微机电系统多维无线能量传输技术的研究与应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
无线能量传输技术早在一百多年前就为人所知,但由于其传输效率偏低,未能得到广泛推广应用。近年来,随着电子技术、控制技术发展及无线能量传输需求的增加,无线能量传输技术重新得到广泛关注。无线能量传输技术在许多领域有着良好的应用前景,尤其是在生物医学领域。现有的体内微机电系统通常由化学电池组供电,主要存在供能时间短和安全性不足等问题,而无线能量传输技术为体内微机电系统提供了一种长效、稳定的供能方法。
     本文对国内外相关无线能量传输技术的研究成果,尤其是对该技术在生物医学领域的研究成果进行了详细的研究分析。松耦合变压器是电磁耦合感应式无线能量传输系统的核心部件,决定了系统能量传输效率和功率。现有的一维、二维无线能量传输系统能量传输效率较低,甚至存在完全无法输出能量的可能性。为克服上述缺点,本文建立了多维无线能量传输系统的数学模型及物理模型,并搭建了感应电压测试、供能等实验系统,进行了大量仿真分析与实验研究,验证了文中所提出的采用多维系统实现能量平稳传输的方法是正确、可行的。
     本文具体进行了以下几个方面的研究工作:
     1.研究了电磁感应耦合式无线能量传输技术的基本原理。利用漏感模型与互感模型对无线能量传输系统电路进行了分析,对系统的输出功率、传输效率及功率因数进行了推导与计算。
     2.建立了电磁感应多维耦合器数学模型,开展了多维无线能量传输系统的研究工作。首先对多维初级与一维初级两种结构的松耦合变压器进行了对比分析,随后建立了一维初级多维次级无线能量传输系统的互感数学模型,推导了多维能量传输系统初次级回路在不同补偿模式下的反映阻抗和补偿电容表达式,对初次级回路无补偿模式及初次级均采用串联模式时系统的输出功率、传输效率及功率因数进行了推导。然后,具体针对一组耦合器参数进行了计算,分析了耦合系数、线圈内阻、感抗补偿等对系统传输效率的影响。
     3.设计制作了多维松耦合变压器。首先,对该变压器建立了有限元仿真模型,给出了初级线圈磁场的分布,研究了次级线圈位置、姿态的改变对系统耦合系数的影响。随后,利用次级线圈感应电压实测值计算出系统耦合系数,验证了仿真分析的正确性。最后,用仿真和实验的方法对次级线圈多个绕组间的能量补偿性能进行了分析。
     4.设计了松耦合变压器输出多电压的整流、连接、稳压电路,制作了无线能量传输系统次级回路原理电路板,进行了能量传输实验。实验测试表明:无论次级线圈的姿态角如何变化,次级回路都可以平稳输出电压,输出功率在150mW以上,传输效率为7.08%。
     5.对次级电路板进行了微型化设计,制作了适用于窥视胶囊的微无线能量传输系统,完成了体内窥视胶囊总装。最后,利用该窥视胶囊进行了离体与活鸭实验,验证了本文所述的多维无线能量传输技术是合理、可行的。
     尽管本文就多维无线能量传输技术及其在体内窥视胶囊上的应用进行了大量研究,取得了一定成果,但仍存在一些不足,如色彩还原不足、图像清晰度欠佳,尚需后续研究克服。
Wireless power transmission (WPT) technology was known more than one hundred years ago. Because of its low energy transmission efficiency, WPT was not widely used. Along with the developments of the electronic technique, the control technique and the soaring requirements for WPT in the recent years, WPT technology attracts researchers to pay attention on it again. WPT technology is expected to well apply in many areas, especially in the biomedical field. The existing MEMS inside body are usually powered by chemical battery packs. However, there are some defects caused by the energy supply model, such as limited battery life and insecurity. WPT technology may provide a stable power source for MEMS inside body.
