFIG wind turbines in uninterrupted operation during grid faults[J].WindEnergy,2006,10(10):51-68.
    [65]向大为,杨顺昌,冉立.电网对称故障时双馈感应发电机不脱网运行的系统仿真研究[J].中国电机工程学报,2006,26(10):130-135.
    [66] Santos-Martin D,Rodriguez-Amenedo J L,Amalte S.Direct power controlapplied to doubly fed induction generator under unbalaneed grid voltageconditions[J]. IEEE Transaetions on Power Electronics,2008,23(5):2328-2336.
    [67] Morren J,de Haan S W H.Ride through of wind turbines with doubly-fedinduetion generator duringa voltage dip[J].IEEE Transactions on EnergyConversion,2005,20(2):435-441.
    [68] Flannery P S,Venkataramanan G.A fault tolerant doubly fed induetiongenerator wind turbine using a parallel grid side rectifier and series grid sideconverter[J].IEEE Transactions on Power Electronics,2008,23(3):1126-1135.
    [69] Zmood D N,Holmes D G.Stationary frame current regulation of PWMinverters with zero steady-state error[J]. IEEE Transactions on PowerElectronics,2003,18(3):814-822.
    [70] Yuan X,Merk W,Stemmler H,Allmeling J.Stationary-frame generalizedintegrators for current control of active power filters with zero steady-state errorfor current harmonics of concern under unbalanced and distorted operatingconditions[J].IEEE Transactions on Industry Application,2002,38(2):523-532.
    [71] Rioual P,Pouliquen H,Louis J.Regulation of a PWM rectifier in theunbalanced network state using a generalized model[J].IEEE Transactions onPower Electronics,1996,11(3):495-502.
    [72] Song H S,Nam K.Dual current control scheme for PWM converter underunbalanced input voltage conditions[J]. IEEE Transactions on IndustrialElectronics,1999,46(5):953-959.
    [73] Bo Y,Ramesh O,Sanjib K P,and Ashoka K. S. B. An output-power-controlstrategy for a three-phase PWM rectifier under unbalanced supply conditions[J].IEEE Transactions on Industrial Electronics,2008,55(5):2140-2151.
    [74] Wu X H,Sanjib K P,Xu J X.Analysis of the instantaneous power flow forthree-phase PWM Boost rectifier under unbalanced supply voltage conditions[J].IEEE Transactions on Power Electronics,2008,23(4):1679-1691.
    [75]耿强,夏长亮,阎彦,陈炜.电网电压不平衡情况下PWM整流器恒频直接功率控制[J].中国电机工程学报,2010,30(36):79-85.
    [76]张兴,季建强,张崇巍,等.基于内模控制的三相电压型PWM整流器不平衡控制策略研究[J].中国电机工程学报,2005,25(13):51-56.
    [77] Li Z X,Li Y H,Wang P,Zhu H B,Liu C W and Xu W.Control of Three-PhaseBoost-Type PWM Rectifier in Stationary Frame Under Unbalanced InputVoltage[J].IEEE Transactions on Industrial Electronics,2010,25(10):2521-2530.
    [78]胡家兵,贺益康,王宏胜,徐列.不平衡电网电压下双馈感应发电机网侧和转子侧变换器的协同控制[J].中国电机工程学报,2010,30(9):97-104.
    [79] Chong H,Ran L,Bumby J.Unbalanced-grid-fault ride-through control for awind turbine inverter[J].IEEE Transactions on Industry Applications,2008,44(3):845-856.
    [80] Oriol G,Adri`a J,Andreas S,Joan B.Ride-through control of a doubly fedinduction generator under unbalanced voltage sags[J].IEEE Transactions onEnergy Conversion,2008,23(4):1036-1045.
    [81] Rub′en P,Roberto C,Jon C,Pat W.Control system for unbalanced operationof stand-alone doubly fed induction generators[J].IEEE Transactions on EnergyConversion,2007,22(3):544-545.