     In the present dissertation, the research of WPT, especially the research results in the biomedical field are studied thoroughly. The loosely coupling transformer is the core unit of a WPT system. The transformer determines the system efficiency and output power. The efficiency of one-dimensional WPT system or two- dimensional WPT system is quite low. Sometimes these systems cannot output any power at all. In order to overcome the defects above, a multi-dimensional WPT system model is built. In addition an induced voltage measuring platform is constructed. Based on the facilities, experiments and analyses are carried on. It is indicated that the multi-dimensional WPT system developed in this dissertation is correct and feasible. The detailed work accomplished in this dissertation is as follows.
     First of all, the basic principles of WPT technology are studied. A leakage inductance and a mutual inductance model are introduced to analyze the energy transmission circuit. The output power and the efficiency of WPT system are given by derivation.
     Secondly, the mathematical model is built for the multi-dimensional WPT system. Based on the model, the reflected impedances and compensation capacitances are deduced under four different circuit structures. Moreover, the output power and the power factor are given in the following two circumstances, one is no compensation capacitor added in circuits, and the other is the compensation capacitors series connected in circuits. Then the influences of coupling coefficient k and internal resistance are studied in accordance with the loosely coupled transformer.
     Thirdly, a multi-dimensional loosely coupled transformer is designed and fabricated. The magnetic field distribution of the primary coil is obtained by the finite element simulation. Furthermore, influences of the secondary coil position and the attitude angle on the coupling coefficient are studied. After that, the coupling coefficients are calculated using the induced voltage values which are measured in a self-made experimental platform. The calculation results can confirm correctness of the former simulation. The compensation performances between different windings in the secondary coil are also studied by the simulations and experiments.
     Fourthly, a secondary coil circuit board including rectification module, multi-voltages connection module, and voltage regulation module is designed and fabricated. Using this circuit, the wireless power transmission experiment is carried on, which indicate the output voltage is stable and the output power is higher than 150mW. The efficiency of power transmission can reach 7.08%.
     Fifthly, the secondary coil circuit board is miniaturized. A wireless power transmission system for MEMS inside body is fabricated by using the miniaturized circuit. Afterwards, a capsule endoscope is assembled successfully. Finally, the experiments are carried on outside body and inside a live duck. The endoscope can output videos normally. The results in the dissertation indicate that the multi-dimensional WPT system is feasible.
     Summing up the above, much work has been done on the multi-dimensional wireless transmission technology and its application on the MEMS inside body. However, there are still some improvements needed in the future to solve the defects existing in current platform, such as the poor color reducibility and the sharpness.
引文
[1] Rappaport T. Wireless commucications principles and practice[M]. Beijing: China Machine Press, 1998
    [2]邬正义,范瑜,徐惠钢.现代无线通信技术[M].北京:高等教育出版社, 2006
    [3]野泽哲生,蓬田宏树,林咏.伟大的电能无线传输技术[J].电子设计应用, 2007(06): 42-44
    [4] Curty J., Declercq M., Dehollain C., et al. Design and Optimization of Passive UHF RFID Systems[M]. Springer Science and Business Media, 2007: 3-15
    [5] Tesla N. Apparatus for transmitting electrical power[P]. US: 1119732.