    [82] David S,Jose L,Santiago A.Direct power control applied to doubly fedinduction generator under unbalanced grid voltage conditions[J]. IEEETransactions on Power Electronics,2008,23(5):2328-2336.
    [83] Xu L.Coordinated control of DFIG’s rotor and grid side converters duringnetwork unbalance[J].IEEE Transactions on Power Electronics,2008,23(3):1041-1049.
    [84] Hu J B,H Y K.Modeling and enhanced control of DFIG under unbalanced gridvoltage conditions[J].Electric Power Systems Research,2009,79:273-281.
    [85] Brekken T,Mohan N.Control of a doubly fed induction wind generator underunbalanced grid voltage conditions[J]. IEEE Transactions on EnergyConversion,2007,22(1):129-135.
    [86] Xu L,Wang Y.Dynamic modeling and control of DFIG based wind turbinesunder unbalanced network conditions[J].IEEE Transactions on Power System,2007,22(1):314-323.
    [87] Song Z F,Xia C L,Shi T N.Assessing transient response of DFIG based windturbines during voltage dips regarding Main flux saturation and rotor deep-bareffect[J].Applied Energy,2010,87:3283-3293.
    [88] Hu J B,Xu L.Improved control of DFIG systems during network unbalanceusing PI–R current regulators[J].IEEE Transactions on Industrial Electronics,2009,56(2):439-451.
    [89] Xiang D W,Ran L,Tavner P,Yang S.Control of a doubly fed inductiongenerator in a wind turbine during grid fault ride-through[J].IEEE Transactionson Energy Conversion,2006,21(3):652-662.
    [90] Hu J B,He Y K,Xu L.Improved rotor current control of wind turbine drivendoubly-fed induction generators during network voltage unbalance[J].ElctricPower Systems Research,2010,80:847-856.
    [91] Liang J Q,Qiao W,Harley R. G..Feed-forward transient current control forlow-voltage ride-through enhancement of DFIG wind turbines[J]. IEEETransactions on Energy Conversion,2010,25(3):836-843.
    [92] Suh Y S,Tijeras V,Lipo T A.Control seheme in hybrid synchronous frame forPWM AC/DC converter under generalized unbalanced operatingcondition[J].IEEE Transactions on Industry Appliceations,2006,42(3):825-835.
    [93]李建林,赵栋利,李亚西.适合于变速恒频双馈感应发电机的Crowbar对比分析[J].可在生能源,2006,5:57-60.
    [94] Slavomir S. Transient performance analysis of wind-power inductiongenerators[R]. Espoo:Helsinki University of Technology,2006.
    [95] Erlich I,Winter W,Dittrich A.Advanced grid requirements for the integrationof wind turbines into the German transmission system[C].Power EngineeringSociety General Meeting of IEEE,Bayreuth,2006.
    [96] Clemens J.Stability and control of wind farms in power systems [D].Denmark:Aaulborg University,2006.
    [97] Bjarne I,Marta M,Tore U.Laboratory tests of ride through for doubly fedinduction generators[C].Nordic Wind Power Conference,Espoo,2006.
    [98] Anca D. Hansen,Gabriele Michalke.Fault ride-through capability of DFIGwind turbines[J].Renewable Energy,2007,32:1594-1610.
    [99] Erlich I,Wrede H,Feltes C.Dynamic behavior of DFIG-based wind turbinesduring grid faults[J].IEEE in press,2007.
    [100]Anca H, Gabriele M. Fault ride-through capability of DFIG windturbines[J].Renewable Energy,2007,2:1594-1610.
    [101]Kazmierkowski M,Malesani L.Current control techniques for three-phasevoltage-source PWM converters: A survey[J].IEEE Transactions on IndustrialElectronics,1998,45(5):691-703.