    [6] Marincic A.S. Nikola Tesla and the Wireless Transmission of Energy[J]. IEEE Transactions on Power Apparatus and Systems, 1982, PAS-101(10): 4064-4068
    [7] Cheney M. Tesla: Man Out of Time[M]. Englewood Cliffs, NJ: Prentice Hall, 1981
    [8] Brown W. Experiments in the transportation of energy by microwave beam[A]. IRE International Convention Record[C]. 1964:8-17
    [9] Brown W.C. The History of Power Transmission by Radio Waves[J]. IEEE Transactions on Microwave Theory and Techniques, 1984, 32(9): 1230-1242
    [10] Schuder J.C., Stephenson H.E. Energy Transport to a Coil Which Circumscribes a Ferrite Core and Is Implanted Within the Body[J]. IEEE Transactions on Biomedical Engineering, 1965, BME-12(3): 154-163
    [11] Ko W., Liang S., Fung C. Design of radio-frequency powered coils for implant instruments[J]. Medical and Biological Engineering and Computing, 1977, 15(6): 634-640
    [12] Hu A.P., Boys J.T., Covic G.A. Frequency analysis and computation of a current-fed resonant converter for ICPT power supplies[A]. International Conference on Power System Technology[C]. 2000:327-332
    [13] Boys J.T., Hu A.P., Covic G.A. Critical Q analysis of a current-fed resonant converter for ICPT applications[J]. Electronics Letters, 2000, 36(17): 1440-1442
    [14] Boys J.T., Covic G.A., Elliott G.A.J. Pick-up transformer for ICPT applications[J]. Electronics Letters, 2002, 38(21): 1276-1278
    [15]武瑛,严陆光,徐善纲.新型无接触能量传输系统[J].变压器, 2003(06): 1-6
    [16]武瑛,严陆光,徐善纲.新型无接触电能传输系统的稳定性分析[J].中国电机工程学报, 2004(05): 67-70
    [17]武瑛,严陆光,徐善纲.运动设备无接触供电系统耦合特性的研究[J].电工电能新技术, 2005(03): 5-8
    [18]武瑛.新型无接触供电系统的研究[D].中国科学院研究生院(电工研究所), 2004
    [19]马皓,周雯琪.电流型松散耦合电能传输系统的建模分析[J].电工技术学报, 2005(10): 70-75
    [20]周雯琪.感应耦合电能传输系统的特性与设计研究[D].浙江大学, 2008
    [21] Bieler T., Perrottet M., Nguyen V., et al. Contactless power and information transmission[J]. 2002, 38(5): 1266-1272
    [22] Hirai J., Tae-Woong K., Kawamura A. Wireless transmission of power and information and information for cableless linear motor drive[J]. IEEE Transactions on Power Electronics, 2000, 15(1): 21-27
    [23] Hirai J., Tae-Woong K., Kawamura A. Study on intelligent battery charging using inductive transmission of power and information[J]. IEEE Transactions on Power Electronics, 2000, 15(2): 335-345
    [24] Hirai J., Tae-Woong K., Kawamura A. Practical study on wireless transmission of power and information for autonomous decentralized manufacturing system[J]. IEEE Transactions on Industrial Electronics, 1999, 46(2): 349-359
    [25] Klontz K.W., Divan D.M., Novotny D.W., et al. Contactless power delivery system for mining applications[J]. IEEE Transactions on Industry Applications, 1995, 31(1): 27-35
    [26]李宏.感应电能传输——电力电子及电气自动化的新领域[J].电气传动, 2001
    [27]法勒移动贸易供电上海有限公司供稿.非接触供电系统在物流领域的应用[J].物流技术与应用, 2007
    [28] Elliott G.A.J., Boys J.T., Green A.W. Magnetically coupled systems for power transfer to electric vehicles[A]. International Conference on Power Electronics and Drive Systems 1995[C]. 1995:797-801
    [29] Covic G.A., Elliott G., Stielau O.H., et al. The design of a contact-less energy transfer system for a people mover system[A]. International Conference on Power System Technology 2000[C]. 2000:79-84
    [30]瓦姆福尔公司. IPT Rail[EB/OL]. http://www.wampfler.com/index.asp?id=10&plid=63&e1=2&e2=12&lang=E, 2011-3-31
    [31] Deron K.J. Inductively-Coupled Power Transfer for Electromechanical Systems[D]. Massachusetts Institute of Technology, 1998
    [32] HaloIPT Company. Wireless Charging for Electric Vehicles[EB/OL]. http://www.haloipt.com/#n_home-intro, 2010-12-30
    [33] Auckland UniServices Ltd. New Zealand company launches first wireless car charger[EB/OL]. http://www.uniservices.co.nz/News/HaloIPTlaunches.aspx, 2010-12-30
    [34] Kojiya T., Sato F., Matsuki H., et al. Automatic power supply system to underwater vehicles utilizing non-contacting technology[A]. OCEANS '04. MTTS/IEEE TECHNO-OCEAN '04[C]. 2004:2341-2345
    [35] Feezor M.D., Yates Sorrell F., Blankinship P.R. An interface system for autonomous undersea vehicles[J]. 2001, 26(4): 522-525
    [36] Bradley A.M., Feezor M.D., Singh H., et al. Power systems for autonomous underwater vehicles[J]. IEEE Journal of Oceanic Engineering, 2001, 26(4): 526-538
    [37] Giuliani, David, Ryan W., et al. Pacing toothbrush[P]. US: 5544382. 1996
    [38] Roszyk L., Barnas L. Hand held battery operated device and charging means therefor[P]. US: 3840795, 1974
    [39] Jang Y., Jovanovic M.M. A contactless electrical energy transmission system for portable-telephone battery chargers[J]. IEEE Transactions on Industrial Electronics, 2003, 50(3): 520-527
    [40] Jang Y., Jovanovic M.M. New two-inductor boost converter with auxiliary transformer[J]. IEEE Transactions on Power Electronics, 2004, 19(1): 169-175
    [41] Huber L., Jang Y., Jovanovic M.M. Performance evaluation of bridgeless PFC boost rectifiers[J]. IEEE Transactions on Power Electronics, 2008, 23(3): 1381-1390
    [42]百度百科.手机无线充电[EB/OL]. http://baike.baidu.com/view/1241800.html, 2010-7-14
    [43]日经BP社.美国WildCharge展示无线充电组件[EB/OL]. http://www.eefocus.com/html/08-03/37990s.shtml, 2008-3-26
    [44] Jow U., Ghovanloo M. Design and optimization of printed spiral coils for efficient inductive power transmission[A]. 14th IEEE International Conference on Electronics, Circuits and Systems[C]. Marrakech, Morocco: Institute of Electrical and Electronics Engineers Inc., 2007:70-73
    [45] Jow U., Ghovanloo M. Design and Optimization of Printed Spiral Coils for Efficient Transcutaneous Inductive Power Transmission[J]. 2007, 1(3): 193-202
    [46] Fernandez C., Zumel P., Lazaro A., et al. A simple approach to design a contact-lesspower supply for a moving load[A]. Applied Power Electronics Conference, Twenty Second Annual IEEE[C]. 2007:1607-1612
    [47] Baxi V.J., Hariz A.J. Optimization of wireless battery-less power transmission for micro-implants in vivo-environments[A]. Micro- and Nanotechnology: Materials, Processes, Packaging, and Systems III[C]. Bellingham WA: SPIE -International Society for Optical Engineering, 2007:64151
    [48] Atluri S., Ghovanloo M. A wideband power-efficient inductive wireless link for implantable microelectronic devices using multiple carriers[A]. 2006 IEEE International Symposium on Circuits and Systems[C]. Kos, Greece: Institute of Electrical and Electronics Engineers Inc., 2006:1131-1134
    [49] Dehennis A.D., Wise K.D. A wireless microsystem for the remote sensing of pressure, temperature, and relative humidity[J]. 2005, 14(1): 12-22
    [50] Kanazawa, Masafumi. Capsule-type device and capsule-type device controlling system[P]. US: 7354398, 2008