    [102]Dannehl J,Wessels C,Fuchs F.Limitations of voltage-oriented PI currentcontrol of grid-connected PWM rectifiers with LCL filters[J]. IEEETransactions on Industrial Electronics,2009,56(2):380-388.
    [103]Xu L,Andersen B,Cartwright P.VSC transmission operating under unbalancedAC conditions-analysis and control design[J].IEEE Transactions on PowerEleetronics,2004,20(l):83-85.
    [104]王久和,李华德.一种新的电压型PWM整流器直接功率控制策略[J].中国电机工程学报,2005,25(16):47-52.
    [105]Malinowski M,Jasinski M,Kazmierkowski M P.simple direct power controlof three-phase PWM rectifier using space-vector modulation (DPC-SVM)[J].IEEE Transactions on Industrial Eleetronies,2004,51(2):477-454.
    [106]Kouro S,Cortes P,Vargas R,Ammann U,Rodriguez J.Model predictivecontrol—A simple and powerful method to control power converters[J].IEEETransactions on Industrial Electronics,2009,56(6):1826-183.
    [107]Bolognani S,Bolognani S,Peretti L,Zigliotto M.Design and implementationof model predictive control for electrical motor drives[J].IEEE Transactions onIndustrial Electronics,2009,56(6):1925-1936.
    [108]Seki H,Ogawa M,Ooyama S,Ahamatsu K,Ohshima M,Yang W.Industrialapplication of nonlinear model predictive control to polymerizationreactors[J].Control Engineering Practice,2001,9:819-828.
    [109]Geyer T,Papafotiou G,Morari M.Model predictive direct torque control-PartI: Concept, algorithm and analysis[J]. IEEE Transactions on IndustrialElectronics,2009,56(6):1894-1905.
    [110]Papafotiou G,Kley J,Papdopoulos K,Bohren P,Morari M.Model predictivedirect torque control-Part II: Implementation and experimentalevaluation[J].IEEE Transactions on Industrial Electronics,2009,56(6):1906-1915.
    [111]Cortes P,Kazmierkowski M,Kennel R,Quevedo D,Rodriguez J.Predictivecontrol in power electronics and drives[J].IEEE Transactions on IndustrialElectronics,2008,55(12):4312-4324.
    [112]Linder A,Kennel R.Model predictive control for electrical drives[C].in Proc.IEEE PESC,2005,Recife,Brazil:1793-1799.
    [113]Mariethoz S,Morari M.Explicit model-predictive control of a PWM inverterwith an LCL filter[J].IEEE Transactions on Industrial Electronics,2009,56(2):389-399.
    [114]Lezana P,Aguilera R,Quevedo D.Model predictive control of an asymmetricflying capacitor converter[J].IEEE Transactions on Industrial Electronics,2009,56(6):1839-1846.
    [115]Kennel R,Linder A,Linke M.Generalized predictive control (GPC)-ready foruse in drive applications[C].In Proc.32nd Annu. IEEE PESC,2001,4,1839-1844.
    [116]Hyung M,Hyun K,Myung Y.A discrete-time predictive current control forPMSM[J].IEEE Transactions on Power Electronics,2003,18(1):464-472.
    [117]José R,Jorge P,César A,Pablo C,Pablo L,Patricio C,Ulrich A.Predictivecurrent control of a voltage source inverter[J].IEEE Transactions on IndustrialElectronics,2007,54(1):495-503.
    [118]Yang W, Stephen B. Fast model predictive control using onlineoptimization[J].IEEE Transactions on Control Systrem Technology,2010,18(2):267-278.
    [119]Baroudi J A,Dinavahi V,Knight A M.A review of power converter topologiesfor wind generators[J].Renewable Energy,2007,32(14):2369-2385.
    [120]L vaas C,M. Seron M, Goodwin G.Robust output-feedback model predictivecontrol for systems with unstructured uncertainty[J].Automatica,2008,44(8):1933-1943.