    [51] Nakamura T., Fukashi Y., Kazuya M., et al. Energy supplying coil and capsule endoscope system[P]. US: 20050065407, 2005
    [52] Tsai C.C., Chen B.S., Tsai C.M. Design of wireless transcutaneous energy transmission system for totally artificial hearts[A]. The 2000 IEEE Asia-Pacific Conference on Circuits and Systems[C]. 2000:646-649
    [53] Zhao L., Foo C.F., Tseng K.J., et al. Transcutaneous transformers in power supply system for an artificial heart[A]. 1998 International Conference on Power Electronic Drives and Energy Systems for Industrial Growth[C]. 1998:348-352
    [54] Gyu B.J., Cho B.H. An energy transmission system for an artificial heart using leakage inductance compensation of transcutaneous transformer[J]. 1998, 13(6): 1013-1022
    [55] Qunfeng N., Li W., Tao D., et al. Application of a MEMS-based energy harvester for artificial heart wireless energy transmission[A]. 2009 Second ISECS International Colloquium on Computing, Communication, Control, and Management[C]. Sanya, China: IEEE Computer Society, 2009:38-41
    [56] Takahashi M., Watanabe K., Sato F., et al. Signal transmission system for high frequency magnetic telemetry for an artificial heart[A]. 8th Joint Magnetism and Magnetic Materials -International Magnetic Conference[C]. San Antonio, TX, United states: Institute of Electrical and Electronics Engineers Inc., 2001:2921-2924
    [57] Fei Z., Xiaoyu L., Hackworth S.A., et al. In vitro and in vivo studies on wireless powering of medical sensors and implantable devices[A]. Life Science Systems andApplications Workshop 2009[C]. 2009:84-87
    [58] Zhang F., Hackworth S.A., Liu X., et al. Wireless energy transfer platform for medical sensors and implantable devices[A]. 31st Annual International Conference of the IEEE Engineering in Medicine and Biology Society: Engineering the Future of Biomedicine[C]. Minneapolis, MN, United states: IEEE Computer Society, 2009:1045-1048
    [59] Guoxing W., Wentai L., Sivaprakasam M., et al. High Efficiency Wireless Power Transmission with Digitally Configurable Stimulation Voltage for Retinal Prosthesis[A]. 2nd International IEEE EMBS Conference on Neural Engineering[C]. 2005:543-546
    [60] Wang G., Liu W., Sivaprakasam M., et al. Power supply topologies for biphasic stimulation in inductively powered implants[A]. IEEE International Symposium on Circuits and Systems 2005[C]. Kobe, Japan: Institute of Electrical and Electronics Engineers Inc., 2005:2743-2746
    [61] Wang G., Liu W., Sivaprakasam M., et al. A dual band wireless power and data telemetry for retinal prosthesis[A]. 28th Annual International Conference of the IEEE Engineering in Medicine and Biology Society[C]. NY, United states: Institute of Electrical and Electronics Engineers Inc., 2006:4392-4395
    [62]马官营,颜国正,何秀.基于电磁感应的消化道内微系统的无线供能[J].上海交通大学学报, 2008(05): 798-802
    [63]马官营,颜国正.基于电磁感应的消化道内微系统无线能量传输问题研究[J].生物医学工程学杂志, 2008(01): 61-64
    [64]叶东东,颜国正,王坤东,等.无缆式微机器人内窥镜系统的研制及离体实验[J].高技术通讯, 2007(12): 1244-1249
    [65]马官营.人体肠道诊查微型机器人系统及其无线供能技术研究[D].上海交通大学, 2008
    [66]何秀,颜国正,马官营.互感系数的影响因素及其对无线能量传输系统效率的影响[J].测控技术, 2007(11): 57-60
    [67]马官营,颜国正,于莲芝, et al.人体消化道内微机电系统线圈耦合系数分析[J].北京生物医学工程, 2006(05): 486-489
    [68]马官营,颜国正,王坤东,等.无线供能胃肠道微型诊查机器人系统研究[J].机器人, 2008: 56-62
    [69] Iddan G., Meron G., Glukhovsky A., et al. Wireless capsule endoscopy[J]. Nature, 2000:4158: 405-417
    [70] Naoki Y. Wireless power feeding system and capsule endoscope system applied with the same[P]. Europe: EP1868280. 2007-12-19
    [71] OLYMPUS Company. EndoCapsule-Taking capsule endoscopy to the next level[EB/OL]. 2009-11-26
    [72]重庆金山科技有限公司.胶囊内镜OMOM[EB/OL]. http://www.cqjs.net/, 2009-6-21
    [73]李兆申. OMOM胶囊内镜[M].上海:上海科学技术出版社, 2010
    [74] Gimm Y., Yoo H., Kim M., et al. Receiving coil analysis of wireless power transmission with inductive coupling[A]. 2007 Korea-Japan MicroWave Conference[C]. Naha, Okinawa, Japan: Inst. of Elec. and Elec. Eng. Computer Society, 2007:117-120
    [75] Lee S.W., Kim J.D., Son J.H., et al. Design of Two-Dimensional Coils for Wireless Power Transmission to In Vivo Robotic Capsule[A]. Annual International Conference of the IEEE Engineering in Medicine and Biology[C]. 2005:6631-6634
    [76] RF SYSTEM lab. The Next Generation Capsule Endoscope - Sayaka[EB/OL]. http://www.rfamerica.com/sayaka/index.html, 2010-12-10
    [77] Lenaerts B., Puers R. Inductive powering of a freely moving system[J]. Sensors and Actuators, A: Physical, 2005, 123-124: 522-530
    [78] Lenaerts B., Puers R. An inductive power link for a wireless endoscope[J]. Biosensors and Bioelectronics, 2007, 22(7): 1390-1395
    [79] Liu X.Q., Huang P., Zeng Z. Study on techniques of outside energy supply for the wireless capsule endoscope[A]. 2007 IEEE International Conference on Control and Automation[C]. Guangzhou, China: Institute of Electrical and Electronics Engineers Inc., 2008:203-206
    [80] Liu X., Zeng Z., Zhang W., et al. Study on the location with magnetoresistive sensors for the wireless capsule endoscope[A]. IEEE International Conference on Robotics and Biomimetics[C]. 2007:104-108
    [81]刘修泉.体内微机电系统无线能量传输技术的研究[D].广州:华南理工大学机械与汽车工程学院, 2008
    [82]江伟雄.无线能量传输技术在体内微机电系统中的应用研究[D].广州:华南理工大学, 2009
    [83]刘修泉,张炜,吴彦华,等.体内微机电无线能量传输系统的仿真分析[J].系统仿真学报, 2008, 20(08): 2215-2219
    [84]刘修泉,曾昭瑞,黄平.空心线圈电感的计算与实验分析[J].工程设计学报,2008(02): 149-153
    [85] Shinohara N. Technologies of wireless power transmission[J]. IEEJ Transactions on Power and Energy, 2010, 130(2): 145-148
    [86]吴群.微波技术[M].哈尔滨:哈尔滨工业大学出版社, 2004, 1-5
    [87] Young-Ho S., Kai C. A high-efficiency dual-frequency rectenna for 2.45- and 5.8-GHz wireless power transmission[J]. 2002, 50(7): 1784-1789
    [88] Wang P., Xiao J., Li M., et al. 5.8 GHz microwave power transmission system for micro-robot[J]. Jiqiren/Robot, 2010, 32(4): 529-533
    [89] Abbasi M.I., Adnan S.A., Amin M., et al. Wireless power transfer using microwaves at 2.45 GHz ISM band[A]. 6th International Bhurban Conference on Applied Sciences and Technology[C]. Islamabad, Pakistan: IEEE Computer Society, 2009:99-102
    [90] Payne J., Song K.D., Yang S.Y., et al. Wireless power transmission for medical applications[A]. The International Society for Optical Engineering[C]. San Diego, United states: SPIE, 2009
    [91]李宗谦,佘京兆,高葆新.微波工程基础[M].北京:清华大学出版社, 2004, 432-436
    [92] Vaganov R.B., Korshunov I.P., Korshunova E.N., et al. Selection of the microwave-beam parameters in a wireless system for energy transportation from a space electric power station to the Earth[J]. Journal of Communications Technology and Electronics, 2008, 53(2): 195-198