    [121]L vaas C,M. Seron M, Goodwin G.Robust model predictive control ofinput-constrained stable systems with unstructured uncertainty.in Proc. Eur.Control Conf,Kos,Greece,2007:3303-3310.
    [122]Chen C, Cho M. Energy loss reduction by critical switches[J]. IEEETransactions on Power Delivery,1993,8(3):1246-1253.
    [123]Huy H,Slimani K,Viarouge P.Analysis and implementation of a real-timepredictive current controller for permanent-magnet synchronous servodrives[J].IEEE Transactions on Industrial Electronics,1994,41(1):110-117.
    [124]Rodriguez J,Pontt J,Correa P,Lezana P,Cortes P.Predictive power controlof an AC/DC/AC converter[C]. in Conf. Rec.40th IEEE IAS Annu. Meeting,2005,2:934-939.
    [125]Wang Y,Pierrat L.Probabilistic modeling of current harmonics produced by anAC/DC converter under voltage unbalance[J]. IEEE Transactions on PowerDelivery,1993,8(4):2060-2066.
    [126]Seman S,Niiranen J,Arkkio A.Ride-through analysis of doubly-fed inductionwind-power generator under unsymmetrical network disturbance[J]. IEEETransactions on Power systems,2006,21(4),1782-1789.
    [127]Pena R,Clare J,Asher G.A doubly fed induction generator using back to backPWM converters supplying an isolated load from a variable speed windturbine[J].IEE proceedings Electric Power Applications,1996,143(5):380-387.
    [128]Muljadi E.Understanding the unbalanced-voltage problem in wind turbinegeneration[C]. Proceeding of IEEE Industrual. Apply. Conf.,1999,2:1359-1365.
    [129]Codd I.Windfarm power quality monitoring and output comparison withEN50160[C].Proceeding of4th Int. Workshop Large-Scale Integr. Wind PowerTransmiss. Netw. Offshore Wind Farm,Sweden,2003,20-21.
    [130]National Grid Transco,Appendix1,Extracts from the Grid Code-ConnectionConditions,2004.[Online].Available:http://www.nationalgrid.com.
    [131]杨淑英.双馈型风力发电变流器及其控制[D].[博士学位论文],合肥:合肥工业大学,2008.
    [132]Song Z F,Xia C L,Chen W.Analysis of wind turbine structural loads undergrid fault[C].Proceedings of the11th International Conference on ElectricalMachines and Systems,2008,2277-2282.
    [133]Hu J B,He Y K.Dynamic modeling and robust current control of wind-turbinedriven DFIG during external AC voltage dip[J].Journal of Zhejiang University,SCIENCE A,2006,7(10):1757-1764.
    [134]Hu J B,He Y K,Nian H.Enhanced control of DFIG based back-to-back PMWvoltage source converter under unbalanced grid voltage conditios[J].Journal ofZhejiang University,SCIENCE A,2007,8(8):1330-1339.
    [135]Zhou Y,Bauer P,Ferreira J,Pierik J.Operation of grid-connected DFIG underunbalanced grid voltage condition[J]. IEEE Transactions on EnergyConversion,2009,24(1):240-246.
    [136]Teodorescu R.Proportional–resonant controllers and filters for grid-connectedvoltage-source converters[C].Proc. Inst. Elect. Eng.-Elect. Power Appl.,2006,153(5):750-762.
    [137]Zmood D,Holmes D.Stationary frame current regulation of PWM inverterswith zero steady-state error[J].IEEE Transactions on Power Electronics,2003,18(3):814-822.
    [138]Morren J,Sjoerd W.Rideth-rough of wind turbines with doubly-fed inductiongenerator during a voltage dip[J].IEEE Transactions on Energy Conversion,2005,20(2):435-441.
    [139]Seman S,Niiranen J,Arkkio A.Ride-through analysis of doubly-fed inductionwind-power generator under unsymmetrical network disturbance[J]. IEEETransactions on Power systems,2006,21(4),1782-1789.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700