    [93] Shinohara N. Development of high efficient phased array for microwave power transmission of Space Solar Power Satellite/Station[A]. 2010 IEEE International Symposium on Antennas and Propagation and CNC-USNC/URSI Radio Science Meeting - Leading the Wave[C]. Toronto, Canada: IEEE Computer Society, 2010:
    [94] Kurs A., Karalis A., Moffatt R., et al. Wireless power transfer via strongly coupled magnetic resonances[J]. Science, 2007, 317(5834): 83-86
    [95] Yang Q., Xu G., Jin J., et al. Optimal design of energy transmission system for implantable device base on WiTricity[A]. 14th Biennial IEEE Conference on Electromagnetic Field Computation[C]. NJ, United States: IEEE Computer Society, 2010
    [96] Zhang F., Liu X., Hackworth S.A., et al. In vitro and in vivo studies on wireless powering of medical sensors and implantable devices[A]. 2009 IEEE/NIH Life Science Systems and Applications Workshop[C]. Bethesda, MD, United states: Inst. of Elec. and Elec. Eng. Computer Society, 2009:84-87
    [97] Karalis A., Joannopoulos J.D., Soljacic M. Efficient wireless non-radiative mid-range energy transfer[J]. Annals of Physics, 2008, 323(1): 34-48
    [98] Kurs A., Moffatt R., Soljacic M. Simultaneous mid-range power transfer to multiple devices[J]. Applied Physics Letters, 2010, 96(4)
    [99]末田正.电磁学[M].北京:科学出版社, 2003
    [100]张宗明.非接触电能传输系统电磁机构研究[D].重庆大学, 2007
    [101]潘双来,邢丽冬,龚余才.电路理论基础[M].北京:清华大学出版社, 2007
    [102] Narasaiah G.L. Finite Element Analysis[M]. Boca Raton: CRC Press Inc., 2009
    [103] Infolytica corporation. MagNet v7 2D/3D ELECTROMAGNETIC FIELD SIMULATION SOFTWARE[EB/OL]. http://www.infolytica.com/en/products/magnet/, 2011-1-6
    [104] JMAG Group. JMAG-Studio Features[EB/OL]. http://www.jmag-international.com/products/studio_designer/index_studio.html, 2010-11-23
    [105]张倩,胡仁喜,康士廷. ANSYS 12.0电磁学有限元分析从入门到精通[M].北京:机械工业出版社, 2010
    [106]赵博,张洪亮. Ansoft 12在工程电磁场中的应用[M].北京:中国水利水电出版社, 2010
    [107]朱中平,薛剑峰.中外磁性材料实用手册[M].北京:中国物资出版社, 2004
    [108]王耕福.高频电源变压器磁芯的设计原理[J].磁性材料及器件, 2000(04): 26-31
    [109] Masala O., Hoffman D., Sundaram N., et al. Preparation of magnetic spinel ferrite core/shell nanoparticles: Soft ferrites on hard ferrites and vice versa[J]. Solid State Sciences, 2006, 8(9): 1015-1022
    [110]曹祥玉,高军,曾越胜,等.电磁场与电磁波[M].西安:西安电子科技大学出版社, 2007: 148-153
    [111]海特维西.电感计算[M].北京:国防工业出版社, 1960: 1-8
    [112]陈道红,魏红,张畅.电工学[M].北京:化学工业出版社, 2002
    [113]日本电气学会.电工电子技术手册[M].北京:科学出版社, 2004
    [114]新风光电子科技发展有限公司. WL3866系列宽带大功率信号源使用指南[EB/OL]. http://www.fengguang.com/,
    [115]于歆杰,朱桂萍,陆文娟.电路原理[M].北京:清华大学出版社, 2007
    [116] MOTOROLA Company. MOTOROLA SEMICONDUCTOR TECHNICALDATA[EB/OL]. http://datasheet.eeworld.com.cn/part/1N5817,MOTOROLA,56880.html, 2010-8-16
    [117]胡世昌,周传生.电路与电子技术基础[M].北京:中国铁道出版社, 2007: 243-247
    [118] Sipex Corporation. 500mA, Low-Noise LDO Voltage Regulator[EB/OL]. http://www.datasheet5.com/product_SPX3819_c9d0a1bcc6da7db1.html, 2010-8-12
    [119]刘建青.基于OV6920人体无线胶囊内窥镜设计与实验研究[D].广州:华南理工大学, 2010
    [120]曾昭瑞.内窥镜胶囊无线发射装置的改进与OV6920开发应用研究[D].广州:华南理工大学, 2008
    [121]陈英俊,李洁,黄平.人体胃肠道窥视微机电系统设计与研究[J].中国机械工程, 17(9): 892-895
    [122]无线胶囊内窥镜CMOS摄像模块的设计与制作[J].现代制造工程, 2010(03)
    [123]基于OV6920体内无线窥视胶囊设计与实验研究[J].机械设计与制造, 2010(06)
    [124]胶囊内镜微型低功耗无线视频发射电路的设计研究[J].制造业自动化, 2010(08)
    [125]周志敏,周纪海.开关电源实用技术——设计与应用[M].北京:人民邮电出版社, 2003: 230-243

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700